AKDTM

User Guide

Edition: Revision C, April 2011

Valid for Hardware Revision C

Patents Pending

Part Number 903-200006-00

Original Documentation

Keep all manuals as a product component during the life span of the product.

Pass all manuals to future users/owners of the product.

Record of Document Revisions:

Revision	Remarks
6/2010	Combined User Guide and Parameter and Command Reference Guide (released in WorkBench only).
9/2010, Rev-	Combined User Guide, CANopen, and EtherCAT manuals. Updated for Release 1.3.
11/2010, Rev A	Usability improvements, minor topic edits.
12/2010, Rev B	Document part number update.
04/2011, Rev C	Updated for Release 1.4. Added Modbus, modulo, new homing modes, registration moves, W&S improved, new parameters, PLS enhanced, velocity unit changes, motion tasking revisions, switch bounce conditioning (DINx.FILTER), linear motor parameters.

Hardware Revision (HR)

Hardware Revision	Usable Firmware	Usable Workbench	Remarks
Α	M_01-03-00-zzz	1.0.3.zzz	Start version
С	≥ M_01-03-00-011	≥1.3.0.zzzzz	STO certified

EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

HIPERFACE is a registered trademark of Max Stegmann GmbH

WINDOWS is a registered trademark of Microsoft Corporation

AKD is a registered trademark of Kollmorgen Corporation

Current patents:

US Patent 5,646,496 (used in control card R/D and 1 Vp-p feedback interface)

US Patent 5,162,798 (used in control card R/D)

US Patent 6,118,241 (used in control card simple dynamic braking)

Technical changes which improve the performance of the device may be made without prior notice.

Printed in the United States of America

This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of Kollmorgen.

Table of Contents

1 About this User Guide	29
1.1 About this User Guide.	29
1.2 Abbreviations	29
2 AKD Models	31
2.1 CC Drive Models.	31
3 Basic Drive Setup.	33
3.1 Basic Drive Setup.	34
3.2 Display Codes.	34
3.3 AKD Setup Wizard	35
4 Connecting the Drive	37
4.1 Connected and Disconnected States.	38
4.2 Disconnected	38
4.3 Device Not Shown	38
4.4 Find and Enter IP Address.	39
4.5 Check Communications.	40
4.6 Connect To Another Drive.	40
5 Communicating with the Drive.	41
5.0.1 Overview.	42
5.0.2 Identifying the Drive IP Address.	42
5.0.2.1 Automatic (Dynamic) IP Addressing.	42
5.0.2.2 Static IP Addressing.	42
5.1 Check Communications.	43
5.2 Troubleshooting Connection and Communication Problems.	
5.2.1 No Drives are Shown	46
5.2.2 Device Not Shown	46
5.2.3 Find and Enter IP Address.	46
5.3 TCP/IP Communication Protocols.	
5.4 IP Address.	48
5.4.1 Port Number	48
5.4.2 MAC Address	48
6 Using WorkBench	
6.1 Welcome Screen	
6.1.1 Online	
6.1.2 Offline	
6.2 AKD Overview	
6.3 Online and Offline	
6.3.1 Online Drive.	
6.3.2 Offline Drive	
6.3.3 Switching Between Online and Offline.	52
6.4 Watch	
6.5 Settings.	52
6.5.1 Navigation Tree.	52
6.5.2 Settings View.	52

7 Configuring Drive Power.	
7.1 Power.	
7.1.1 Drive Setup for Power and Bus.	
7.1.2 Direct DC Mains Operation.	
7.2 Regeneration.	
7.2.1 Overview.	
7.2.2 Regen Resistor Options	
7.2.3 Calculating Motor Peak Energy and Regen Resistor Size.	
7.2.4 Selecting a Compatible Regen Resistor.	
7.2.5 Configuring Regen Parameter Values.	
7.2.6 Related Parameters.	
8 Configuring Motor Settings.	
8.1 Motor	
8.1.1 Overview.	
8.1.2 Motor Setup	
8.1.3 Using the Motor View.	
8.1.4 Selecting a Motor.	
8.1.4.1 Configuring Custom Motors. 8.1.4.2 Validating Motor Parameters.	
8.2 Feedback 1	
8.2.1 Overview.	
8.3 Using Feedback Options.	
8.3.1 Auto.	
8.3.2 Incremental Encoder	
8.3.3 Sine Encoder	
8.3.4 Endat 2.1, Endat 2.2	
8.3.5 BiSS.	
8.3.6 Hiperface	
8.3.7 Resolver	
8.3.8 SFD	68
8.3.9 Using Wake and Shake (WS).	
8.3.9.1 Overview	
8.3.9.2 Configuring WS.	
Wake and Shake, More View	
Special Cases for WS.	
Operation with Motor Brake.	
End of Travel Limits.	70
Large Load Inertia or High Friction System.	
8.3.9.3 Using WS: Advanced	70
Maximizing WS Reliability.	71
8.3.9.4 Troubleshooting WS.	72
8.3.9.5 Related Parameters.	73
8.3.10 Commutation Alignment	73
8.4 Feedback 2	73

8.4.1 Encoder Emulation	74
8.4.1.1 Overview.	74
8.4.1.2 Using Encoder Emulation.	74
8.4.1.3 Function Settings.	74
Mode 0: Disable X9.	74
Output Modes 1 and 2	74
Input Modes 3, 4, and 5.	75
8.4.1.4 Resolution	76
8.4.1.5 Related Parameters and Commands.	76
8.5 Non-Plug and Play Feedback Devices.	76
8.6 Parameters.	
8.7 Calculations	76
8.7.1 Current Loop.	
8.7.2 Velocity Loop.	
8.7.3 Position Loop.	
8.7.4 Slider Tuning.	
8.7.4.1 Input - Motor Data	
8.7.4.2 Constants	
8.7.4.3 Output - Control Loop Gains.	
8.8 Foldback	
8.8.1 Drive Foldback	
8.8.2 Setting up motor foldback.	
8.8.3 Setting Fault and Warning Levels.	
8.8.4 Motor Peak Current Time.	
8.8.5 Motor Foldback Ramp	
8.8.6 Motor Recovery	
8.9 Overall Foldback	
8.10 Brake.	
8.11 Using Position Capture.	
8.11.1 Overview.	
8.11.2 Configuring Position Capture.	
8.11.2.1 Setting the Capture Source (CAP0.TRIGGER).	
8.11.2.2 Setting the Capture Mode (CAP0.MODE).	
8.11.2.3 Arming and Retrieving the Capture Value (CAP0.EN and CAP0.T).	
8.11.2.4 Setting the Capture Edge (CAP0.EDGE).	
8.11.2.5 Setting the Pre-Condition Event: (CAP0.EVENT).	
8.11.2.6 Setting up a Pre-Condition for complex capture.	
Setting the Precondition Edge: (Terminal Command: CAP0.PREEDGE)	
Setting the Pre-Condition Select: (Terminal Command: CAP0.PRESELECT)	
8.11.3 Related Parameters.	
9 Selecting Units for Your Application	
9.1 Selecting and Saving Units.	
9.2 Units Example.	
9.2.1 Related Parameters.	
· · · · · · · · · · · · · · · · · ·	

10 Configu	ıring General Drive Settings	87
_	al Inputs and Outputs.	
_	Overview	
	Using Digital I/O.	
	Digital Inputs.	
	Digital Outputs	
	mand Buffer	
	Overview	
10.2.2	Editing the Command Buffers.	97
	Behavior of the Command Buffer.	
	Delays for the Buffer	
	al Inputs (X7/X8)	
•	Digital Inputs 1 and 2	
	Digital Inputs 3 to 7.	
	Digital Input 8 (ENABLE).	
	og Input	
	Analog Input	
	Related Parameters and Commands.	
	og Output	
	Connection.	
	I/O Connectors (X7 and X8).	
	tronic Gearing.	
	Overview	
	Limits.	
	Determining Maximum Cable Length.	
	Related Parameters:	
	Limits.	
	rammable Limit Switch	
-	Overview	
		109
	Single Shot Mode.	111
	Related Parameters and Commands.	
	ble/Disable	
	Enable Modes.	
	.1 Hardware Enable Mode.	
	.2 Software Enable Default	
	Disable Modes	
	Drive Status	
	Controlled Stop.	
	More/Less Button.	
	ntrolled Stop.	
	0.1 Related Parameters and Commands.	
	Related topics:	
	namic Braking.	
=	Drive Regeneration.	
	1.1 AKD-x00306 to AKD-x00606.	

10.11.1.2 AKD-x01206 to AKD-x02406 and AKD-xzzz07	. 117
10.12 Emergency Stop.	. 118
10.13 Safe Torque Off (STO).	. 118
10.14 Under Voltage Fault Behavior.	. 118
11 Using Command Source and Operating Modes.	. 119
11.1 Overview	. 120
11.2 Using Command Source and Operation Modes.	. 120
11.2.1 Command Source.	. 120
11.2.1.1 Service.	. 120
11.2.1.2 Fieldbus.	
11.2.1.3 Electronic Gearing.	
11.2.1.4 Analog	
11.2.1.5 Operation Mode	
11.2.2 Related Parameters.	
11.3 Current Loop.	
11.3.1 Overview	
11.3.2 Current Loop Gain	
11.3.3 Current Loop Gain Scheduling.	
11.3.3.1 Using the Gain Scheduling View in WorkBench.	
11.3.3.2 Using the Terminal View for Gains Scheduling.	
11.4 Velocity Loop.	
11.4.1 Overview.	
11.4.2 Tabs in the Velocity Loop View.	
11.4.3 Velocity Loop Default Settings and Changes.	
11.4.3.1 Velocity Loop Changes Based on Slider Tuning.	
11.4.3.2 Velocity Loop Changes Based on PST.	
11.5 Position Loop.	
11.5.1 Overview.	
11.5.2 Tabs in the Position Loop View	
11.5.3.1 Position Loop Changes Based on Slider Tuning.	
11.5.3.2 Position Loop Changes Based on PST.	
11.5.4 Modulo Position	
11.5.4.1 Setting up the modulo axis in WorkBench.	
11.5.4.2 Setting up the modulo axis in Workbener.	
11.5.4.3 Parameters affected by the modulo axis.	
11.5.4.4 Drive functions affected by modulo axis.	
Software limit switch	
Programmable limit switch	. 129
Digital output Modes 5 and 6.	. 129
Motion tasking to absolute target positions.	129
11.5.4.5 Using the modulo position feature with multiturn encoders.	. 129
12 Creating Motion	. 133
12.1 Homing	. 134
12.1.1 Overview	134

12.1.2 Using Homing	
Mode Selection:	
Settings:	
Controls:	
12.1.2.2 Selecting and Using Homing Modes.	
Homing Mode 0: Home Using Current Position	
Homing Mode 1: Find Limit Input.	
Homing Mode 2: Find Input Limit then Find Zero Angle	137
Homing Mode 3: Find Input Limit then Find Index.	
Homing Mode 4: Find Home Input	139
Homing Mode 5: Find Home Input then Find Zero Angle	139
Homing Mode 6: Find Home Input then Find Index	140
Homing Mode 7: Find Zero Angle.	141
Homing mode 8: Move Until Position Error Exceeded	
Homing Mode 9: Move Until Position Error Exceeded then Find Zero Angle	
12.1.2.3 Homing Mode 10: Move Until Position Error Exceeded then Find In	
Homing Mode 11: Find Index Signal	
12.1.3 Using Homing: Advanced.	
12.1.3.1 Related Parameters and Commands.	
12.1.3.2 Related Topics.	
12.2 Motion Tasks	
12.2.1 Overview	144
12.2.2 Motion Task Input Table.	144
12.2.3 Using Motion Tasks.	145
12.2.3.1 Motion Profiles.	147
12.2.3.2 Motion Types.	147
Absolute motion task	
Motion task relative to command position (PL.CMD).	
Motion task relative to previous target position.	148
12.2.4 Using Motion Tasks: Advanced.	148
12.2.4.1 Joining multiple tasks	148
12.2.4.2 Start Conditions.	149
12.2.4.3 Blending.	149
12.3 Registration Moves (Motion Task Blending).	
12.3.1 Configuring Registration Moves in WorkBench.	
12.3.2 Configuring Registration Moves from the Terminal View	
12.4 Service Motion.	
12.5 Jog Move.	
12.6 Drive Motion Status.	

13 Saving Your Drive Configuration	155
13.1 Save Options.	
13.2 Save On Exit	
13.3 Save On Disconnect	
13.4 Save On Firmware Download.	
14 Tuning Your System	
14.1 Slider Tuning	
14.1.0.1 Gentle, Medium, and Stiff	
14.1.0.3 Inertia Ratio	
14.2 Load Inertia	
14.3 Using the Performance Servo Tuner.	
14.3.1 Overview	
14.3.2 Using the PST	161
14.3.2.1 Saving and Emailing Bode Plots.	162
14.3.2.2 Importing a Frequency Response.	
14.3.3 Measurement Options.	
14.3.3.1 Using Manual Excitation Levels.	
14.3.3.2 Taking a Bode Measurement without the PST.	
14.3.4 Using the Performance Servo Tuner: Advanced	
14.3.4.1 Typical Cases for Advanced PST Use.	
Tuning Systems with Low-Frequency Resonances.	
Tuning Systems with High-Frequency Resonances.	166
Tuning systems with noisy frequency responses.	167
14.3.4.2 PST Options.	169
Enable BiQuad 1 Tuner.	170
Enable BiQuad 2 Tuner.	170
Biquad Type.	170
Tune Acceleration FF.	170
Enable Stability Motion	170
Phase and Gain Margins.	170
Tune Velocity Integral	170
Enable Low Pass Search	170
14.3.4.3 Measurement Options.	170
Current Amplitude.	171
Velocity Amplitude	171
Smooth %	171
Measurement	174
Injection Point	174
Excitation Type.	175
FFT Points.	175

Excite Gap.	175
Number Points.	175
Velocity Max	176
14.3.4.4 Plot Options.	177
Coherence	177
14.3.4.5 Cursors	177
14.3.4.6 Resizing Bode Plots.	
Reading and Understanding the Bode Plot	
Using the Performance Servo Tuner to Manually Tune Systems	
Using the Tuning Simulation	
Using the Performance Servo Tuner Manual Tuning Interface	
•	
Simulating Modified Loop Gains with the Performance Servo Tuner.	
Simulating Filters with the Performance Servo Tuner.	188
Using Filters to Reduce Noise.	189
14.4 Tuning Guide	189
14.4.1 Overview	189
14.4.2 Determining Tuning Criteria	190
14.4.3 Before You Tune.	190
14.4.4 Closed Loop Tuning Methods.	190
14.4.4.1 Tuning the Velocity Loop.	191
14.4.4.2 Tuning the Position Loop.	193
14.4.5 Torque Feedforward Tuning Methods.	193
14.4.5.1 Shape Based Feedforward Tuning.	193
14.4.6 Using Anti-Resonance Filters.	194
14.4.6.1 Biquad Calculations.	
14.4.6.2 Common Uses Of Anti Resonance Filters.	
15 Scope	205
15.1 Overview.	
15.2 Using the Scope.	205
15.2.1 Scope Channels Tab.	205
15.2.1.1 Source Column	205
15.2.1.2 Color Column	206
15.2.1.3 Hide Column	206
15.2.1.4 Y-Axis Column	206
15.2.1.5 Filter and Filter Frequency Column.	206
15.2.2 Scope Time-base and Trigger Tab.	206
15.2.2.1 Scope Time-base and Trigger, More View.	207
15.2.2.2 Trigger Type	208
15.2.2.3 Trigger Position.	208
15.2.2.4 Trigger Value	209
15.2.2.5 Effects of Recorder Gap.	
15.2.2.6 Trigger Slope	211

15.3 Scope Settings.	211
15.3.1 Load a setting (preset) to Scope screen	212
15.3.2 Create a new preset	
15.3.3 Save or delete preset.	
15.3.4 Import preset	
15.3.5 Export preset	
15.3.6 Scope axis scaling and zooming.	
15.3.7 Manual range per axis.	
15.3.8 Unit display on Y axis.	
16 Using Parameters and the Terminal Screen	
16.1 Terminal	
16.1.1 Overview	
16.1.2 Using the Terminal.	
16.1.3 Macros.	
16.1.3.1 Creating a Macro from Terminal commands.	
16.1.3.2 Macro Editor.	
16.2 Viewing Parameters.	
16.3 Parameter List.	
16.4 Parameter Load/Save.	
16.5 Parameter Comparer.	
16.5.1 Reference Parameter Selection.	
16.5.2 Target Parameter Selection.	
16.5.3 Display the comparison.	
16.5.4 Motion Task Comparison.	
Summary of Parameters and Commands.	
17 Faults and Warnings	
17.1 Fault and Warning Messages.	
17.2 Clearing Faults.	
17.3 Parameter and Command Error Messages.	
17.4 CANopen Emergency Messages and Error Codes.	
17.5 Unknown Fault	
17.5.0.1 Remedies.	
18 Troubleshooting the AKD	
19 Firmware and Firmware Updates.	
19.1 Downloading Firmware.	
19.2 Firmware Compatibility	
19.3 Invalid Firmware.	
19.4 Forcing the drive into firmware download mode	
19.5 Forced download of AKD firmware	
Connection Diagrams	
19.6 Connection Diagram, AKD-x00306 to x00606.	264
19.7 Connection Diagram, AKD-x01206.	265
19.8 Connection Diagram, AKD-x02406 and AKD-xzzz07.	266
19.9 24 V Auxiliary Supply (X1).	267
19.10 Motor Connection	268
19.11 External Regen Resistor (X3).	269

19.12 DC Bus Link (X3).	270
19.13 Mains Supply Connection (X3, X4).	271
19.13.1 Three Phase connection (all AKD types).	271
19.13.2 Single phase connection (AKD-xzzz06 only)	272
19.14 I/O Connection	273
19.14.1 I/O Connectors (X7 and X8).	273
19.15 Analog Output (X8)	274
19.16 Analog Input (X8)	275
19.17 Command encoder signal connection.	276
19.17.1 Incremental encoder input 5 V (X9).	276
19.17.2 Incremental encoder input 24 V (X7).	276
19.17.3 Emulated Encoder Output (EEO) - A quad B (X9)	277
19.18 Pulse / Direction signal connection	278
19.18.1 Pulse / Direction input 5 V (X9).	
19.18.2 Pulse / Direction input 24 V (X7).	
19.19 Up / Down signal connection.	
19.19.1 Up / Down input 5 V (X9).	
19.19.2 Up / Down input 24 V (X7).	
19.20 Feedback Connector (X10)	
Block Diagrams	
19.21 Block Diagram for Current Loop.	
19.22 Block Diagram for Position/Velocity Loop.	
Appendix A.	
20 Modbus	
20.1 Overview.	
20.2 Installation and Setup.	
20.3 Overview of Messaging.	
20.4 Supported Functions.	
20.5 Read Holding Registers (0x03).	
	_
20.6 Write Multiple Registers (0x10).	4
20.7 Exception Response Codes.	
20.8 Modbus.	
20.8.1 Overview.	
20.8.2 Modbus Installation and Setup.	
20.8.3 Overview of Messaging.	
20.8.4 Supported Functions.	
20.8.5 Read Holding Registers (0x03).	
20.8.6 Write Multiple Registers (0x10).	
20.8.7 Exception Response Codes.	
20.9 Modbus Dynamic Mapping	
20.9.1 Configuring Dynamic Mapping.	
20.9.2 Saving and Resetting Dynamic Mapping.	
20.9.3 Scaling parameters.	
20.9.4 Modbus specific registers (Parameters).	
20.9.5 32-bit versus 16-bit Values.	11

20.9.7 Fault Registers.	. 12
20.9.8 Mapping Table.	. 12
20.10 Modbus Parameter Table.	. 13
20.11 Modbus 64-bit Parameters to 32-bit Mapping.	. 23
21 Ethercat Manual	27
21.1 General	58
21.1.1 About this Manual.	. 59
21.1.2 Target Group.	59
21.1.3 Abbreviations Used	. 60
21.2 Safety.	. 61
21.2.1 Safety Instructions.	. 62
21.2.2 Use as directed.	62
21.2.3 Prohibited use.	. 62
21.3 Installation and Setup.	. 63
21.3.1 Safety Instructions.	. 64
21.3.2 EtherCAT Onboard.	65
21.3.2.1 LED functions.	65
21.3.2.2 Connection technology.	65
21.3.2.3 Network Connection Example.	65
21.3.3 Guide to Setup.	66
21.3.4 Setup via TwinCAT NC/PTP System Manager.	66
21.3.4.1 Scan devices.	. 67
21.3.4.2 Select the device.	. 67
21.3.4.3 Scan for boxes.	68
21.3.4.4 Add Slaves to NC tasks.	. 68
21.3.4.5 Enable the network configuration	69
21.3.4.6 Enable the axis and move the axis.	. 70
21.3.5 Setup WorkBench over TwinCAT	
21.3.5.1 TwinCAT and WorkBenchconfiguration.	
21.3.5.2 Connecting to a drive using WorkBench.	73
21.3.5.3 Configuring and enabling a drive.	76
21.3.6 Setup via KAS IDE	
21.4 EtherCAT Profile.	. 78
21.4.1 Slave Register	
21.4.2 AL Event (Interrupt Event) and Interrupt Enable.	
21.4.2.1 Interrupt Enable Register (Address 0x0204:0x0205).	
21.4.2.2 AL Event Request (Address 0x0220:0x0221).	
21.4.3 Phase Run-Up	
21.4.3.1 AL Control (Address 0x0120:0x0121).	
21.4.3.2 AL Status (Address 0x0130:0x0131).	
21.4.3.3 AL Status Code (Address 0x0134:0x0135)	
21.4.3.4 EtherCAT communication phases.	
21.4.4 CANopen over EtherCAT (CoE) Status Machine.	
21.4.4.1 Status Description	
21.4.4.2 Commands in the Control Word.	
21.4.4.3 Status Machine Bits (status word)	. 86

21.4.5 Fixed PDO Mappings.	87
21.4.6 Supported Cyclical Setpoint and Actual Values.	88
21.4.7 Supported Operation Modes.	88
21.4.8 Adjusting EtherCAT Cycle Time	89
21.4.9 Maximum Cycle Times depending on operation mode.	89
21.4.10 Synchronization	90
21.4.10.1 Synchronization behavior with distributed clocks (DC) enabled	90
21.4.10.2 Synchronization behavior with distributed clocks (DC) disabled	90
21.4.11 Latch Control Word and Latch Status Word	91
21.4.12 Mailbox Handling	92
21.4.12.1 Mailbox Output	93
21.4.12.2 Mailbox Input	94
21.4.12.3 Example: Mailbox Access.	95
21.4.13 Fieldbus Parameters	96
21.5 Index	98
22 CANopen Manual	104
22.1 General	135
22.1.1 About this Manual.	136
22.1.2 Target Group.	136
22.1.3 Abbreviations used	137
22.2 Safety	138
22.2.1 Safety Instructions.	139
22.2.2 Use As Directed	139
22.2.3 Prohibited Use.	139
22.3 Installation and Setup.	140
22.3.1 Safety Instructions.	141
22.3.2 Guide to Setup.	142
22.4 CANopen Basics.	142
22.4.1 Basic Features implemented by CANopen.	143
22.4.1.1 Setup and general functions:	143
22.4.1.2 Positioning functions:	143
22.4.1.3 Data transfer functions:	143
22.4.2 Transmission Rate and Procedure.	143
22.4.3 Response to BUSOFF Communication Faults.	144
22.4.4 Important Configuration Parameters.	144
22.5 CANopen Communication Profile	144
22.5.1 General Description of CAN.	145
22.5.2 Construction of the Communication Object Identifier.	146
22.5.3 Definition of the Used Data Types.	147
22.5.3.1 Basic data types.	147
Unsigned Integer.	147
Signed Integer	
22.5.3.2 Mixed data types.	
22.5.3.3 Extended data types.	
Octet String	149

Visible String.	149
22.5.4 Communication Objects.	149
22.5.4.1 Network Management Objects (NMT)	
22.5.4.2 Synchronization Object (SYNC).	
22.5.4.3 Time-Stamp Object (TIME)	
Application of the Emergency Object.	
Composition of the Emergency Object	
22.5.4.5 Service Data Objects (SDO).	
Composition of the Service Data Object.	
Initiate SDO Download Protocol.	
Download SDO Segment Protocol.	
Initiate SDO Upload Protocol.	
Upload SDO Segment Protocol.	
Abort SDO Protocol.	
22.5.4.6 Process Data Object (PDO)	
Transmission modes.	
Trigger modes.	
22.5.4.7 Nodeguard	
22.5.4.8 Heartbeat	
22.6 CANopen Drive Profile.	
22.6.1 CANopen Emergency Messages and Error Codes.	
22.6.2 General Definitions	
Object 1000h: Device Type (DS301).	
Object 1001h: Error register (DS301).	
Object 1002h: Manufacturer Status Register (DS301).	
Object 1003h: Predefined Error Field (DS301).	
Object 1005h: COB-ID of the SYNC Message (DS301).	
Object 1006h: Communication Cycle Period (DS301).	
Object 1008h: Manufacturer Device Name (DS301) Object 1009h: Manufacturer Hardware Version	
•	
Object 100Ah: Manufacturer Software Version (DS301).	
Object 100Ch: Guard Time (DS301)Response monitoring	
Object 100Dh: Lifetime Factor (DS301).	
Object 1010h: Store Parameters (DS301).	
Object 1014h: COB-ID for Emergency Message (DS301).	
Object 1016h: Consumer Heartbeat Time.	

Object 1017h: Producer Heartbeat Time.	172
Object 1018h: Identity Object (DS301).	172
Object 1026h: OS Prompt.	174
22.6.2.2 Manufacturer specific objects.	175
Object 2014-2017h: 1st-4th Mask 1 to 4 for Transmit-PDO.	175
Object 2018h: Firmware Version.	176
Object 2026h: ASCII Channel	177
Object 20A0h: Latch position 1, positive edge.	178
Object 20A1h: Latch position 1, negative edge.	178
Object 20A2h: Latch position 2, positive edge.	178
Object 20A3h: Latch position 2, negative edge.	179
Object 20A4h: Latch Control Register.	179
Object 20A5h: Latch Status Register.	180
Object 20A6h: Latch position 1, positive or negative edge.	180
Object 20B8h: Reset of changed input information.	181
22.6.2.3 Profile specific objects.	182
Object 60FDh: Digital inputs (DS402).	182
Object 60FEh: Digital outputs (DS402).	182
Object 6502h: Supported drive modes (DS402).	183
22.6.3 PDO Configuration.	
22.6.3.1 Receive PDOs (RXPDO).	185
Objects 1400-1403h: 1st - 4th RXPDO communication parameter (DS301).	185
Objects 1600-1603h: 1st - 4th RXPDO mapping parameter (DS301).	186
Default RXPDO definition.	187
22.6.3.2 Transmit PDOs (TXPDO).	
Objects 1800-1803h: 1st - 4th TXPDO communication parameter (DS301)	188
Objects 1A00-1A03h: 1st - 4th TXPDO mapping parameter (DS301)	190
Default TXPDO definition	191
22.6.4 Device Control (dc).	
22.6.4.1 Status Machine (DS402).	
States of the Status Machine.	
Transitions of the status machine.	
22.6.4.2 Object Description	
Object 6040h: Control word (DS402)	
Object 6041h: Status word (DS402).	
Object 6060h: Modes of Operation (DS402).	198

Object 6061h: Modes of Operation Display (DS402).	. 199
22.6.5 Factor Groups (fg) (DS402)	. 199
22.6.5.1 General Information.	. 199
Factors.	. 199
Relationship between Physical and Internal Units.	. 199
22.6.5.2 Objects for velocity scaling.	200
Object 204Ch: pv scaling factor.	. 200
22.6.5.3 Objects for position calculation.	. 201
Object 608Fh: Position encoder resolution (DS402).	. 201
Object 6092h: Feed constant (DS402)	. 202
22.6.6 Profile Velocity Mode (pv) (DS402).	
22.6.6.1 General Information.	. 203
Objects that are defined in this section.	203
Objects that are defined in other sections.	203
22.6.6.2 Object description.	203
Object 606Ch: velocity actual value (DS402).	. 203
Object 60FFh: target velocity (DS402)	204
22.6.7 Profile Torque Mode (tq) (DS402).	
22.6.7.1 General Information.	
Objects that are defined in this section.	
Objects that are defined in other sections.	
22.6.7.2 Object description	
Object 6071h: Target torque (DS402).	. 205
Object 6073h: Max current (DS402)	205
Object 6077h: Torque actual value (DS402).	. 206
22.6.8 Position Control Function (pc) (DS402).	
22.6.8.1 General Information	
Objects that are defined in this section.	
Objects that are defined in other sections.	
22.6.8.2 Object Description.	
Object 6063h: position actual value* (DS402).	
Object 6064h: position actual value (DS402).	. 208
Object 6065h: Following error window.	
Object 60F4h: Following error actual value (DS402)	
22.6.9 Interpolated Position Mode (ip) (DS402).	
22.6.9.1 General information	
Objects defined in this section	209

Objects defined in other sections.	209
22.6.9.2 Object description.	209
Object 60C0h: Interpolation sub mode select	209
Object 60C1h: Interpolation data record	210
Object 60C2h: Interpolation time period.	211
Object 60C4h: Interpolation data configuration.	212
22.6.10 Homing Mode (hm) (DS402). 22.6.10.1 General information.	
Objects that are defined in this section.	214
Objects that are defined in other sections.	214
22.6.10.2 Object Description.	214
Object 607Ch: homing offset (DS402)	214
Object 6098h: homing method (DS402)	214
Object 6099h: homing speeds (DS402)	216
Object 609Ah: homing acceleration (DS402).	216
Homing Mode Sequence.	217
22.6.11 Profile Position Mode (pp)	
Objects that are defined in this section.	
Objects that are defined in other sections.	
22.6.11.2 Object Description.	
Object 607Ah: target position (DS402)	
Object 607Dh: Software position limit (DS402).	
Object 6081h: profile velocity (DS402).	
Object 6083h: profile acceleration (DS402).	
Object 6084h: profile deceleration (DS402).	
Functional Description.	
22.7 Appendix	
22.7.1 Object Dictionary.	
22.7.1.1 Float Scaling	
22.7.1.2 Communication SDOs.	
22.7.1.3 Manufacturer specific SDOs.	226
22.7.1.4 Profile specific SDOs.	234
22.7.2 Examples.	236
22.7.2.1 Examples, setup.	236
Basic testing of the connection to the AKD controls.	236
Example: Operating the Status Machine.	237
Example: Jog Mode via SDO.	238

Example: Torque Mode via SDO.	238
Example: Jog Mode via PDO	239
Example: Torque Mode via PDO	241
Example: Homing via SDO.	242
Example: Using the Profile Position Mode.	
Example: ASCII Communication.	
·	
Test for SYNC telegrams.	
22.7.2.2 Examples, special applications.	
Example: External Trajectory with Interpolated Position Mode	249
22.8 Index	255
Appendix B.	261
	262
About the Parameter and Command Reference Guide.	
Parameter and Command Naming Conventions.	
Summary of Parameters and Commands	
AIN.CUTOFF.	
AIN.DEADBAND.	
AIN.DEADBANDMODE.	
AIN.ISCALE.	
AIN.OFFSET.	
AIN.PSCALE	287
AIN.VALUE	288
AIN.VSCALE.	289
AIN.ZERO.	290
AIO Parameters	
AIO.ISCALE.	
AIO.PSCALE.	
AIO.VSCALE.	
AOUT Parameters AOUT.DEBUGADDR	
AOUT.DEBUGSCALE.	
AOUT.ISCALE.	
AOUT.MODE.	
AOUT.OFFSET.	
AOUT.PSCALE	300
AOUT.VALUE	302
AOUT.VALUEU	303
AOUT.VSCALE	
BODE Parameters	
BODE.EXCITEGAP.	
BODE JAMP	
BODE.IAMPBODE.IFLIMIT	

BODE.IFTHRESH	309
BODE.INJECTPOINT	310
BODE.MODE	311
BODE.MODETIMER	314
BODE.PRBDEPTH	316
BODE.VAMP	317
BODE.VFLIMIT	318
BODE.VFTHRESH	319
CAP Parameters	320
CAP0.EDGE, CAP1.EDGE	320
CAP0.EN, CAP1.EN.	321
CAP0.EVENT, CAP1.EVENT	322
CAP0.FILTER, CAP1.FILTER.	325
CAP0.MODE, CAP1.MODE	326
CAP0.PLFB, CAP1.PLFB.	327
CAP0.PREEDGE, CAP1.PREEDGE.	328
CAP0.PREFILTER, CAP1.PREFILTER.	329
CAP0.PRESELECT, CAP1.PRESELECT	330
CAP0.STATE, CAP1.STATE	331
CAP0.T, CAP1.T	332
CAP0.TRIGGER, CAP1.TRIGGER	333
CS Parameters	334
CS.DEC.	334
CS.STATE	336
CS.TO	337
CS.VTHRESH.	337
DIN Parameters	339
DIN.HCMD1 TO DIN.HCMD4.	340
DIN.LCMD1 to DIN.LCMD4.	341
DIN.ROTARY	341
DIN.STATES.	343
DIN1.FILTER TO DIN7.FILTER	344
DIN1.INV TO DIN7.INV.	345
DIN1.MODE TO DIN7.MODE.	346
DIN1.PARAM TO DIN7.PARAM.	348
DIN1.STATE TO DIN7.STATE	349
DOUT Parameters	351
DOUT.CTRL	351
DOUT.RELAYMODE	352
DOUT.STATES	353
DOUT1.MODE AND DOUT2.MODE.	354
DOUT1.PARAM AND DOUT2.PARAM	355
DOUT1.STATE AND DOUT2.STATE	356
DOUT1.STATEU AND DOUT2.STATEU.	357
DRV Parameters and Commands.	359
DRV.ACC.	359

DRV.ACTIVE	361
DRV.BLINKDISPLAY	. 362
DRV.CLRFAULTHIST	. 363
DRV.CLRFAULTS.	. 364
DRV.CMDDELAY	. 365
DRV.CMDSOURCE	366
DRV.CRASHDUMP	. 367
DRV.DBILIMIT	. 368
DRV.DEC.	369
DRV.DIR	370
DRV.DIS.	. 372
DRV.DISMODE	. 373
DRV.DISSOURCES	. 374
DRV.DISTO.	. 375
DRV.EMUEDIR	. 376
DRV.EMUEMODE	377
DRV.EMUEMTURN	. 378
DRV.EMUERES	. 379
DRV.EMUEZOFFSET	380
DRV.EN.	381
DRV.ENDEFAULT	. 382
DRV.FAULTHIST	. 383
DRV.FAULTS.	. 384
DRV.HANDWHEEL	. 385
DRV.HELP.	. 386
DRV.HELPALL	. 387
DRV.HWENMODE	. 388
DRV.ICONT.	. 389
DRV.INFO.	. 390
DRV.IPEAK	. 391
DRV.IZERO.	. 392
DRV.LIST.	. 393
DRV.LOGICVOLTS.	394
DRV.MEMADDR	. 395
DRV.MEMDATA	. 396
DRV.MOTIONSTAT	. 397
DRV.NAME	398
DRV.NVLIST	. 399
DRV.NVLOAD.	400
DRV.NVSAVE	. 401
DRV.ONTIME.	. 402
DRV.OPMODE.	403
DRV.READFORMAT	404
DRV.RSTVAR	. 405
DRV.RUNTIME	. 406
DRV.SETUPREQBITS.	407

DRV.SETUPREQLIST	408
DRV.STOP.	409
DRV.TEMPERATURES.	410
DRV.TYPE.	411
DRV.VER	412
DRV.VERIMAGE	
DRV.WARNINGS.	
DRV.ZERO	415
FB1 Parameters	416
FB1.BISSBITS	416
FB1.ENCRES.	417
FB1.HALLSTATE	418
FB1.HALLSTATEU	419
FB1.HALLSTATEV	420
FB1.HALLSTATEW	421
FB1.IDENTIFIED	422
FB1.INITSIGNED.	423
FB1.MECHPOS.	424
FB1.MEMVER	425
FB1.OFFSET	426
FB1.ORIGIN	427
FB1.PFIND	429
FB1.PFINDCMDU	430
FB1.POLES.	431
FB1.PSCALE	432
FB1.RESKTR	433
FB1.RESREFPHASE.	434
FB1.SELECT	435
FB1.TRACKINGCAL	437
FB2 Parameters	438
FB2.ENCRES.	
FB2.MODE	439
FB2.SOURCE.	440
FBUS Parameters	441
FBUS.PARAM1 TO FBUS.PARAM20.	441
FBUS.PLLSTATE	443
FBUS.PLLTHRESH	444
FBUS.SAMPLEPERIOD	445
FBUS.SYNCACT	446
FBUS.SYNCDIST	447
FBUS.SYNCWND.	448
FBUS.TYPE	449
GEAR Parameters	
GEAR.ACCMAX	
GEAR.DECMAX	
GEAR.IN.	

GEAR.MODE.	453
GEAR.MOVE	455
GEAR.OUT	456
GEAR.VMAX	457
GUI Parameters	458
GUI.DISPLAY	458
GUI.PARAM01	459
GUI.PARAM02	459
GUI.PARAM03.	459
GUI.PARAM04.	460
GUI.PARAM05	460
GUI.PARAM06.	460
GUI.PARAM07.	461
GUI.PARAM08.	461
GUI.PARAM09.	461
GUI.PARAM10.	462
HOME Parameters	463
HOME.ACC.	463
HOME.AUTOMOVE	465
HOME.DEC.	466
HOME.DIR.	467
HOME.DIST.	468
HOME.FEEDRATE	469
HOME.IPEAK	470
HOME.MODE.	471
HOME.MOVE.	472
HOME.P.	473
HOME.PERRTHRESH.	474
HOME.REQUIRE.	475
HOME.SET.	476
HOME.V	477
HWLS Parameters	478
HWLS.NEGSTATE	478
HWLS.POSSTATE	
IL Parameters	
IL.BUSFF	481
IL.CMD.	482
IL.CMDU	483
IL.DIFOLD.	
IL.FB.	485
IL.FF.	486
IL.FOLDFTHRESH.	487
IL.FOLDFTHRESHU.	
IL.FOLDWTHRESH.	
IL.FRICTION.	490
IL.IFOLD.	491

IL.IUFB.	492
IL.IVFB.	
IL.KACCFF	
IL.KBUSFF.	495
IL.KP.	
IL.KPDRATIO.	497
IL.KPLOOKUPINDEX	498
IL.KPLOOKUPVALUE.	499
IL.KPLOOKUPVALUES.	500
IL.KVFF	501
IL.LIMITN	502
IL.LIMITP	503
IL.MFOLDD	504
IL.MFOLDR	505
IL.MFOLDT	506
IL.MIFOLD	507
IL.OFFSET	508
IL.VCMD.	509
IL.VUFB	510
IL.VVFB	511
23 LOAD.INERTIA	512
24 MODBUS Parameters	513
MODBUS.PIN AND MODBUS.POUT	514
MODBUS.PSCALE.	515
MODBUS.UNITLABEL	516
MOTOR Parameters	517
MOTOR.AUTOSET.	517
MOTOR.BRAKE	518
MOTOR.BRAKERLS.	519
MOTOR.BRAKESTATE	520
MOTOR.CTF0.	521
MOTOR.ICONT.	522
MOTOR.IDDATAVALID.	523
MOTOR.INERTIA	524
MOTOR.IPEAK	525
MOTOR.KE.	526
MOTOR.KT.	527
MOTOR.LQLL.	528
MOTOR.NAME	529
MOTOR.PHASE	530
MOTOR.PITCH.	531
MOTOR.POLES.	
MOTOR.R.	533
MOTOR.RTYPE.	
MOTOR.TBRAKEAPP.	535
MOTOR.TBRAKERLS.	536

MOTOR.TEMP	537
MOTOR.TEMPFAULT	538
MOTOR.TEMPWARN	539
MOTOR.TYPE	540
MOTOR.VMAX	541
MOTOR.VOLTMAX	542
MOTOR.VOLTMIN	543
MOTOR.VOLTRATED	544
MOTOR.VRATED	545
MT Parameters and Commands.	547
MT.ACC	547
MT.CLEAR	549
MT.CNTL	550
MT.CONTINUE	553
MT.DEC.	554
MT.EMERGMT	556
MT.HOMEREQUIRE.	557
MT.LIST.	558
MT.LOAD.	559
MT.MOVE.	560
MT.MTNEXT.	561
MT.NUM.	562
MT.P.	563
MT.PARAMS	564
MT.SET	565
MT.TNEXT	566
MT.TNUM.	567
MT.TNVSAVE	568
MT.TPOSWND.	569
MT.TVELWND	570
MT.V	571
MT.VCMD	
PL Parameters	
PL.CMD	
PL.ERR	
PL.ERRFTHRESH	
PL.ERRMODE	
PL.ERRWTHRESH	
PL.FB.	
PL.FBSOURCE	
PL.INTINMAX	
PL.INTOUTMAX	
PL.KI	
PL.KP	
PL.MODP1	
PL.MODP2	586

PL.MODPDIR	587
PL.MODPEN	588
PLS Parameters and Commands.	589
PLS.EN	589
PLS.MODE	590
PLS.P1 TO PLS.P8.	591
PLS.RESET	592
PLS.STATE.	593
PLS.T1 TO PLS.T8.	594
PLS.UNITS.	595
PLS.WIDTH1 TO PLS.WIDTH8.	597
REC Parameters and Commands	599
REC.ACTIVE	599
REC.CH1 to REC.CH6.	600
REC.DONE	601
REC.GAP	602
REC.NUMPOINTS	603
REC.OFF	604
REC.RECPRMLIST	605
REC.RETRIEVE.	606
REC.RETRIEVEDATA	607
REC.RETRIEVEFRMT.	608
REC.RETRIEVEHDR.	609
REC.RETRIEVESIZE.	610
REC.STOPTYPE	611
REC.TRIG.	612
REC.TRIGPARAM	613
REC.TRIGPOS.	614
REC.TRIGPRMLIST.	615
REC.TRIGSLOPE.	616
REC.TRIGTYPE.	
REC.TRIGVAL	618
REGEN Parameters	619
REGEN.POWER.	619
REGEN.REXT.	620
REGEN.TEXT.	621
REGEN.TYPE.	622
REGEN.WATTEXT.	623
SM Parameters	625
SM.I1	625
SM.I2	626
SM.MODE	627
SM.MOVE	
SM.T1	
SM.T2	
SM.V1	

SM.V2	634
STO Parameters	635
STO.STATE	635
SWLS Parameters	636
SWLS.EN	636
SWLS.LIMITO	637
SWLS.LIMIT1	638
SWLS.STATE	639
UNIT Parameters	641
UNIT.ACCLINEAR	641
UNIT.ACCROTARY.	642
UNIT.LABEL	643
UNIT.PIN	644
UNIT.PLINEAR	645
UNIT.POUT.	
UNIT.PROTARY	647
UNIT.VLINEAR	
UNIT.VROTARY	
VBUS Parameters	
VBUS.OVFTHRESH.	
VBUS.OVWTHRESH.	
VBUS.RMSLIMIT.	
VBUS.UVFTHRESH.	
VBUS.UVMODE.	
VBUS.UVWTHRESH	
VBUS.VALUE	
VL Parameters	
VL.ARPF1 TO VL.ARPF4	
VL.ARPQ1 TO VL.ARPQ4.	
VL.ARTYPE1 TO VL.ARTYPE4.	
VL.ARZF1 TO VL.ARZF4.	
VL.ARZQ1 TO VL.ARZQ4	
VL.BUSFF	663
VL.CMD.	
VL.CMDU	
VL.ERR	
VL.FB.	
VL.FBFILTER	
VL.FBSOURCE	
VL.FBUNFILTERED	
VL.FF.	
VL.GENMODE.	
VL.KBUSFF	
VL.KI.	
VL.KO	
VL.KP	
V 🗀 () ()	

VL.KVFF	677
VL.LIMITN	678
VL.LIMITP	679
VL.LMJR	679
VL.MODEL	681
VL.OBSBW	682
VL.OBSMODE	683
VL.THRESH.	684
WS Parameters	685
WS.ARM	685
WS.DISARM	686
WS.DISTMAX	687
WS.DISTMIN.	688
WS.IMAX	689
WS.MODE.	690
WS.NUMLOOPS.	691
WS.STATE	692
WS.T	693
WS.TDELAY1	694
WS.TDELAY2	695
WS.TDELAY3	696
WS.VTHRESH.	697
25 Index	700

1 About this User Guide

This guide describes the operation and use of the AKD drive. Each section details a specific topic related to the use of the product in basic terms which will help you get the most from the product. Each section include examples to help guide you in setting up and use the various features available in the drive.

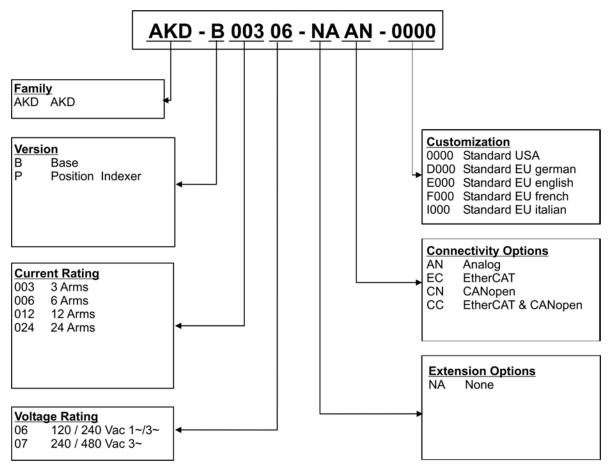
This guide is for users who have installed and tested the drive according to the AKD Installation Manual. The AKD Installation Manual is included on the product CD and contains critical safety information.

1.1 About this User Guide

This guide describes the operation and use of the AKD drive. Each section details a specific topic related to the use of the product in basic terms which will help you get the most from the product. Each section include examples to help guide you in setting up and use the various features available in the drive.

This guide is for users who have installed and tested the drive according to the AKD Installation Manual. The AKD Installation Manual is included on the product CD and contains critical safety information.

1.2 Abbreviations


Abbreviation	Meaning
AGND	Analog ground
CE	Communité Européenne
COM	Serial interface for a personal computer
DCOMx	Communication line for digital inputs (with x=7 or 8)
Disk	Magnetic storage (diskette, hard disk)
EEPROM	Electrically erasable programmable memory
EMC	Electromagnetic compatibility
F-SMA	Fiber optic cable connector according to IEC 60874-2
LED	Light-emitting diode
LSB	Low significant byte (or bit)
MSB	Main significant byte (or bit)
NI	Zero pulse
PC	Personal computer
PE	Protective earth
PLC	Programmable logic control
PLL	Phase locked loop
PLS	Programmable limit switch
PWM	Pulse-width modulation
RAM	Random access memory (volatile memory)
R_{Brake}/R_{B}	regen resistor (also called a regen resistor)
RBext	External regen resistor
RBint	Internal regen resistor
RCD	Residual current device
RES	Resolver
ROD	Incremental encoder (A quad B)
S1	Continuous operation
STO	Safe torque off
Vac	Volts, alternating current

Abbreviation	Meaning
Vdc	Volts, direct current

2 AKD Models

AKD drive models are available in a variety of combinations of features. The part number identifies the features included in your model.

The figure below shows part number identification for drive features:

The customization code includes language version of printed material for European countries:

- D000 for German
- E000 for English
- F000 for French
- 1000 for Italian

2.1 CC Drive Models

CC drive models allow you to select between EtherCAT, CANopen, or analog operation. This drive model is identified with a new model number of the form AKD-Pxxxxx-NACC-0000 (the CC is the unique identifier).

The CC drive model is fitted with both the EtherCAT (X5 and X6) and CANopen (X12 and X13) fieldbus connectors and a new software parameter (DRV.TYPE) allows you to select which features the drive supports; you cannot use EtherCAT and CANopen at the same time.

This page intentionally left blank.

3 Basic Drive Setup

3.1	Basic Drive Setup	34
3.2	Display Codes.	34
3.3	AKD Setup Wizard	35

3.1 Basic Drive Setup

The <u>AKD Quick Start Guide</u> provides details for basic drive setup. Basic drive setup consists of the following general steps:

Hardware Installation:

- 1. Install the drive in on your conductive panel and connect the Protective Earth ground.
- 2. Connect the logic power you will need to operate all of the control logic to X1.
- 3. Connect the motor power to X2.
- 4. Connect the feedback to X10.
- 5. Connect the inputs and outputs you will be using on X7 and X8.
- 6. Bring AC power to the unit and connect AC power to X3 or X4.
- 7. Connect drive communications to X11.
- 8. Confirm that you can communicate with the drive and that your PC is linked to the AKD.

Software Installation and Drive Communication Setup:

- 1. Install and start the interface software (WorkBench).
- 2. Set the drive IP address using the S1 and S2 switches.
- 3. Configure the drive using the **Setup Wizard**.

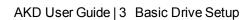
WorkBench System Requirements

Required Components: Microsoft .NET Framework 2.0

Supported Operating Systems:

- Windows XP
- Windows Vista
- Windows 7

3.2 Display Codes


During drive operation, the drive display shows the following codes, depending on the drive status.

Display Code	Status
00	Normal operation, current mode, no faults
01	Normal operation, velocity mode, no faults
o2	Normal operation, position mode, no faults
F [3 digit code, flashing]	Fault (see Fault and Warning Messages)
n [3 digit code, flashing]	Warning (see Fault and Warning Messages)
I,P [IP address]	Displaying drive IP address
[.]	Drive enabled
[.] (flashing)	Drive in an internal dynamic brake mode (DRV.ACTIVE = 3).
d2	Firmware download: corrupted operational FPGA; resident
	FPGA is functional.
d3	Firmware download: HW download (HW switch was pressed -
	Rev 3 and higher).
d4	Firmware download: Corrupted operational FW.
d5	Firmware download: SW download (download command was
	issued from the operational FW).
dL	Loading image process is running.
dF (flashing)	Failure during firmware download.
Sb	Special mode: Burn-in

3.3 AKD Setup Wizard

The Setup Wizard contains step by step instructions for configuring a drive for the first time and generating a simple test motion. You can access the Setup Wizard from the AKD Overview screen or by right clicking on the drive name.

The Setup Wizard is useful when you first set up your system. The wizard confirms your connection with the drive and then leads you through a series of steps to quickly get your drive up and running. With plug and play feedback devices, several steps are skipped (feedback, brake) because the drive automatically configures these settings. For all systems, you can select the units you want to use, configure your operation mode, tune the system, and perform some simple jog moves within the wizard. After you are comfortable with the basic system setup, you can save your settings to the drive and exit the wizard.

This page intentionally left blank.

4 Connecting the Drive

4.1	Connected and Disconnected States	38
4.2	Disconnected	38
	Device Not Shown	
4.4	Find and Enter IP Address	39
4.5	Check Communications	40
4.6	Connect To Another Drive	40

4.1 Connected and Disconnected States

WorkBench always starts disconnected from any drives. The **Disconnected** view opens when you start Work-Bench and offers two choices:

- Connect: Opens the Connect to a Drive view.
- Delete: Opens a list of available drives and allows you to delete a drive from WorkBench.

While WorkBench is trying to establish <u>communications</u> with the drive, WorkBench is in the connecting state. Normally, WorkBench will be in the connecting state for a few moments before the connection is established. If WorkBench cannot establish communications correctly, then a five second timeout occurs and WorkBench returns to the disconnected state.

4.2 Disconnected

When WorkBench is disconnected from a drive, no communication exists between your PC and the drive.

The drive becomes disconnected because of one of the following conditions:

- When WorkBench starts it remembers which drives you were using previously but it does not initially connect to these drives.
- If WorkBench detects that it can no longer communicate with the drive, it will automatically
 go to this disconnected state. Common causes include a network cable being disconnected
 or the drive being turned off.
- You pressed the disconnect command.

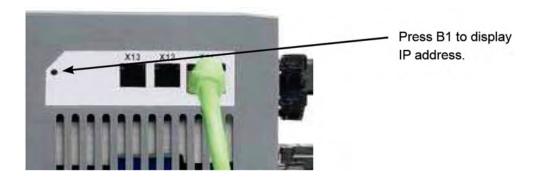
To restore communication:

- 1. Clicking Connect will start communication with the drive. If WorkBench cannot find the drive, it will immediately return to the disconnected state.
- 2. Pressing select will show a window where you can select a different drive you would like to use.
- 3. Pressing delete will remove this drive from the navigation tree on the left hand side of the main window.

4.3 Device Not Shown

If your specific drive is not shown in the list, then WorkBench has not been able to find the drive.

Common reasons why your drive is not shown in the list include the following:


- The drive is not powered on.
- One of the network cables between your PC and the drive are not connected correctly. You can check if
 the cable is connected to the drive by checking that the link LED on the Ethernet connector is on continuously. If your PC has a link LED, then you should check that this LED is also continuously lit (usually,
 this LED is next the RJ45 socket on your PC).
- A router on the network between your PC and the drive is blocking the drive discovery messages. Make sure that port 5002 is not blocked by any routers or firewalls. You can enter the IP address of your drive directly into WorkBench if a router or firewall is blocking port 5002. Often, firewalls are the cause of a blocked connection.
- Your PC and the drive are on different subnets. Networks, especially those with many devices on them, are split up into multiple subnets. The discovery protocol used to find drives will only work if your PC and the drive are both on the same subnet .You can enter the IP address of the drive directly into WorkBench if this is the case.
- The network mask defines more than 512 possible addresses. In this case, WorkBench will not ping all of these addresses, so you must unblock discover ports or specify directly the IP address of your drive.

When an adapter has such a network mask, its background will be shown as yellow to warn that this network will not be discovered with all discover protocols.

4.4 Find and Enter IP Address

You can view the drive IP address on the drive display by pressing the button shown below. The display shows the digits of the IP address in sequence, with dots separating the numbers. You should see four numbers separated by three dots, for example, 192.168.1.5.

You can enter the IP address if you press **More** and check the **Specify Address** box.

4.5 Check Communications

If you have more than one drive connected to your network, then you can confirm that the new drive is connected to the correct network as follows:

- A two-digit, seven-segment LED display is located on the front of the drive near the top. If you can see the
 display, then press the Blink Display button on the drive and drive will flash the seven-segment display
 on and off.
- 2. If it is difficult to see the display, then you can check the MAC address in the WorkBench list against the MAC address on the label of the drive. The drive is connected if the numbers displayed in WorkBench match the numbers printed on the label on the side of the drive.

4.6 Connect To Another Drive

This window allows you to change the drive that you are using.

Button or Dialog Box	Description	
Name	Displays the drive name. By default the name is "No_Name". You can change the name by connecting to the drive and navigating to the top item in the navigation tree.	
Status	Only one user at a time can connect to a drive. If someone else is connected to the drive, it is Busy . If Free is displayed, then you can connect.	
Blink	Clicking Blink forces the display on the selected drive to alternate between the whole display being on and the whole display being off for 20 seconds.	
MAC Address	Displays the MAC address of the drive. The MAC address is unique and is also printed on the label on the side of the drive.	
IP Address	Displays the <u>IP address</u> of the drive. You can enter a raw IP address (1.2.3.4) or a DNS name. You can also specify a port number different from the default (port 23) by appending the IP address (for example, 1.2.3.4:1000).	
Specify Address	If your drive does not appear in the list, you can enter its IP address (for example, 1.2.3.4) or a DNS name. You can also specify a port number different from the default (port 23) by appending the IP address (for example, 1.2.3.4:1000).	

5 Communicating with the Drive

5.1 Check Communications 43

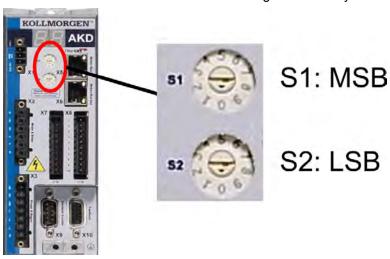
5.0.1 Overview

In order to use the drive, you must be able to communicate with the drive using WorkBench and an Ethernet connection. With some basic network knowledge, you can quickly establish communication with your drive. The drive uses TCP/IP (a worldwide standard for high-speed communication); both the AKD and your PC need to understand each other through this standard in order to communicate. This section explains how to establish a TCP/IP link between your PC and a drive.

5.0.2 Identifying the Drive IP Address

The first step in establishing communication with the drive is to identify the drive IP address. WorkBench and the drive find each other using this IP address, which tells your PC where to look for the drive in order to make the communication connection. You can establish communication through the IP address with two types of connections:

- Automatic: Allow the drive and PC to link automatically.
- **Direct:** Connect to a drive directly based on a known IP address.


5.0.2.1 Automatic (Dynamic) IP Addressing

Automatic (also called "dynamic") addressing is performed using the Dynamic Host Configuration Protocol (DHCP). This protocol makes it easy for a device to attach to a network. The drive is set in automatic IP mode by setting the two rotary switches to zero (S1 and S2, located on the front of the drive). Your PC is set in automatic mode by configuring the TCP/IP screen to "Obtain an IP address automatically"

When first communicating with the drive, conflicts might exist with other programs or devices connected to your computer that are competing for IP addresses. If you have a problem recognizing a drive, then try turning off other devices (especially a wireless device or remote network connection). If you still have problems connecting with the drive, check in the troubleshooting area of this manual.

5.0.2.2 Static IP Addressing

Another option in connecting to the drive is via a static IP connection. In this case you are assigning a specific IP address to the drive and you are modifying your pc network configuration to be able to recognize the static address. The drive IP address can be set using the two rotary switches on the front of the drive.

The address will then be set as 192.168.0.S1S2, with S1 representing the 10's digit and S2 the 1's digit. As you turn the switches, the drive displays the S1 and S2 values.

Example:

S1 is set to 3, S2 is set to 5, the address now is set to: 192.168.0.35.

In order for the drive to connect to the PC, the PC network configuration must find this address. First, identify which network port you are using to communicate with the drive. Once you have identified the port, you can access the properties area of the network connection (on your PC) and set up the proper masking to allow the two devices to communicate. The configuration is set up in the "Use the following IP address:".Set the IP address to 192.168.0.100 and the Subnet mask to 255.255.255.0. This allows the two devices to recognize each other and connect point to point (note that S1 = 0 and S2 = 0 is automatic (dynamic) IP adressing).

5.1 Check Communications

If you have more than one drive connected to your network, then you can confirm that the new drive is connected to the correct network as follows:

- A two-digit, seven-segment LED display is located on the front of the drive near the top. If you can see the display, then press the **Blink Display** button on the drive and drive will flash the seven-segment display on and off.
- 2. If it is difficult to see the display, then you can check the MAC address in the WorkBench list against the MAC address on the label of the drive. The drive is connected if the numbers displayed in WorkBench match the numbers printed on the label on the side of the drive.

5.2	Troubleshooting	Connection and (Communication Problems
-----	------------------------	------------------	------------------------

5.2.1 No Drives are Shown

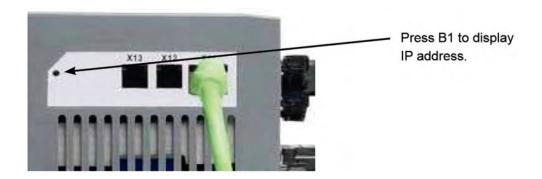
If no drives are shown in the list, then WorkBench has not found any drives.

Common reasons why drives may not appear in the list include the following:

- The drive is not powered on.
- One of the network cables between your PC and the drive is not connected correctly. If the cable is connected correctly, then the LINK LED on the Ethernet connector is lit continuously. If your PC has a LINK LED you should check that this is also continuously lit (normally this LED is next the RJ45 socket on your PC).
- A router on the network between your PC and the drive is blocking the drive discovery messages. You can enter the IP address directly into WorkBench if this is the case (to find the drive IP address, see 5.2.2 Device Not Shown.

5.2.2 Device Not Shown

If your specific drive is not shown in the list, then WorkBench has not been able to find the drive.


Common reasons why your drive is not shown in the list include the following:

- The drive is not powered on.
- One of the network cables between your PC and the drive are not connected correctly. You can check if the cable is connected to the drive by checking that the link LED on the Ethernet connector is on continuously. If your PC has a link LED, then you should check that this LED is also continuously lit (usually, this LED is next the RJ45 socket on your PC).
- A router on the network between your PC and the drive is blocking the drive discovery messages. Make sure that port 5002 is not blocked by any routers or firewalls. You can enter the IP address of your drive directly into WorkBench if a router or firewall is blocking port 5002. Often, firewalls are the cause of a blocked connection.
- Your PC and the drive are on different subnets. Networks, especially those with many devices on them, are split up into multiple subnets. The discovery protocol used to find drives will only work if your PC and the drive are both on the same subnet . You can enter the IP address of the drive directly into WorkBench if this is the case.
- The network mask defines more than 512 possible addresses. In this case, WorkBench will not ping all of
 these addresses, so you must unblock discover ports or specify directly the IP address of your drive.
 When an adapter has such a network mask, its background will be shown as yellow to warn that this network will not be discovered with all discover protocols.

5.2.3 Find and Enter IP Address

You can view the drive IP address on the drive display by pressing the button shown below. The display shows the digits of the IP address in sequence, with dots separating the numbers. You should see four numbers separated by three dots, for example, 192.168.1.5.

You can enter the IP address if you press More and check the Specify Address box.

5.3 TCP/IP Communication Protocols

5.4 IP Address

The IP address of a drive uniquely defines the drive on the network. Ethernet requires that every device on a network segment must have a unique IP address.

5.4.1 Port Number

The AKD drive supports the following protocols using the following port numbers:

TCP: Port 23. Telnet for normal communications with the drive.

Port 502. Modbus TCP.

UDP: Ports 5002 and 5003. These ports are used to discover AKD drives on the local subnet.

5.4.2 MAC Address

Ethernet also requires that every device must have a globally unique identifier called the MAC address. The MAC address is a 48 bit number normally shown as a series of six hexadecimal numbers (for example, 00:AA:11:BB:22:CC).

Every AKD drive is given a unique MAC address when it is manufactured and this MAC address cannot be changed. The MAC address of every drive is printed on the sticker on the side of the drive.

6 Using WorkBench

6.1 Welcome Screen

This view lets you select which AKD drive you wish to work with. You can work with a physical drive via the Ethernet port of your PC (online) or with a drive simulation (offline).

6.1.1 Online

Select **Online** to display a list of the AKD drives that WorkBench has found on your local network. You can select one of these drives from the list and click **Next** to continue. This will connect you to the drive and you will be given the option to use a wizard to setup the drive.

Button or Dialog Box	Description	
Name	The name that someone has given the drive. By default, the name is "No_Name". You can change the name by connecting to the drive and navigating to the top item in the navigation tree.	
Only one user can connect to an AKD at a time. If someone else nected to the drive, then the status is Busy . If no one is connect drive, then the status is Free and you will be able to connect.		
Blink	Clicking Blink will force the display on the selected drive to to repeatadely flash the display LEDs.	
MAC Address	This is the MAC address of the drive. The MAC address is unique and is also printed on the label on the side of the drive.	
IP Address This is the IP address of the drive.		

Button or Dialog Box	Description
Specify Address	If your drive does not appear in the list, you can enter its IP address (e.g. 1.2.3.4) or a DNS name. You can optionally specify a different port number than the default port 23) by appending it (for example, 1.2.3.4:1000 would be port 1,000).

6.1.2 Offline

Select **Offline**to display a list of the different models that WorkBench can simulate. Once you have made your selection, click **Next** and the **Overview** screen for the Offline drive opens.

6.2 AKD Overview

Once your drive is connected, the **AKD Overview** shows a summary of the drive that you are using.

You can view or edit the following information from the Overview window.

Button or Dialog Box	Description	Parameter
Name	Names each drive in use with a unique identifier.	DRV.NAME
Drive Model	Displays the model number of this drive. The model number is also on the label on the side of the drive. If you are offline, then you can change the type of drive that you are simulating.	DRV.INFO
Drive Type	Selects the operational fieldbus for your drive.	DRV.TYPE
Drive Active	The drive is active when it is enabled and also supplies voltage to the motor.	DRV.ACTIVE
Enable	Click Enable to turn on the power stage in the drive and apply voltage to the motor. This command may fail for many reasons; see "DRV.EN" (=> p. 381) for further details.	DRV.EN
Disable	Click Disable to turn off the power stage and remove the voltage applied to the motor.	DRV.DIS

Button or Dialog Box	Description	Parameter
Drive Display	This graphic replicates the two-digit seven-segment display located on the front face of the drive. The seven-segment display shows a code that indicates the state of the drive and any faults that may be present. WorkBench shows a copy of what the drive display currently shows. A key to the display is here .	
Blink	Click Blink to force the display to alternate between the whole display being on and the whole display being off for 20 seconds. You can use this button to confirm that you are communicating with the correct drive hardware.	DRV.BLINKDISPLAY
Setup Wizard	The <u>Setup wizard</u> takes you through the essential configuration steps so that you can control the motor movement.	
More	Click More to display Serial Number , Firmware Version , Cumulative On Time , and Update Firmware .	
Serial Number	This text box displays the unique serial number of the drive you are communicating with. The serial number is also shown on the label on the side of the drive.	DRV.INFO
Firmware Version	This text box displays the version of the firmware code running inside the drive.	DRV.VER
Download	Click Download to retrieve the latest AKD firmware from Kollmorgen. See 19.1 Downloading Firmware	
Cumulative On Time	This text box displays the cumulative time this drive has been powered on. When the drive is powered on, this value continues counting from the value it had when the drive was last turned off.	DRV.RUNTIME
Update Firm- ware	Use this box to select the firmware version you want your drive to run.	
Drive IP Address	This text box displays the <u>IP address</u> of the drive that you are communicating with.	
MAC Address	This text box displays the MAC address of the drive that you are communicating with. The MAC address is unique and is also printed on the label on the side of the drive.	

6.3 Online and Offline

WorkBench allows you to work online (working with a real drive) or offline (working without any drive hardware).

6.3.1 Online Drive

An "online drive" means that WorkBench is working with a specific physical drive on your network.

Each online drive can either be connected to WorkBench (WorkBench has an active connection with the drive and data is being passed between WorkBench and the drive) or it can be disconnected (there is no communication between WorkBench and the drive). If communications are lost (for example a network cable is disconnected) with a drive then WorkBench will switch the drive to the disconnected state.

Only one PC can be connected to a drive at a time.

6.3.2 Offline Drive

An offline drive allows you to use WorkBench without having any drive hardware. The parameters of a drive are simulated within WorkBench. An offline drive allows you to create a drive configuration as well as exploring the

different screens within WorkBench. Because this is a simulation there are a number of operations that are not possible (for example commanding motion).

6.3.3 Switching Between Online and Offline

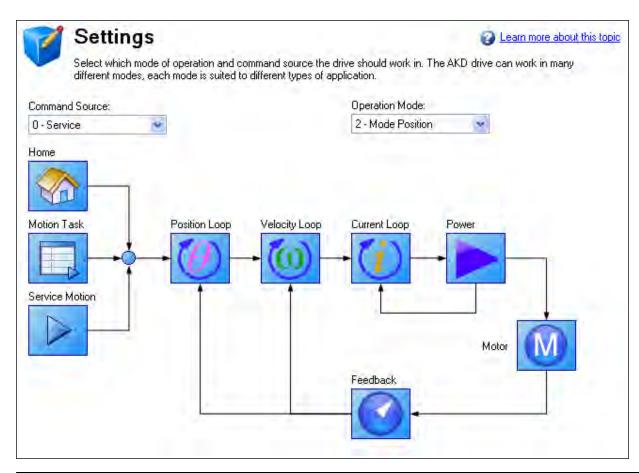
WorkBench does not allow you to change an instance drive between offline or online. If you wish to move a configuration between two devices that you can save the parameters to a file and then import this parameter file into a new drive you have created.

6.4 Watch

This window allows you to view the current value of selected information from the drive. You can toggle the window on/off by clicking the glasses on the tool bar.

By default, the watch window shows position, velocity, and current for the selected drive. The list can be customized as shown below.

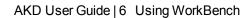
Button or Dialog Box	Description	
Add	Adds a new parameter to the watch list.	
Edit	Allows you to modify the selected item.	
Delete Removes the selected items from the list.		
Move Up Moves the selected items up one place in the		
Move Down Moves the selected items down one place in the		


6.5 Settings

6.5.1 Navigation Tree

The Settings view allows you to configure the drive to fit your specific application. When you click Settings in the navigation pane located to the left of the WorkBench screen, additional views for configuring your drive appear. By default, only settings applicable to your current drive operation mode and command source will appear in this tree. To show all settings available for the AKD (even if the these settings are not used with the current operation mode and command source), right click on **Settings** and select **Show all Settings**.

6.5.2 Settings View


From the main Settings view, you can configure the following drive settings:

Button or Dialog Box	ox Description	
	Selects where the command is being provided:	
	0-Service: You communicate with the drive using the TCP/IP service channel.	
Command Source	1-Fieldbus: The drive is being controlled by commands coming over the field-	
	bus.	
	2-Gearing: The position is proportional to the secondary feedback.	
	3-Analog: The analog input provides a current, velocity, or position command.	
	Selects the control loop being commanded from the source:	
	0-Torque Mode: Drive controls are based on the current passing through the	
	motor. For a rotary motor, this value is proportional to the torque of the motor; for	
Operation Mode	linear motors, this value is proportional to the force the motor generates.	
	1-Velocity Mode: Drive controls are based on the velocity of the motor.	
	2-Position Mode: Drive controls are based on the position of the motor.	
Motion and Control Loop	Allows you to select the details related to each specific loop from a graphical	
Graphics	interface.	

Related Topics

11 Using Command Source and Operating Modes for details on configuring the drive for your application.

This page intentionally left blank.

7 Configuring Drive Power

7.1	Power	56
7.2	Regeneration	58

7.1 Power

7.1.1 Drive Setup for Power and Bus

The **Power** screen allows you to confirm Power Bus settings and accommodate external regeneration needs if required. Nothing is required for this screen if you have no regeneration requirements. Review the data on the screen to be certain the bus voltage is at the appropriate levels you expect (approximate input line AC voltage * 1.4). The other values are the appropriate limits for over voltage and under voltage for the particular drive. You can select the undervoltage fault mode to trigger either only when the drive is enabled or always.

From the **Power** screen, you can view and configure the drive power settings as follows:

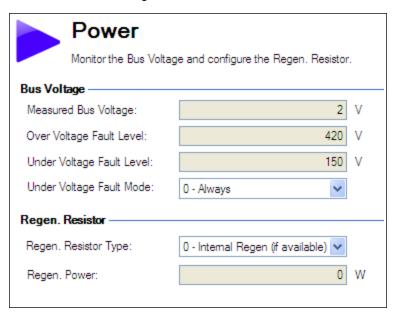
Button or Dialog Box	Description	Parameter
Measured Bus Voltage	Reads the current DC bus voltage.	VBUS.VALUE
Over Voltage Fault Level	Reads the over voltage fault level.	VBUS.OVFTHRESH
Under Voltage Fault Level	Reads the under voltage fault level.	VBUS.UVFTHRESH
Under Voltage Fault Mode	Sets under voltage mode.	VBUS.UVMODE
Regen Resistor Type	Sets the regen resistor type to either -1-External Regen or 0-Internal Regen (if available).	REGEN.TYPE
Regen Power	Reads the regen power (only visible for external regen).	REGEN.POWERREGEN.POWER
External Regen Resistance	Sets the external, user-defined regen resistor resistance (only visible for external regen).	REGEN.REXT
External Regen Heat Up Time	Sets the external regen resistor thermal protection time constant (only visible for external regen).	REGEN.TEXT
External Regen Power	Sets the regen resistor's power fault level for an external regen resistor (only visible for external regen).	REGEN.WATTEXT

See 7.2 Regeneration for more information about regen resistors and sizing regen resistors.

7.1.2 Direct DC Mains Operation

Direct DC input is available on all standard AKD models. The DC input should be run into the AC input connection. Positive and negative DC lines should use L1 and L2 connections (polarity is not critical). L1 and L2 connections are found on either the X3 connector or the X4 connector depending on the model.

(see "Mains Supply Connection (X3, X4)" (=> p. 271) for more information on this connection).


The nominal level of DC voltage applied must be compatible with the voltage fault levels in the drive. You must also consider voltage variations in the DC power supply above and below the nominal value so that nuisance faults are avoided.

When you determine the maximum nominal DC voltage applied to the drive you should also consider the regeneration circuit, in addition to the over voltage level. Running the drive slightly below the over voltage level is not possible because the drive does not have the capability to dissipate regenerated energy. This practice can also be harmful to the regen circuit. A good practice is not to exceed the nominal DC voltage produced by a standard AC installation. For the AKD-zzzzzo6, 340 Vdc is the equivalent DC voltage for an 240 Vac supply and for the AKD-xxxxx07, 680 Vdc is the equivalent DC voltage for a 480 Vac supply.

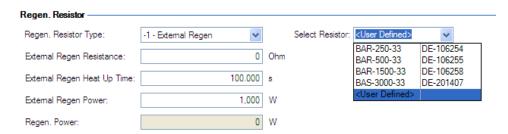
The voltage fault levels are also shown in the **Power** screen and depend on the voltage level of drive used. Voltage ranges are as follows:

Model	Under Voltage Level	Over Voltage Level
AKD-zzzz06	90 Vdc	420 Vdc
AKD-zzzz07	380 Vdc	840 Vdc

You can view bus voltage values in the **Power** screen as shown below:

7.2 Regeneration

7.2.1 Overview


Regeneration, or "shunting", dissipates energy from the DC bus during deceleration of the motor load. During deceleration, the motor acts as a generator that pumps energy back into the system. If this energy is not dissipated, then the bus energy level can exceed acceptable levels (VBUS.OVFTHRESH). If the system exceeds the maximum bus voltage, then the drive generates an over voltage fault (FF501 and shuts down. A regeneration resistor, or regen resistor, is an external device that dissipates excess energy and allows the drive to function normally during deceleration.

Follow these steps to determine the regen needs for your system and to configure the drive for regen:

- 1. Calculate motor peak and continuous regenerative energy and use this value to size the regen resistor.
- 2. Select a compatible regen resistor.
- 3. Configure regen parameter values in WorkBench.

7.2.2 Regen Resistor Options

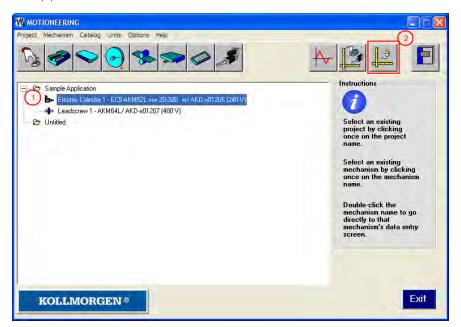
In the **Power** screen, you can select from a variety of pre-sized regen resistors using the **Regen Resistor Type** box.

When you select -1-External Regen, the **Select resistor** box appears and contains the pre-sized resistors for your drive. Select the model regen resistor that you are using and the drive will populate the remainder of the fields. If you are using a nonstandard resistor, then choose **<User defined>** and fill in the appropriate values for your resistor.

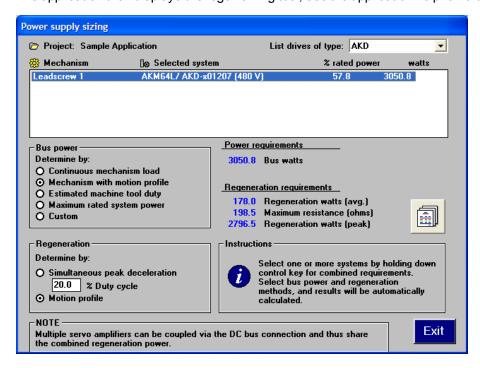
If you use a nonstandard resistor, contact Kollmorgen technical support to confirm that the nonstandard resistor will work correctly with your system.

7.2.3 Calculating Motor Peak Energy and Regen Resistor Size

In order to determine whether or not your system requires a regen resistor, you must calculate the peak kinetic energy that the motor generates during deceleration and the continuous regeneration energy created by the motor. If this energy exceeds the drive capacity, then you need a regen resistor. In many cases, peak or continuous regenerated energy does not exceed the drive capacity and no regen resistor is needed.


The calculation for peak kinetic energy requires values for several factors that affect the generation of energy in a motion system:

- Load inertia
- Motor inertia
- · Motor speed from which deceleration occurs
- Time required to decelerate


Regen resistor sizing information for your particular application can be calculated using the Motioneering® Application Engine. You can download this program here:

http://www.kollmorgen.com/website/com/eng/support/design_tools/motioneering.php

After you install and set up this program, highlight your application (1) and then click on the Power Supply Sizing icon (2).

The application then displays the regen sizing tool; see the application help for further sizing assistance.

7.2.4 Selecting a Compatible Regen Resistor

After you calculate the appropriate resistor size, compare the results with the capabilities of the drive and, if necessary, select an external regeneration resistor which matches these capabilities from the chart below. The resistors shown below are included in the WorkBench setup. If you do not find a match for your application, please contact the Kollmorgen customer support team for further assistance.

NA Part	EU Part	Resistor Type	AKD-							
Number	Number		X-							
			00306	00606	01206	02406	00307	00607	01207	02407
BAFP-100-33	DE-201437	External Resistor, 100 W, 33 ohms	Х	X	Х					
BAFP-200-33	DE 201420	 			.,					
BAFF-200-33	DE-201430	External Resistor, 200 W, 33 ohms	X	Х	Х					
BAR-250-33	DE-106254	External Resistor, 250 W, 33 ohms	х	Х	Х		Х	х	х	
BAR-500-33	DE-106255	External Resistor, 500 W, 33 ohms	х	х	х		Х	х	х	
BAR-1500-33	DE-106258	External Resistor, 1500 W, 33 ohms	х	Х	х		х	х	х	
BAS-3000-33	DE-201407	External Resistor, 3000 W, 33 ohms	х	Х	х		х	х	х	
BAR-600-23	DE-200613	External Resistor, 600 W, 23 ohms								х
BAR-1000-23	DE-200614	External Resistor, 1000 W, 23 ohms								х
BAS-2000-23	DE-200615	External Resistor, 2000 W, 23 ohms								х
BAS-3000-23	DE-200616	External Resistor, 3000 W, 23 ohms								х
BAS-4000-23	DE-200617	External Resistor, 4000 W, 23 ohms								х
BAR-500-15	DE-201439	External Resistor, 500 W, 15 ohms				х				
BAR-1000-15	DE-201440	External Resistor, 1000 W, 15 ohms				х				
BAS-2000-15	DE-103871	External Resistor, 2000 W, 15 ohms				х				
BAS-3000-15	DE-103872	External Resistor, 3000 W, 15 ohms				х				
BAS-6000-15	DE-103873	External Resistor, 6000 W, 15 ohms				Х				

7.2.5 Configuring Regen Parameter Values

If you use an external regen resistor, then you must also include additional information about the regen resistor in the **Power**view. These values are automatically inserted in WorkBench. The chart below summarizes these three additional values:

- External Regen Resistance (REGEN.REXT, ohms)
- External Regen Heat Up Time (REGEN.TEXT, seconds)
- External Regen Power (REGEN.WATTEXT, watts)

These parameters allow the regen resistor to function properly and dissipate power appropriately for your system.

NA Part	EU Part	Resistor Type	Resistance	Heat Up Time	Power Rating		
Number	Number	(all resistors UL	ohms	s	w		
	recognized)		(REGEN.REXT)	(REGEN.TEXT)	(REGEN.WATTEXT)		
BAFP-100-33	DE-201437	External Resistor, 100 W, 33 ohms	33	16.5	100		
BAFP-200-33	DE-201438	External Resistor, 200 W, 33 ohms	33	27.5	200		
BAR-250-33	DE-106254	External Resistor, 250 W, 33 ohms	33	22.0	250		
BAR-500-33	DE-106255	External Resistor, 500 W, 33 ohms	33	33.0	500		
BAR-1500-33	DE-106258	External Resistor, 1500 W, 33 ohms	33	25.7	1,500		
BAS-3000-33	DE-201407	External Resistor, 3000 W, 33 ohms	33	77.0	3,000		
BAR-600-23	DE-200613	External Resistor, 600 W, 23 ohms	23	27.5	600		
BAR-1000-23	DE-200614	External Resistor, 1000 W, 23 ohms	23	27.5	1,000		
BAS-2000-23	DE-200615	External Resistor, 2000 W, 23 ohms	23	77.0	2,000		
BAS-3000-23	DE-200616	External Resistor, 3000 W, 23 ohms	23	84.3	3,000		
BAS-4000-23	DE-200617	External Resistor, 4000 W, 23 ohms	23	77.0	4,000		
BAR-500-15	DE-201439	External Resistor, 500 W, 15 ohms	15	33.0	500		
BAR-1000-15	DE-201440	External Resistor, 1000 W, 15 ohms	15	27.5	1,000		
BAS-2000-15	DE-103871	External Resistor, 2000 W, 15 ohms	15	77.0	2,000		
BAS-3000-15	DE-103872	External Resistor, 3000 W, 15 ohms	15	84.3	3,000		
BAS-6000-15	DE-103873	External Resistor, 6000 W, 15 ohms	15	91.7	6,000		

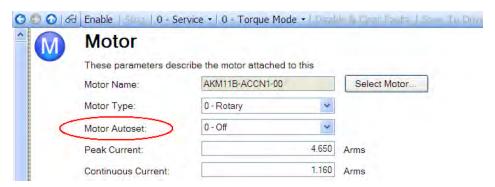
7.2.6 Related Parameters

REGEN Parameters

VBUS.OVWTHRESH

VBUS.VALUE

8 Configuring Motor Settings


8.1	Motor	64
8.2	Feedback 1	66
8.3	Using Feedback Options.	67
8.4	Feedback 2	73
8.5	Non-Plug and Play Feedback Devices	76
8.6	Parameters	76
8.7	Calculations	76
8.8	Foldback	77
8.9	Overall Foldback	80
8.10	Brake	80
8.11	Using Position Capture	81

8.1 Motor

8.1.1 Overview

The **Motor** screen is used to set up or confirm the parameters of the motor that is connected to the drive. In certain cases, based on the feedback type, the motor parameters will automatically be set. The drive will autodetect feedback devices that are preset with the appropriate feedback and motor parameters when MOTOR.A-UTOSET is set to 1 (default). The values the drive uses for commutation and current and velocity loop gains will be populated automatically.

If your motor does not have a plug and play feedback device, then you must turn off the motor autoset feature as shown in the screenshot below (MOTOR.AUTOSET = 0) and select the appropriate motor from the motor parameter database.

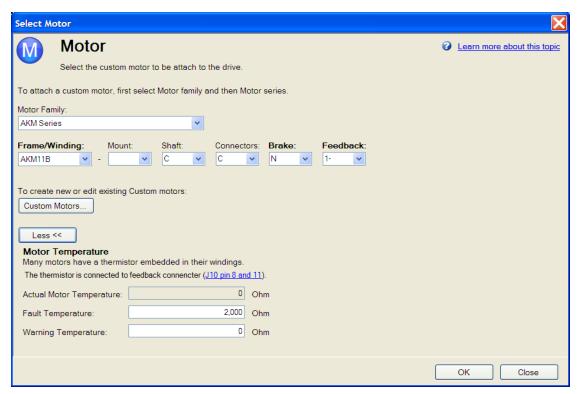
All of the appropriate Kollmorgen motors compatible with the AKD drive are contained in the motor database. For motors that are not listed, click **Select Motor** to open a custom motor view in which you can input the appropriate motor parameters.

8.1.2 Motor Setup

For SFD, Endat, and BiSS feedback devices, the drive will automatically be detected and the correct motor parameters will be automatically set in the AKD drive. If your motor is detected automatically, the parameters in the **Motor** view are shaded and not accessible. If you have a non-plug and play standard device (such as an incremental encoder or resolver), you can use this screen to enter the standard AKM, Cartridge motor, DDR, or DDL motor. Other motors can be entered using the **Custom Motor** selection and setting up the parameters (see section on non memory motors). Select the standard motor from the drop down list and select ok. The AKD drive will now show all of the appropriate parameters needed for the motor to operate properly.

8.1.3 Using the Motor View

The **Motor** view displays parameters related to the specific motor attached to the drive as follows:


- Motor Name: The motor part number read from the autoset device, or the name from the motor database. When entering a custom motor name, the motor name should not contain any spaces.
- Motor Type: This field allows you to select the proper parameters for a rotary motor or a linear motor (linear motors are a future feature).
- Motor Autoset: This setting to allows the drive to automatically set up a plug and play motor (MOTOR.A-UTOSET = 1). With Motor Autoset turned off (MOTOR.AUTOSET = 0), you can access the motor database to select a catalog or custom motor.

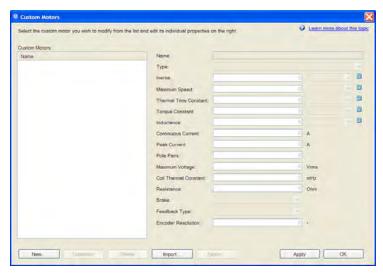
The next set of parameters displayed are specific to the electrical and mechanical characteristics of the motor connected to the AKD drive.

- Peak Current: Motor peak current rating in Amps rms.
- Continuous Current: Motor continuous current rating in Amps rms.
- Inertia: Motor rotor inertia in Kg-cm^2.
- Torque Constant: Motor torque contant in Nm/Arms.
- Inductance: Motor rated inductance in milliHenries
- Motor Poles: Number of motor poles.
- Maximum Speed: Motor maximum rated speed
- Motor Resistance: Motor winding resistance in Ohms.
- Maximum Voltage: Motor maximum rated voltage in Volts rms.
- Motor Phase: Motor phase offset (used to set motor commutation as required for most devices this is set to 0)
- Coil Thermal Constant: Motor coil thermal time constant in mHz.

8.1.4 Selecting a Motor

The **Select Motor** button opens a screen in which you can configure a non-plug and play motor or custom motor.

When this screen is opened, WorkBench displays by default the motor matched to the current motor name attached to the drive. WorkBench searches matching motor as follows:


- 1. WorkBench first checks the motor name with custom motors for a match.
- 2. If a match is not found, then WorkBench checks the name with the standard motors database for a match.
- 3. If a match is not found, then an AKM motor is selected.

For non-plug and play motors, a database of catalog motors is available based on the different Kollmorgen motor families. When you select a motor family, a part number is displayed according to the selected motor family. You can change the part number as needed, and the complete motor name will be displayed according to your selection. This complete motor name is sent to drive. The portions of the part number labeled in bold are required values.

The **More/Less** button displays and hides motor temperature settings.

8.1.4.1 Configuring Custom Motors

Click on **Custom Motor** to create and edit custom motors in the following screen:

In this view, you can import or export a motor parameter file, or create a custom motor of your choice. The appropriate parameters must be chosen as listed. Several of the parameters allow you to select an alternate unit of measure. When building a custom motor file, do not use blank spaces in the name you choose. Once you have configured one or more custom motors, if you select a custom motor from the list and click **OK**, then the selected custom motor will be displayed in the **Select Motor** screen.

The actions available in the custom motor screen include:

- **New**. Allows you to start a new custom motor (with default values) or load a catalog motor you may want to modify.
- **Duplicate**. Makes a copy of the highlighted motor in the custom motor list.
- **Delete**. Deletes the highlighted motor in the customer motor list.
- Import. Allows you to import a motor file (*.motor) from another location
- Export. Allows you to save teh highlighted motor file (*.motor) to another location
- Apply. Accepts the values you have entered for the specific motor files you are entering.
- OK. Returns you to the Motor Selection screen.

When entering any of the motor data, be certain the units are correct. The AKD drive uses the motor parameters to set up the various feedback loops and limits associated with the motor selected.

Note that if you select a custom motor from the list and click Ok button then that selected custom motor will be displayed in the Select Motor screen.

8.1.4.2 Validating Motor Parameters

When you click **OK** in the **Select Motor** screen, WorkBench validates the range with the drive. If any error is found, an error screen is displayed. Click **Continue** to set the motor parameters in the drive. Click **Cancel** to close this screen.

Iferrors occurwhile setting the motor parameters, an errors creen indicates which parameters require additional attention.

Related Parameters

MOTOR Parameters

8.2 Feedback 1

The Feedback view allows you to configure the primary position feedback device fitted to your motor.

When you select your feedback device from the Feedback Selection list, the appropriate feedback configuration choices appear below the dial.

8.2.1 Overview

The AKD offers a variety of feedback solutions, which allows you to optimize your system based on your specific machine needs. The available feedback options include resolver, SFD, sine-cosine encoder (Endat 2.1, BiSS, Hiperface), incremental encoder, as well as line-count, single, and absolute variations. Your motor model number will indicate the type of feedback that you have. With some incremental encoders, parameters are set up in the encoder itself, and the AKD drive recognizes the feedback automatically and sets up the drive accordingly. This automatic recognition is called "plug and play". Currently, SFD and Endat are plug and play encoders. Other feedback types require that you enter parameters manually.

8.3 Using Feedback Options

Use the **Feedback** screen to set up your system to match the proper feedback device. By default, the drive uses the **Auto** setting to detect feedback devices. This setting allows the drive to interrogate the feedback device to see if it is a recognized plug and play device. If the drive recognizes the device, then all the parameters for that device and motor are loaded into the drive. Both the feedback and the motor information are now present in the drive and the system is operable.

If the feedback is a non-plug and play device, then you can choose from the list of supported devices in **Feedback Selection** list and then enter the line count manually. The following sections describe each supported device available in the **Feedback Selection** list and the input information required to configure each device.

8.3.1 Auto

This is the default setting and is used to determine if aplug and play device is available. If a plug and play device is available, the **Auto** mode is replaced by the feedback device detected, along with the appropriate resolution settings.

8.3.2 Incremental Encoder

The incremental encoder is a non-plug and play device. Incremental encoders are available in a variety of line counts. If you select an incremental encoder option, the encoder resolution must be entered into the **Rotary Encoder Resolution** box. The units for this field are in counts per revolution, which is post-quadrature (multiplies the lines per revolution by 4).

8.3.3 Sine Encoder

Sine encoders are offered with different data communication protocols. These include Endat, BiSS, Hiperface, and others. A standard sine-cosine encoder with simple analog communication is not a plug and play device. As with the incremental encoder, the line count is entered in the **Rotary Encoder Resolution** box.

8.3.4 Endat 2.1, Endat 2.2

Endat-based sine encoders are plug and play compatible, and the system will properly recognize these encoders. With the AKD set in **Auto**, this encoder type is detected and the feedback and motor parameters are loaded automatically.

8.3.5 BiSS

BiSS will be plug and play in a future release. Currently, the device is programmed with the motor and feedback information and once selected will sets up the feedback and motor parameters in the AKD.

8.3.6 Hiperface

Hiperface is a plug and play device that will be supported in a future release.

8.3.7 Resolver

The resolver feedback option is not plug and play. When selecting the resolver option, three specific parameters are set by default for the standard AKM resolver: phase lag, transformation ratio, and feedback poles. Currently, the AKD does not support non-Kollmorgen standard resolver options.

8.3.8 SFD

Smart Feedback Device (SFD) is Kollmorgen's most popular plug and play device. SFD allows for quick and easy setup from the **Auto** mode, which automatically configures the drive with the motor and feedback parameters.

8.3.9 Using Wake and Shake (WS)

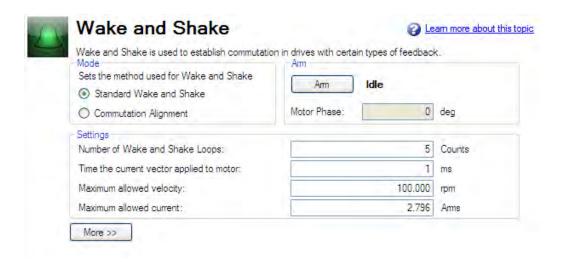
8.3.9.1 Overview

Wake and shake (WS) is used to establish commutation in drives with the following types of feedback:

- Incremental encoders without Halls or commutation channels.
- Sine encoders without Halls or commutation channels.

When controlling a brushless DC (BLDC) motor, you must know the electrical position of the motor shaft. Without absolute position data, it is impossible for the drive to know which sequence of coils to energize to produce motion. Absolute feedback devices, such as resolvers and absolute encoders, can detect position directly. Incremental devices, such as incremental encoders and sine encoders without a commutation channel, must determine electrical position indirectly at start up. The drive uses the WS feature to determine electrical position by sending the motor short bursts of current and measuring the resulting incremental motion. The drive uses this measurement to estimate electrical position accurately enough to control the motor.

8.3.9.2 Configuring WS


You can configure WS after your motor has been connected to the AKD according to the AKD Installation Manual. The WS procedure is initiated automatically when both the hardware and software enable signals become logic high.

Before attempting to enable the drive, the drive must be compensated for the motor and the AKD servo loops must be stable.

Compensation values for many rotary motors are included in a database already loaded into the drive.

NOTE An unstable system will not function properly during or after the WS process.

Use the default **Wake and Shake** view to configure your system:

Mode

The information in this help section primarily applies to **Standard Wake and Shake** (Mode 0), which is the default mode for Wake and Shake. **Commutation Alignment** (Mode 1) is a simple Wake and Shake mode which only uses the WS.IMAX parameter. In Mode 1, The windings are energized at for 1 second at WS.IMAX and the resulting position is used to calculate MOTOR.PHASE. The motion during **Commutation Alignment** is generally large (up to 180 electrical degrees). Select the mode (WS.MODE) according to your application needs.

Arm

Click **Arm** to set WS to start at the next drive enable (WS.ARMWS.ARM). This area also shows the current status of the wake and shake process. See WS.STATE for a detailed explanation of the possible states. WS.ARM is not restricted to any feedback type.

Settings

- Number of Wake and Shake Loops. The WS feature uses the mean of all wake and shake repetitions, called "loops", to establish commutation (WS.NUMLOOPS; see Using WS: Advanced for a discussion of loops). If fewer than five loops are used, commutation may be incorrect, possibly causing poor performance or stability.
- **Time the current vector applied to motor.** This box specifies specifies the duration of the current pulse used for commutation. Increasing this value (WS.T) increases the movement of the system.
- **Maximum allowed velocity**. If a velocity (VL.FB) higher than this value (WS.VTHRESH) is detected while WS is running, then a fault will be generated.
- **Maximum allowed current**. This value (WS.IMAX) is directly proportional to the movement. A value that is too low may fail to cause movement; a value that is too high value may cause an over speed fault.
- Maximum allowed movement (WS.DISTMAX). If the total motion from the starting position (the position at the time the drive is enabled after a WS.ARM command) exceeds WS.DISTMAX a fault will occur. Setting WS.DISTMAX to zero disables this feature.
- **Minimum allowed movement** (WS.DISTMIN). If the total motion from the starting position is less than WS.DISTMIN a fault will occur. This will prevent poor initialization from broken wires, incorrect current settings, very high friction, etc. Setting WS.DISTMIN to zero disables this feature.

Wake and Shake, More View

To configure additional WS settings, click **More** at the bottom of the default view to display the following options:

Wake and Shake Movement

Use these boxes to set values for the maximum (WS.DISTMAXand minimumWS.DISTMINmovement required for finding commutation.

Delay Times

Delay time is the time that elapses when switching different current vectors. Use these boxes to set specific time delays for current steps WS.TDELAY1, coarse to fine angle (WS.TDELAY2) and time between loops in mode 0 (WS.TDELAY3).

Special Cases for WS

Operation with Motor Brake

An amplifier with a motor brake operates the WS procedure similar to an amplifier without a brake. All precautions and behavioral descriptions above also apply in this case. It is important to note that the brake is automatically applied (motor brake, not holding brake) after the WS process is complete. The brake may cause unexpected movement if the DRV.OPMODE used prior to WS does not retain position. If a force component is present parallel to the track on a linear motor (gravity, load, etc.), or tangential on a rotary motor, the motor may move from the startup position after WS completes and the brake is applied.

If the application requires that the startup position be retained, have the controller system ready to take control immediately after WS is complete. One way to set this control is to have the drive in DRV.OPMODE 1 (digital velocity) or DRV.OPMODE 2 (position mode) on power-up. This precaution keeps the motor stationary after enable.

End of Travel Limits

If anything restricts the motion of the motor, a commutation fault can occur. Examples of situations that may result in faults include the following:

- 1. If the motor is resting against a rigid endstop, the movement of the motor may be impeded below the minimum threshold set by WS.DISTMIN. This lack of movement causes a fault.
- 2. If the motor is actuating a limit sensor/switch, the system (PLC, SWLS.LIMIT0 and SWLS.LIMIT1) may be preventing the AKD from producing motion. If descriptive motion is not achieved, the system faults.

Large Load Inertia or High Friction System

Systems with a large load mismatch may need more current than the default setting for correct commutation. Begin with the default value for WS.IMAX and gradually increase or decrease as needed. If adjusting WS.IMAX does not result in a successful commutation, the width of the search pulse can be increased by increasing WS.T.

8.3.9.3 Using WS: Advanced

WS is performed upon enable in order to establish a valid value for MOTOR.PHASE at startup. MOTOR.PHASE is used to calculate electrical phase. With absolute feedback devices, MOTOR.PHASE is a fixed offset between absolute mechanical position and the electrical position. With incremental devices, position is accumulated relative to an initial MOTOR.PHASE. However, at startup, MOTOR.PHASE is invalid since the initial position is random, thus the requirement for the WS process.

WS is a two-step process:

- 1. Coarse Phase. The drive sequentially pulses a user-specified current, WS.IMAX, at each electrical quadrant (0°, 90°, 180°, 270°). Based on the resulting observed movement, an approximate location is calculated.
- 2. Fine Phase. The drive makes small adjustments to the coarse phase while monitoring movement during velocity mode (command velocity = 0) to find a precise position.

The amplitude of the current pulses in this process equals WS.IMAX. The drive repeats these two steps for a user-specified number of times (WS.NUMLOOPS) to produce a more accurate estimate of the electrical phase.

The drive normally indicates warning F478 before WS is initiated and successful. If WS fails, the commutation is not valid and the drive indicates one of the following faults:

- F473: Insufficient movement. The maximum movement during WS was less than WS.DISTMIN.
- F475: Excessive movement. The movement during WS exceeded WS.DISTMAX.
- F476: Fine-Coarse deltat too large. The phase calculated during the fine phase and coarse phase differed by more than 10 degrees.
- F478: Overspeed. The feedback velocity (VL.FB) exceeded WS.VTHRESH during WS.
- F479: Loop angle delta too large. The difference between the phase determined in different cycles (loops) exceeded 30 degrees.
- F482: Commutation not initialized. WS is required (feedback is one of the types listed in the Overview) but WS has not been successfully performed.
- F483 to F485: U, V, or W phase missing. Intermittent or broken motor connection.

Maximizing WS Reliability

The following suggestions will help you achieve successful commutation:

- Incorrect determination of MOTOR.PHASE may cause a system runaway. Since the typical movement
 during correct operation of WS is very small, you can use the velocity overspeed parameters
 (WS.VTHRESH and DRV.VTHRESH) to prevent a runaway. Prior to enabling the drive, set
 DRV.VTHRESH 100 mm/s for linear motors or 200 rpm for rotary motors. After a successful enable,
 DRV.VTHRESH can be returned to the normal operating value.
- Set WS.IMAX to its default value, WS.IMAX=0.5*min(MOTOR.IPEAK, DRV.IPEAK).
- Set WS.NUMLOOPS 20 for best results in many applications.
- WS.T specifies the duration for which the search current is applied. With a stable velocity loop, most applications work well with the default value of WS.T. The default value causes the software to calculate the width of the search pulse based on the velocity loop proportional gain, VL.KP. Increasing WS.T effectively increases the movement of the motor during WS, which may be necessary for systems with a low-resolution feedback or high load inertia.
- WS.IMAX specifies the amplitude of the current pulse used during the initial/rough commutation. A
 WS.IMAX value that is too low may result in a fault by failing to cause enough movement for commutation. If the value is too high, the preset movement threshold could be exceeded, also resulting in a
 fault. If the default value is producing faults for too little movement, gradually adjust this parameter to overcome excessive friction and/or load on the system. WS.IMAX also specifies the maximum current used
 in the second stage of commutation. The initial current is 25% of WS.IMAX, then steps up to 100% of
 WS.IMAX.
- FB1.SELECT selects the type of feedback used by the amplifier. The WS feature is used only for FB1.-SELECT = 11, 21. The feedback must be configured prior to initiating the WS procedure.
- MOTOR.BRAKE If your amplifier has a motor brake, set MOTOR.BRAKE = 1. For motors without a brake, set MOTOR.BRAKE = 0.

A CAUTION

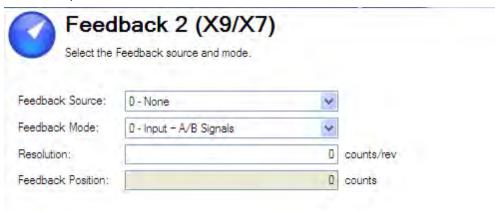
- Adjust WS.T with extreme caution. Increasing WS.T increases the movement of the system. Applying an incorrect value of WS.T may cause erratic drive behavior
- When initiating WS, the motor may experience a runaway. Stay clear of all moving parts. Ensure there are properly operating safety devices such as hardware limit switches and suitable end-of-travel limits.
- If WS.NUMLOOPS is less than 5, commutation may be incorrect. This condition may cause faults and/or adversely affect performance or stability. Set WS.NU-MLOOPS = 20.

8.3.9.4 Troubleshooting WS

Problem	Possible Cause	Remedy			
Excessive Movement	Brake slips on vertical system.External forces on motor too great.	 Check brake. Remove forces acting on motor. Lower WS.IMAX. 			
Insufficient Movement	 Motor brake too rigid. Motor resting on rigid end-stop. Too much friction on motor track. Foreign objects impeding movement of motor. Motor load very large, and impedes sufficient movement. WS.DISTMIN manually set too high WS.IMAX too low 	 a. Check brake b. Check physical location of motor c. Check friction and cleanliness of motor track d. Increase WS.IMAX value 			
Excessive Movement	 Brake slips on vertical system. External forces on motor too great. 	 Check brake. Remove forces acting on motor. Lower WS.IMAX. 			
Insufficient Movement	 Motor brake too rigid. Motor resting on rigid end-stop. Too much friction on motor track. Foreign objects impeding movement of motor. Motor load very large, and impedes sufficient movement. WS.DIS-TMIN manually set too high WS.IMAX too low 	 Check brake. Check physical location of motor. Check friction and cleanliness of motor track Increase WS.IMAX value 			
U, V, or W Phase Missing Fault	Intermittent or broken motor connection.	Check connections to motor phases.			
Commutation Not Initialized Fault	Wake and Shake is required but WS procedure has previously been canceled (WS.DISARM) or has failed.	Correct errors and rerun WS procedure.			
Other	Drive not configured correctly.	Check drive compensationVerify amplifier feedback			

8.3.9.5 Related Parameters

WS Parameters DRV.IPEAK FB1.SELECT MOTOR.BRAKE


MOTOR.PHASE

MOTOR.IPEAK

8.3.10 Commutation Alignment

8.4 Feedback 2

The Feedback 2 screen helps configure how you will be using either connector X9 or X7. The screen uses the term feedback in the labels, but you can also think of this as the "signal" source depending on how you use these connection points.

The Feedback source box allows you to choose from three feedback sources:

Source 0 – This simple indicates you are not using either connector as a feedback source.

Source 1 – This is tied to use of connector X9 (consider for emulated encoder connection).

Source 2 – This is tied to use of connector X7 (consider for the high speed opto inputs on the I/O Connector).

Feedback Mode offers three selections as well, depending how you are using the connection source above.

Mode 0 – The input is configured as A/B signals.

Mode 1 – The input is configured as Step and Direction signals.

Mode 2 – The input is configured as Up-down signals.

The **Resolution** box sets the resolution of the device you have indicated as your input of signal source.

Encoder Emulation Output

The drive offers the flexibility to use connector X9 for an encoder emulation output. This output can be set up using the Encoder Emulation view (see 8.4.1 Encoder Emulation .

The **Emulation Mode**box offers three settings for Encoder Emulation mode:

Mode 0 – The connector is free to use as an input

Mode 1 -The X9 connector is now set up as an encoder emulation with a once per rev index pulse (resolution is set in the next parameter (Emulation Resolution).

Mode 2 – The X9 connector is now set up as an absolute index pulse

Emulation Resolution sets the resolution desired for the output of the emulated encoder.

The **Index or Absolute offset** is dependent on which emulation mode is selected, allowing you to set an offset for either the index pulse or absolute pulse.

A check box allows you to consider the motor direction based on the encoder output.

8.4.1 Encoder Emulation

8.4.1.1 Overview

The encoder emulation (EEO) connector (X9) can be used as an either an output or an input. As an output, you can use this connector for position feedback to an analog controller and for configuring the drive as the master in a master/slave system. You can also use X9 connector as an input for controlling the drive through an A/B, pulse and direction, or up/down command. Common applications for this input include using the drive with a stepper controller and configuring the drive as the slave in a master/slave system.

8.4.1.2 Using Encoder Emulation

You can configure the X9 connector from the **Encoder Emulation** screen by setting the connector function, resolution, and (where applicable) input position. The **Electronic Gearing** screen also has provisions for setting the function of the X9 connector.

8.4.1.3 Function Settings

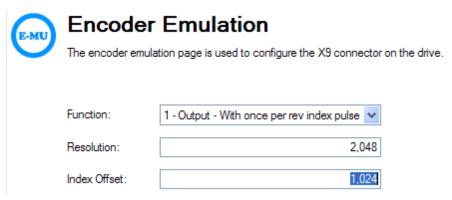
Function settings for the X9 connector are assigned through the "DRV.EMUEMODE" (=> p. 377) parameter.

Mode 0: Disable X9

Input (No EEO Output). The EEO connector (X9) is configured as an input. See Feedback 2 (FB2) for definitions for the EEO Connector (X9). Note that this mode is also deprecated and will behave as it did with firmware versions prior to M_01-03-00-000.

In earlier firmware versions, this mode indicates that the EEO connector is not operative.

Output Modes 1 and 2

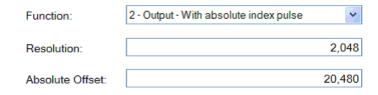

In the output modes, the drive calculates the motor shaft position from the cyclic- absolute signals of the primary feedback, generating incremental-encoder compatible pulses from this information. Pulse outputs on the SubD connector X9 are three signals: A, B and index, with 90° phase difference (i.e. in quadrature, hence the alternative term "A quad B" output), with a zero pulse.

If you are using the AKD as a master, the slave drives use the master's encoder output signals as command input and follows these commands (velocity and direction). The drives operate from an internal supply voltage.

Mode 1- Aquad B with once per rev index pulse

Output Mode 1 - A quad B with Once per Rev Index Pulse Connection Diagram

This output mode simulates an encoder signal from the X9 port to another AKD or external controller. EEO resolution ("DRV.EMUERES" (=> p. 379)) defines how many counts are outputted for one revolution of the primary feedback. Index offset ("DRV.EMUEZOFFSET" (=> p. 380)) determines the point during the revolution of the primary feedback when the index pulse (X9 pins 7&8) is output through the X9 port. The pulse will occur once every revolution of the primary feedback at the positive value of the offset.



In this case, the Index is offset 180 degrees, or halfway through the revolution of the primary feedback.

Mode 2- A quad B with absolute index pulse

Output Mode 2 - A guad B with Absolute Index Pulse Connection Diagram

When mode 2 is chosen, a box will appear for an absolute index point to be entered ("DRV.EMUEMTURN" (=> p. 378)). The absolute index pulse will be output when the X9 output position reaches the assigned value. The index will be output when the feedback position in counts matches this parameter. In the example below, the absolute index pulse output will occur after 10 positive revolutions of the motor. The absolute index is referenced from the zero point of the primary feedback and is reset when the drive is homed.

Input Modes 3, 4, and 5

The X9 connector is also capable of input modes. These input modes correspond to the signal types described below. The **Electronic Gearing** screen also includes provisions for setting the function of the X9 connector for input modes.

Mode 3-A quad B signals

Input Mode 3 - A quad B Signals Connection Diagram

Input mode 3 allows an A quad B encoder or the encoder emulation output of another drive to be connected and used as a commander encoder, dual loop feedback, gearing, or camming input.

Mode 4-Pulse/direction signals

Input Mode 4 - Pulse/direction Signals Connection Diagram

Input mode 4 allows the drive to be connected to a third-party stepper-motor controller. The number of steps can be adjusted so that the drive can be adapted to match the step-direction signals of any stepper controller.

Mode 5-Up/down signals

Input Mode 5 - Up/down Signals Connection Diagram

The drive can be connected to a third-party controller which delivers up-down signals.

Mode 6-Output – with once per rev index and Input – Step and Direction

This mode allows you to output emulated encoder signals from the X9 (Emulated Encoder) connector, and input a step handwheel signal into the X7 (High Speed Opto IO) connector simultaneously. Mode 6 and 7 are identical, with the exception that the emulated encoder has an incremental Z pulse (Z pulse occurs every revolution) in mode 6, and an absolute Z pulse (Z pulse occurs at one absolute position) in mode 7.

Mode 7 - Output - with absolute Index and Input - Step and Direction

This mode allows you to output emulated encoder signals from the X9 (Emulated Encoder) connector, and input a step handwheel signal into the X7 (High Speed Opto IO) connector simultaneously. Mode 6 and 7 are identical, with the exception that the emulated encoder has an incremental Z pulse (Z pulse occurs every revolution) in mode 6, and an absolute Z pulse (Z pulse occurs at one absolute position) in mode 7.

8.4.1.4 Resolution

The resolution setting defines how many counts are output for one revolution of the primary feedback (when X9 is configured as an output), or how many counts will be considered a full revolution of the input signal from an external controller (when X9 is configured as an input). The resolution value is post-quadrature; for example, a 1,000 count encoder has a resolution of 4,000 counts.

Note: If the resolution value is set to 0, then the X9 connector will not produce a command.

8.4.1.5 Related Parameters and Commands

The DRV.EMUEMODE parameter sets the EEO output and input modes. The resolution (before multiplication) is set by the DRV.EMUERES function. The DRV.EMUEZOFFSET parameter adjusts and saves the zero pulse position within one mechanical turn. DRV.EMUEMTURN sets the absolute index point in mode 2 and DRV.HAN-DWHEEL sets the position at which the index pulse is output in output mode 2.

DRV.EMUEDIR

DRV.EMUEMODE

DRV.EMUEMTURN

DRV.EMUERES

DRV.EMUEZOFFSET

DRV.HANDWHEEL

8.4.1 Encoder Emulation

8.5 Non-Plug and Play Feedback Devices

To set up an AKD drive with a non-plug and play feedback device (for example a resolver or an encoder), you must select a motor from the list of standard or custom motors or enter the motor parameters manually. Once the motor data is entered into WorkBench, an initial set of parameters can be calculated and downloaded to the drive.

8.6 Parameters

The following parameters can be initialized to their default values or calculated from user-supplied motor data:

IL.KP	IL.LIMITN	VL.KP	PL.KI = 0 (Default Value)
IL.KFFACC	IL.LIMITP	VL.KI	PL.INTINMAX = 0.419 (Default
			Value)
IL.KBUSFF	IL.PWMFREQ	VL.LIMITN	PL.INTOUTMAX = 0.419 (Default
			Value)
IL.FRICTION	IL.KVFF	VL.LIMITP	MOTOR.IPEAK
IL.OFFSET	IL.FOLDFTHRESHU	VL.THRESH	MOTOR.ICONT
IL.INTEN	IL.FOLDWTHRESH	VL.KVFF	MOTOR.PITCH
IL.IVFB	IL.MFOLDD	PL.KP	MOTOR.POLES
IL.KPDRATIO	IL.MFOLDT	PL.KD = 0 (Default Value)	MOTOR.TYPE

8.7 Calculations

WorkBench uses the following equations to calculate parameter values.

8.7.1 Current Loop

The current loop proportional gain (IL.KP) must be such that the current loop closed loop crossover frequency/bandwidth (BW) nominal is the lesser of 2000 Hz or (PWM Frequency/4).

Then, with this frequency:

IL.KP = $2^*\pi^*$ (desired bandwidth in Hz)*(motor L line-line in H)

Setting the D and Q components

8.7.2 Velocity Loop

```
VL.KP = (2*\pi*75)*(2*Jm/Kt) = 300*PI*Jm/Kt
VL.KI = 5
```

8.7.3 Position Loop

PL.KP = ??

8.7.4 Slider Tuning

The slider tuning algorithm in WorkBench currently uses the following algorithm.

8.7.4.1 Input - Motor Data

The values for inertia, Jm (Kg / cm2), and torque constant, Kt (Nm/A), are obtained from either the SFD or the motor model number that you select.

8.7.4.2 Constants

Velocity Loop Bandwidth – BW = The default value is 75Hz.

Input - Inertia Ratio -Q = The default is 1.

8.7.4.3 Output - Control Loop Gains

```
VL.KP = 2 * \pi * BW * Jm * (1+Q) * 0.0001/Kt
VL.KPI = BW*0.08 - 1 (minimum of 1)
PL.KP = BW/5
```

8.8 Foldback

The foldback feature in the AKD protects both the motor and the drive from overheating. Two current foldback algorithms run in parallel in the drive: the drive foldback algorithm and the motor foldback algorithm. Each algorithm uses different sets of parameters. Each algorithm has its own foldback current limit, IL.DIFOLD (drive foldback) and IL.M-IFOLD (motor foldback). The overall foldback current limit is the minimum of the two at any given moment.

```
IL.IFOLD = min (IL.DIFOLD, IL.MIFOLD).
```

Foldback is not the same as current limits. Instantaneous current limits for the drive are set by the positive peak current (IL.LIMITP) and negative peak current (IL.LIMITN) in the Limits view in WorkBench. The foldback algorithms may reduce the current output to the motor in spite of the current limit settings.

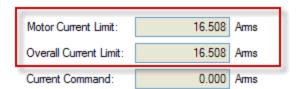
8.8.1 Drive Foldback

The drive foldback algorithm monitors current feedback; since this is a monitoring function, the drive foldback parameters are not user configurable. If the current feedback exceeds the continuous current rating of the drive (DRV.ICONT), then the algorithm decreases the current to the DRV.ICONT level. For example, under a step command input condition, the foldback algorithm allows maximum peak current (DRV.IPEAK) output from the drive for a short period of time (up to IL.DFOLDD time), after which the drive begins an exponential foldback (with time constant of IL.DFOLDT) of the current to the drive's continuous current.

It takes a few seconds for the exponential decay to drop from the drive's peak current to its continuous level. A recovery time, where the feedback current is below DRV.ICONT level, is required to allow current above DRV.ICONT level again. A recovery time of IL.DFOLDR with 0 current allows the drive to apply DRV.IPEAK current for IL.DFOLDD time.

8.8.2 Setting up motor foldback

Motor foldback is set up automatically when using a plug and play motor or when a particular motor is selected from the WorkBench database.


If you are using a custom motor, use the Motor view in WorkBench to set custom values needed for foldback configuration. The parameter entries required for the drive to apply motor foldback protection properly are coil thermal constant (MOTOR.CTFO), peak current of the motor (MOTOR.IPEAK), and continuous current of the motor (MOTOR.ICONT). These values are used to setup the algorithm for motor foldback.

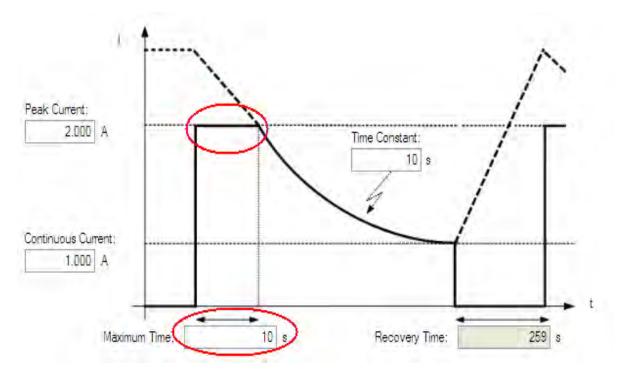
8.8.3 Setting Fault and Warning Levels

The **Motor Current Limit** and **Overall Current Limit** boxes show status variables that are constantly updated by the foldback algorithm. As current is applied above the drive or motor continuous rating, the capacity for the application of peak current starts to decrease. The motor current limit and overall current limit are actively decreased. If the move profile requires less than continuous current rating for a period of time, the Motor Current Limit and Overall Current Limit begin to increase until they reach maximum foldback capacity once again.

When Motor Current Limit or Overall Current Limit < Warning Level, an n524 status warning is triggered. When Motor Current Limit or Overall Current Limit < Fault Level, an F524 fault is triggered and the drive power stage is disabled. The load then coasts to a stop.

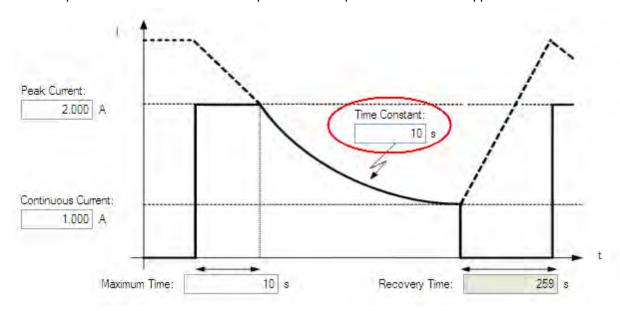
In the **Foldback** screen, setting the Warning Level to 0 turns off the warning feature. Otherwise, the Warning Level must be set above the Fault Level, but below the Motor Current Limit and Overall Current Limit to trigger a warning.

Fault Level:	9.000	Arms
User Fault Level:	9.000	Arms
Waming Level:	0.000	Arms

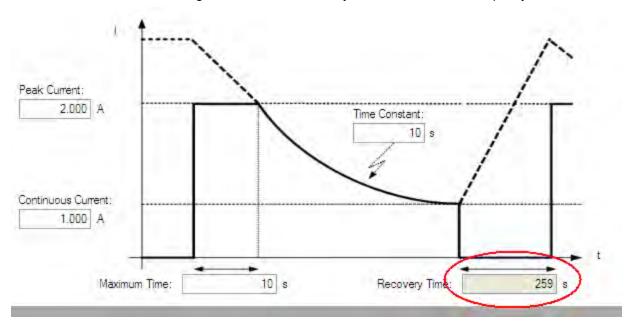

If User Fault Level is set above Fault Level, the User Fault Level will be ignored. The User Fault Level is used to increase the time the drive is operated in foldback mode without faulting. For instance if the default Fault Level is 9.000 Arms and a User Fault Level is set to 7.5 Arms, the Fault Level is changed to 7.5 Arms. This configuration effectively increases the time that foldback will be applied to the drive before faulting.

Motor Current Limit:	16.508	Arms
Overall Current Limit:	16.508	Arms
Current Command:	0.000	Arms

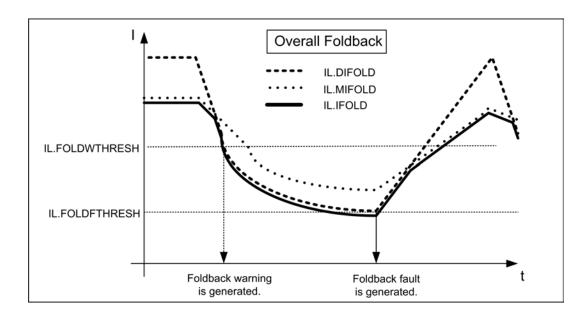
Fault Level:	7.500	Arms
User Fault Level:	7.500	Arms
Waming Level:	0.000	Arms


8.8.4 Motor Peak Current Time

Peak current (MOTOR.IPEAK) along with coil thermal constant (MOTOR.CTFO) are used to determine the maximum time the motor can sustain peak current. The maximum time (IL.MFOLDD) is displayed in the **Foldback** screen as shown below:


8.8.5 Motor Foldback Ramp

Once the maximum time for motor peak current has elapsed, if the move profile still demands peak current from AKD, the drive will exponentially lower the current applied to the motor. The Time Constant (IL.MFOLDT) dictates the profile. A smaller time constant represents a steeper decline in current applied to the motor.


8.8.6 Motor Recovery

Once the peak motor current available has reached the continuous current of the motor, the motor needs Recovery Time (IL.MFOLDR) to cool down. Full Recovery Time (IL.MFOLDR) at 0 current is required for the motor to reach full maximum capacity in the shortest amount of time. The drive can command a current less than continuous current to continue driving the load, but the recovery time for full maximum capacity is increased.

8.9 Overall Foldback

The overall limit is the momentary minimum value between the drive foldback and the motor foldback. The overall foldback is shown in the diagram below. You can set the warning and the fault levels as shown in the diagram.

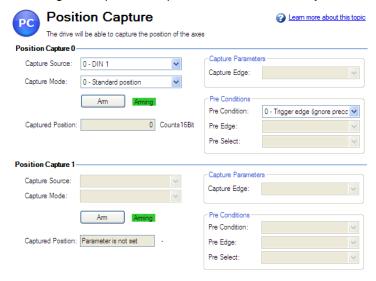
8.10 Brake

The brake output on connector X2 controls a mechanical brake that optionally may be fitted to a motor. The brake is applied and released relative to the **Drive Active** state of the drive. You can modify the release and apply delays using the parameters shown below.

Button or Dialog Box	Description	Parameter
Brake Control	Does this motor have a brake?	MOTOR.BRAKE
Brake Release Delay	The time between the drive being active and the brake being released.	MOTOR.TBRAKERLS
Brake Apply Delay	The time between the brake being applied and the drive not being active.	MOTOR.TBRAKEAPP

8.11 Using Position Capture

8.11.1 Overview


Position capture allows you to precisely determine what the motor position (or drive clock time) was when a specific event triggers. The AKD drive uses two independent captures, which operate similarly. The descriptions provided in this user guide refer to Capture 0, but also apply to Capture 1.

Position capture is used in precision environments, where the motor may be moving at very high velocities, an IO is triggered, and you must know exactly where the motor was when the event occurred. Homing algorithms often use position capture.

Position capture will capture the motor position (or drive clock time) when the capture trigger is activated. The capture engine operates on a faster clock than the 16 kHz clock used in the scope and recorder. This faster clock allows the position capture to obtain more accurate results than those obtained using the scope or recorder clock.

8.11.2 Configuring Position Capture

To configure the position capture, select **Position Capture** from the **Settings** group:

8.11.2.1 Setting the Capture Source (CAP0.TRIGGER)

The capture source determines which input on the drive causes the position capture to trigger. Capture Source Options:

- 0 6: These options trigger on the Digital Input 1 pin through Digital Input 7 pin, respectively.
- 7-9: These options trigger on the X9 connector RS485 Input 1 pin through RS485 Input 3 pin, respectively.
- 10: This option triggers on the primary encoder index.

8.11.2.2 Setting the Capture Mode (CAP0.MODE)

The capture mode determines what information is saved on the drive when the capture triggers. Capture mode options:

0 – Standard Position. Captures the motor position in drive units

- 1 Drive Internal Time. Captures the time of the trigger in ns
- 2 Distributed Clock Time. Captures the network (Ethercat) distributed clock time
- **3 Primary Encoder Signal**. Captures the motor postion triggering on primary encoder index. This mode automatically rearms after each trigger.

If either **0 - Standard Position** or **3 - Primary Encoder Signal** is selected, delays may occur and are associated with feedback devices that are digital or interpolated.

8.11.2.3 Arming and Retrieving the Capture Value (CAP0.EN and CAP0.T)

CAP0.EN arms the capture and CAP0.T retrieves the capture value. Once you have configured the capture, you must arm it before it will trigger. Click **Arm** (1) to arm the capture.

Once the capture is armed, when it triggers, the captured value will be displayed below the Arm button (2).

8.11.2.4 Setting the Capture Edge (CAP0.EDGE)

The capture edge determines which input state change triggers the capture.

Capture Edge Options:

- **1 Rising Edge**. Captures when the input signal goes high, from a low state.
- **2 Falling Edge**. Captures when the input signal goes low, from a high state.
- **3 Both Edges**. Captures any time the input signal changes state.

8.11.2.5 Setting the Pre-Condition Event: (CAP0.EVENT)

The Capture Pre-Condition Event gives the user more flexibility in setting what conditions must be present for the Capture to trigger.

Event Options:

- **0 No precondition**. Capture triggers as soon as the capture edge occurs.
- **1 Trigger Edge after precondition**. Captures triggers only when the precondition occurs before the capture edge occurs.
- **2 Trigger Edge while precondition = 1**. Captures triggers only while the precondition is evaluated and is true while the capture edge occurs.
- **3 Trigger Edge while precondition = 0**. Captures triggers only while the precondition is evaluated and is false while the capture edge occurs

8.11.2.6 Setting up a Pre-Condition for complex capture

Setting the Precondition Edge: (Terminal Command: CAP0.PREEDGE)

The pre-edge determines what input state change triggers the precondition. This feature operates the same as the capture edge described above.

Setting the Pre-Condition Select: (Terminal Command: CAP0.PRESELECT)

The preselect chooses what input source will trigger the precondition (based on the preedge setting, and the prefilter setting). This feature operates the same as the capture source described above.

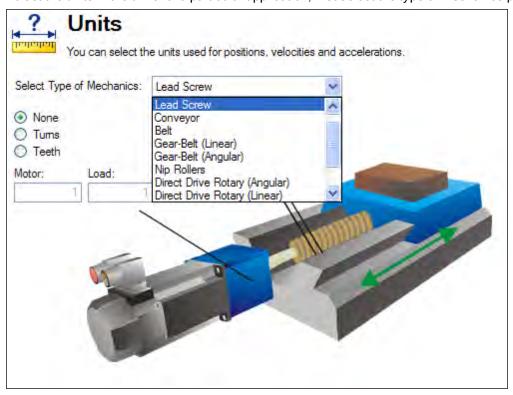
8.11.3 Related Parameters

CAP Parameters

9 Selecting Units for Your Application

9.1	Selecting and Saving Units	84
9.2	Units Example	84

9.1 Selecting and Saving Units


The drive uses three primary measures of motion: position, velocity, and acceleration. You must first choose units of measurement for each of these, and then enter the details of the mechanics in order to scale the chosen units appropriately.

The settings for units are automatically applied. The unit settings in the drive will reflect last settings made in the units screen before exiting. To save settings into the nonvolatile memory of the drive, click the **Save to Drive** button in the toolbar.

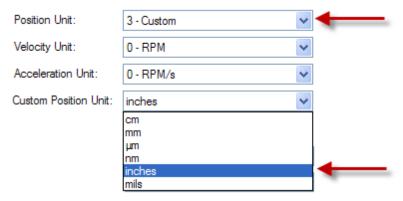
9.2 Units Example

1. Select type of mechanics

To set the units in the drive for a particular application, first select the type of mechanics present.

2. Select Position Units

By default, position is measured in counts. Counts are the smallest unit of position that can be represented in the drive. This unit of measure equates to 4,294,967,296 counts/revolution of the motor. You can use the units screen to change this measurement into a meaningful scale relating to the units of the application.

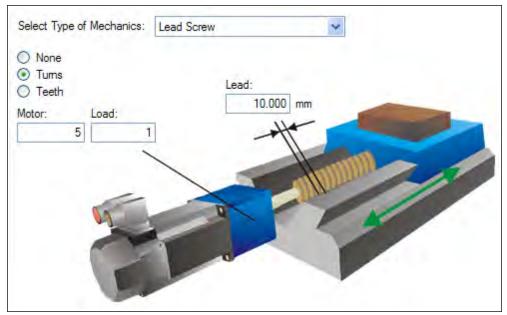

For position units, five selections are available:

- 0-Counts (4,294,967,296/rev)
- 1 –Radians (2*π /rev)
- 2 Degree (360/rev)
- 3 Custom (set by user according to mechanics of machine)
- 4 Counts (16-bit) (65,536 /rev)

Custom Units

The drive uses full 32-bit quantization for internal calculations regardless of unit settings. User units settings will not affect performance, resolution, or accuracy of the servo system.

Choose "3-Custom", and then select your desired position units, for example, millimeters.


3. Select Velocity Units

For velocity, select **Custom/s** to set the measurement to mm/sec.

4. Select Acceleration Units

For acceleration, select **Custom/s^2** to set the measurement to mm/sec².

Once the chosen units of measurement are established, the details of the mechanics need to be entered to establish the scaling of the chosen units.

In this example, a lead screw with a 10 mm lead and a 5:1 gearbox has been selected. A 10 mm lead means the load will traverse 10 mm for every turn of the screw. A scale factor is applied based on the values entered for the chosen mechanics. This scaling is done through UNIT.PIN and UNIT.POUT parameters in the AKD, which are automatically adjusted when the mechanics values are entered.

In this example, scaling is adjusted as follows:

UNIT.PIN is calculated as follows:

10 mm/screw turn * 1 screw turn/5 motor turns = 2 mm/motor turn

UNIT.PIN and UNIT.POUT can be directly entered using the **Motor Only** selection from the **Select Type of Mechanics** box.

9.2.1 Related Parameters

UNIT Parameters DRV.NVSAVE MOTOR.TYPE

10 Configuring General Drive Settings

10.1	Digital Inputs and Outputs.	88
10.2	Command Buffer	96
10.3	Digital Inputs (X7/X8).	99
10.4	Analog Input	. 103
10.5	Analog Output	. 103
10.6	I/O Connection	. 104
10.7	Electronic Gearing.	. 106
10.8	Programmable Limit Switch	. 109
10.9	Enable/Disable.	. 111
10.10	Controlled Stop.	. 115
10.11	Dynamic Braking.	. 117
10.12	Emergency Stop	. 118
10.13	Safe Torque Off (STO)	. 118
10.14	Under Voltage Fault Behavior	. 118

10.1 Digital Inputs and Outputs

10.1.1 Overview

The drive has programmable digital inputs and outputs that you can use to initiate motion, control auxiliary devices, or trigger other actions. The inputs and outputs should be wired according to the instructions in the drive Installation Manual. Note that the input on pin 4 of the X8 connector is dedicated as an enable input.

10.1.2 Using Digital I/O

Once wired correctly, digital inputs and outputs can be used for a variety of functions such as to trigger auxiliary devices, initiate homing moves or other motion tasks, or set travel limits. This section describes the specific functionality of the programmable I/O.

I/O Tip: When using I/O devices, you must carefully consider the type of device you use for switches. An unsuitable switch can cause switch bounce, which in turn can cause erroneous triggers to occur. For example a low cost xx switch, as it is toggled, will bounce a few times before it turns on or off. A device that is monitoring these inputs frequently may interpret the bounce as multiple triggers of that I/O. The drive has the ability to reduce this type of error using some debounce techniques to ignore sudden state changes caused by bounces.

10.1.3 Digital Inputs

Digital inputs can be set in different modes based on the desired function. These functions are outlined below:

Mode 0: Off

This mode is the non-use state and is the default setting for the drive. This mode is valid for all opmodes and command source combinations.

Mode 1: Fault Reset

When an input configured with this mode becomes active, the drive will try to clear all active faults. This mode is edge triggered, so the action occurs only once. If the condition that triggered the fault is still present, the fault condition will remain. See 17.1 Fault and Warning Messages for details regarding the behavior of individual faults. This mode is valid for all opmodes and command source combinations.

Mode 2: Start Motion Task

This mode is used to start motion task number x, where x = the value of the associated input parameter. This input will trigger a motion task number as defined in the extra parameter field for this input.

This mode is valid for opmode 2 (position) and command source 0 (service) only.

Once started, the motion task will run until completed. Changes on the input that started the task will be ignored until the motion task is complete. If multiple inputs are configured to start a task, all of these inputs will be gnored until the task is complete. If a motion task is already active in the drive, changes on this input will be ignored.

Example:

- -->DIN1.MODE 2 sets the input mode to be Start Motion Task
- -->DIN1.PARAM 1 sets the Motion Task start to 1.
- -->MT.LIST confirms that Motion Task 1 exists.
- ->10.000 [counts] 1000.000 [rpm] 0 1001.358 [rpm/s] 1001.358 [rpm/s] 0 0 0 [ms]
- <Create a rising edge of the input>
- <Motion Task 1 executed>

Mode 3: Motion Task Select Bit

This mode is used to select the motion tasks that are stored in the drive (numbers 1 to 127) or the reference traverse/homing (0). The motion task number is presented externally at the digital inputs. The motion task set by this mode will be executed when digital input assigned to mode 4 (motion task start selected) gets a rising edge.

This mode is valid for opmode 2 (position) and command source 0 (service) only.

Example

Assume:

DIN1.MODE = DIN2.MODE=DIN3.MODE =3

The state of input 1 and 3 is 1.

The state of input 2 is 0.

Motion task 5 (5 = $2^{0}+2^{2}$) will be executed.

Mode 4: Motion Task Start Selected

This mode is used to start the motion task that is stored in the drive by giving the motion task number. This input uses a secondary variable for the motion task number to be started with the Input trigger. The secondary variable is set by mode 3 (Motion task select bit).

Motion task number "0" initiates homing/reference traverse. A rising edge starts the motion task and a falling edge cancels the motion task.

This mode is valid for opmode 2 (position) and command source 0 (service) only.

Mode 5: Start Home

This mode is used to start the homing motion task on the rising edge. The falling edge has no effect on this input mode of operation.

This mode is valid for opmode 2 (position) and command source 0 (service) only.

Mode 6: Start Jog

This mode is used to start a jog move. This input mode utilizes a secondary variable for the jog's velocity. The jog will start upon a rising edge. A falling edge stops the jog.

This mode is valid for opmodes 1 (velocity) and 2 (position) and command source 0 (service).

Mode 7: Reserved

Mode 8: Zero Latch

This mode is used to define the current drive position as the zero pulse for the drive EEO and sets the incremental encoder zero pulse offset. The current position, depending on the incremental encoder resolution that is set, is calculated at the rising edge and stored as an offset. An automatic save is then generated. This function is used to perform an automatic setting of the zero pulse in one turn of the motor.

This mode is valid for all opmodes and command source combinations.

Mode 9: Command Buffer

This mode is used to execute four different sets of command buffers. Each set contains two buffers: low and high, for a total of eight buffers. DINx.PARAM for this mode can be 1 to 4, and determines which set of buffers to use.

To set the high and low values of the eight buffers from the terminal screen, use the commands DIN.HCMDx and DIN.LCMDx (1<=x<=4). Use ";" to separate the two buffer commands. Each buffer contains up to 128 characters.

Example

- -->DIN1.MODE 9 (sets command buffer mode to digital input 1)
- -->DIN1.PARAM 1 (sets the first set of buffers to digital input 1)
- -->DIN.HCMD1 DRV.OPMOE 1; (sets high command buffer)
- -->DIN.LCMD1 DRV.OPMOE 0; (sets low command buffer)

Under this configuration, a rising edge in digital input 1 will set DRV.OPMODE to 1 and a falling edge will set DRV.OPMODE to 0.

You can also set the command buffers from the **Digital I/O** view in WorkBench; see 10.2 Command Buffer This mode is valid for all opmodes and command source combinations.

Mode 10: Control Fault Relay

This mode is used to create an external fault.

Input state is 0 – drive regular behavior

Input state is 1 – "Fault 245 – external fault" is issued.

This mode is valid for all opmodes and command source combinations.

Mode 11: Home reference

This mode is used to receive a physical home reference switch located on the machine to use for the different Home Types.

This mode is valid for opmode 2 (position) and command source 0 (service) only.

Mode 12: Reserved

Mode 13: Controlled Stop

This mode is used to stop the motor using the deceleration variable ramp. If zero velocity is reached, the power stage is then disabled. Also see controlled stop (CS) parameters and commands and Controlled Stop.

This mode is valid for all opmodes and command sources.

Mode 14: Reserved

Mode 15: Quick Stop

This mode is used to stop the motor. It is equivalent to issuing a DRV.STOP command.

This mode is valid for all opmodes and command sources 0 (service) and 2 (electronic gearing).

Mode 16: Activate Electronic Gearing

This mode starts/activates an electronic gearing procedure upon a rising edge.

This mode is valid for opmode 2 (position) and command source 2 (electronic gearing).

Mode 17: Activate Electronic Gear Position Shift

This mode is used to add a position shift to the gearing upon a rising edge. The distance of the position shift is set by the secondary variable. The secondary variable is set by DINx.PARAM. The parameter is in position units and is used to incorporate a phase shift while operating in electronic gearing mode.

This mode is valid for opmode 2 (position) and command source 2 (electronic gearing).

Example

An input is set to add a 180 degree "phase shift" when triggered. As the drive is following the electronic gearing input, the input is triggered and the motor will follow the drive acceleration and deceleration rates to shift 180 degrees while maintaining the gearing synchronization.

Mode 18: Positive Limit Switch

This mode will cause the input to operate as the positive limit switch. If the positive limit switch input is triggered (goes low), the positive direction motion will then be stopped.

This mode is valid for all opmodes and command source combinations.

A CAUTION

When setting up the hardware limit switches, you must be certain that the switch remains in the triggered state until you move off of the switch. A very low deceleration rate combined with a high approach velocity may overshoot the switch. This action will caue the position limit warning to be canceled. The warning is not latched, therefore if the switch is overshot, additional movement in the same direction (if commanded) will be possible. This movement can cause machine damage.

Mode 19: Negative Limit Switch

This mode will cause the input to operate as the negative limit switch. If the negative limit switch input is triggered (goes low), the negative direction motion will then be stopped.

This mode is valid for all opmodes and command source combinations.

A CAUTION

When setting up the hardware limit switches, you must be certain that the switch remains in the triggered state until you move off of the switch. A very low deceleration rate combined with a high approach velocity may overshoot the switch. This action cancels the position limit warning. The warning is not latched, therefore if the switch is overshot, additional movement in the same direction (if commanded) will be possible. This movement can cause machine damage.

Mode 20: Brake Release

This mode is used to apply or release the brake when the drive is not active.

Input = 0: the drive controls the brake (regular drive behavior)

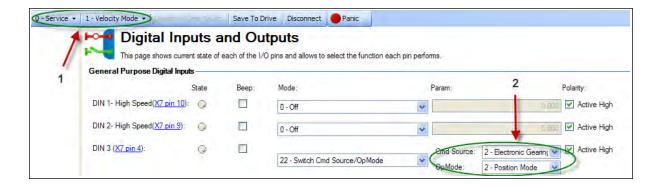
Input = 1: the user controls the brake (apply or release using commands)

This mode is valid for all opmodes and command source combinations.

Mode 21: Current Limit

This mode is used to limit the drive current. The current limit is set by a secondary variable; use DINx.PARAM to set the secondary variable.

This mode is valid for all opmodes and command source combinations.


Mode 22: Switch Command Source and Opmode

This mode is used to switch between the present command source/opmode and another command source/opmode setting predetermined by the user upon the level change of a digital input. This mode is valid for all opmodes and command source combinations. Arrow 1 in the screen shot below indicates the present command source/opmode that the drive is set for. This is the mode the drive is in when the digital input is not high. This low state is determined by the original settings for DRV.CMDSOURCE and DRV.OPMODE.

The drive will switch into the command source/opmode setting shown in arrow 2 when the digital input level changes to high. This setting is stored by DINx.PARAM and is edited with the drop down boxes at arrow 2.

NOTE

When the digital input is switched high, DRV.CMDSOURCE and DRV.OPMODE will take the values defined by DINx.PARAM. Do not perform a "drive save" in this state, or the low state and high state settings will become the same.

DINX.PARAM	Command Source	Opmode
0	0-service	0-torque
1	0-service	1-velocity
2	0-service	2-position
10	1-fieldbus	0-torque
11	1-fieldbus	1-velocity
12	1-fieldbus	2-position
N/A	2-electronic gearing	0-torque
N/A	2-electronic gearing	1-velocity
22	2-electronic gearing	2-position
30	3-analog	0-torque
31	3-analog	1-velocity
32	3-analog	2-position

If more than one digital input is configured to this mode, and one of them is active, then the command source/op-mode combination configured for that input will be active. If additional inputs become active, the command source/opmode combination configured for the lowest numbered will be the active one.

Example

Assume:

Input 1 is configured for electronic gearing/position.

Input 2 is configured for service/velocity.

Input 3 is configured for fieldbus/position.

The system is in service/torque.

Result:

With no inputs active, the system remains in service/torque.

If input 3 goes active first, then the system will go to fieldbus/position

If input 1 then goes active, then the lowest active input is now 1 so the system will go to electronic gearing/position

If input 2 then goes active, then the lowest active input is still 1 so there is no change.

If input 3 then goes inactive, then the lowest active input is still 1 so there is no change,

If input 1 then goes inactive, then the lowest active input is 2 so the system will go to service/velocity

If input 2 then goes inactive, then there are no active inputs and the system returns to service/torque.

Mode 23: Change algebraic sign of the measured analog input voltage

This mode can either change the algebraic sign of the measured analog input voltage, or zero the value using a digital input. Since the analog input voltage is used to generate command values in DRV.CMDSOURCE=3 (analog command source), Mode 23 can also be used to change the direction of movement or stop motion using a digital input in DRV.CMDSOURCE=3.

This mode is valid for all opmodes and command source 3 (analog).

The value of DINx.PARAM defines the value of a multiplication factor for the measured analog voltage. The low-byte of the DINx.PARAM value determines the value of this factor, which is multiplied by the measured analog input voltage upon a rising edge on the associated digital input. The high-byte determines the factor upon a falling edge as follows:

DINx.PARAM = 0xFFRR (F=Falling edge; R = Rising edge)

The following values are used in this mode:

Value	Description
0x00	Zero the measured analog voltage.
0x01	Multiply the analog voltage with 1.
0x02	Multiply the analog voltage with -1.
0x03	Zero the measured analog voltage plus trigger in addition a software enable command.
0x04	Multiply the analog voltage with 1 plus trigger in addition a software enable command.
0x05	Multiply the analog voltage with -1 plus trigger in addition a software enable command.
0x06	Zero the measured analog voltage plus trigger in addition a software disable command.
0x07	Multiply the analog voltage with 1 plus trigger in addition a software disable command.
0x08	Multiply the analog voltage with -1 plus trigger in addition a software disable command.

Example 1

DINx.PARAM = 513 = 0x0201

The measured analog input voltage is multiplied with a factor of 1 upon a rising edge on the associated digital input.

The measured analog input voltage is multiplied with a factor of -1 upon a falling edge on the associated digital input.

Example 2

DINx.PARAM = 256 = 0x0100

The measured analog input voltage is multiplied with a factor of 0 upon a rising edge on the associated digital input.

The measured analog input voltage is multiplied with a factor of 1 upon a falling edge on the associated digital input.

Example 3

DINx.PARAM = 1540 = 0x0604

The measured analog input voltage is multiplied with a factor of 1 upon a rising edge on the associated digital input. Additionally, the rising edge on the associated input triggers a software enable command, similar to the DRV.EN command.

The measured analog input voltage is multiplied with a factor of 0 upon a falling edge on the associated digital input. Additionally, the falling edge on the associated input triggers a software disable command, similar to the DRV.DIS command.

10.1.4 Digital Outputs

Digital inputs can be set in different modes based on the desired function. These functions are outlined below.

NOTE

If an output is overloaded (> 100 mA), then the output will turn off (with no indication in Work-Bench) and remain off until one of the following occurs:

- The power supply driving the output is removed.
- The output is turned off from the firmware.
- The 24V supply to the AKD is power cycled.

If the overload condition still exists, the output will not turn on.

Mode 0-User (Default = 0): The output state is decided by the user or fieldbus. This mode is valid for all opmodes and command source combinations.

Mode 1-Mains Ready: The output mode produces a high signal if the drive DC bus voltage is higher than the under voltage error level and lower than the over voltage error level. This mode is valid for all opmodes and command source combinations.

Mode 2-Software Limit: This output turns on when the software limit positions are reached. This output procudes a high signal if a software limit is reached by traveling in the direction of that software limit. Software limits are set in the **Limits** view. In the **Limits** view, Position 0 is the position limit for negative travel, while Position 1 is the limit for positive travel.

This mode is valid for all opmodes and command source combinations.

Mode 3-Move Complete: When a motion task has completed its move and the trajectory reaches zero, the move is considered complete and the output will activate.

This mode is valid for opmode 2 (position) and command source 0 (service) only.

Mode 4-In Position: This output mode produces a high signal when the absolute value of the position error is less than than the parameter entered in the extra parameter field.

This mode is valid for all opmode 2 (position) and all command sources.

Mode 5-Position Greater than X: When the position is greater than the parameter entered in the extra parameter field, the output will activate.

This mode is valid for all opmodes and command source combinations.

Mode 6-Position Less than X: When the position is less than the parameter entered in the extra parameter field, the output will activate.

This mode is valid for all opmodes and command source combinations.

Mode 7-Warning: This output will activate when the drive experiences a warning, such as positive or negative limit switch input triggered.

This mode is valid for all opmodes and command source combinations.

Mode 8-Enable: If you need an output to indicate that the drive is enabled, use this output mode.

This mode is valid for all opmodes and command source combinations.

Mode 9: Reserved.

Mode 10-Motor Brake: The output mode produces a high signal if a brake is released (this is when the power is applied to the brake and the motor is free to spin). The output mode produces a low if a brake is applied (this is when power is removed from the brake and the brake is set).

This mode is valid for all opmodes and command source combinations.

Mode 11-Drive Faults: The output mode produces a high signal if the drive has a fault.

This mode is valid for all opmodes and command source combinations.

Mode 12-Absolute velocity greater than x: The output mode produces a high signal when the absolute value of the velocity is greater than a variable x. Use DOUTx.PARAM to set x.

This mode is valid for all opmodes and command source combinations.

Mode 13-Absolute velocity less than x: The output mode produces a high signal when the absolute value of the velocity is less than a variable x.

Use DOUTx.PARAM to set x.

This mode is valid for all opmodes and command source combinations.

Mode 14-Homing complete: The output mode produces a high signal when the homing process is completed.

This mode is valid for opmode 2 (position) and command source 0 (service) only.

Mode 15- PLS.STATE bits OR connected: The output mode produces a high signal if at least one of the PLS.STATE bits is high (the PLS is active) and if the corresponding bit in the DOUTx.PARAM parameter also has been set to high. The DOUTx.PARAM command connects the PLS.STATE bits to the digital output itself and thus acts as an enable mask.

This mode is valid for all opmodes and command source combinations.

Example

```
|<- Bit 7 to 0 ->|
DOUT1.PARAM = 23 = 0b 0 0 0 1 1 1 1 (Binary code)
```

The digital output 1 is active when bit 0 or bit 1 or bit 2 or bit 4 of PLS.STATE is high. All other bits within PLS.STATE are not considered by the digital output mode due to the DOUT1.PARAM setting. Do not use decimal places for the DOUTx.PARAM parameter for this particular digital output mode.

Summary of Opmode and Command Source Dependencies

DINx.MODE	Mode Description	Opmode	Command Source
0	Off	all	all
1	Fault Reset	all	all
2	Start Motion Task	2-Position	0-Service
3	Motion Task Select Bit	2-Position	0-Service
4	Motion Task Start Selected	2-Position	0-Service
5	Start Home	2-Position	0-Service
6	Start Jog	1 2-Position	0-Service
8	Zero Latch	all	all
9	Command Buffer	all	all
10	Control Fault Relay	all	all
11	Home Reference	2-Position	0-Service
13	Controlled Stop	all	all
15	Quick Stop	all	0-Service
16	Activate Electronic Gearing	2-Position	2-Electronic Gearing
17	Electronic Gear Position Shift	2-Position	2-Electronic Gearing
18	Positive Limit Switch	all	all
19	Negative Limit Switch	all	all
20	Brake Release	all	all
21	Current Limitation	all	all
22	Switch CmdSource/Op- mode	all	all
23	Analog In Sign Control	all	3-Analog
DOUTx.MODE	Mode Description	Opmode	Command Source
0	User- (Default=0)	all	all

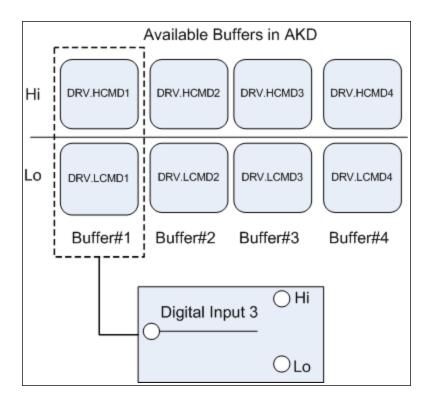
DINx.MODE	Mode Description	Opmode	Command Source
1	Mains Ready	all	all
2	Software Limit	all	all
3	Move Complete	2-Position	0-Service
4	Inposition	2-Position	all
5	Position > x	all	all
6	Position < x	all	all
7	Warning	all	all
8	Enable	all	all
10	Motor Brake	all	all
11	Drive Fault	all	all
12	Absolute Velocity > x	all	all
13	Absolute Velocity < x	all	all
14	Homing Complete	2-Position	0-Service
15	Programmable Limit Switch	all	all

10.2 Command Buffer

10.2.1 Overview

The Command Buffer input mode (10.1 Digital Inputs and Outputs) allows you to change values for parameters using a digital input.

The drive has four available buffers. A digital input configured for command buffer mode is linked to one command buffer set. This is determined by the user (see arrow 1). In this case, command buffer 1 is used.



Digital Inputs and Outputs

This page shows current state of each of the I/O pins and allows to select the function each pin performs.

The graphic below explains the architecture of the buffers.

10.2.2 Editing the Command Buffers

By default, the buffers are empty. Each side of the buffer can contain 128 characters maximum (parameter and value included). You can use the **Command Buffer Editor** to enter the sequence of commands to the digital input buffer. You can enter the sequence of commands into Low command buffer (DIN.LCMDx) or High command buffer (DIN.HCMDx) and save these settings to the drive.

To edit the command buffers, open the **Digital I/O** view and select **Digital input mode** as **9 – Command Buffer**.

The **Param** box lists the available command buffers. Select desired command buffer number for the DIN. This number sets to the DINx.PARAM keyword. When you mouse over the **Param** box, the Tooltip displays the current content of the High command buffer and Low command buffer in the drive.

To edit the selected command buffer, click **Edit** to display the command buffer editor screen.

The command buffer editor screen has following properties:

Button or Dialog Box	Description
Command Buffer Number	The identification number of the command buffer (1, 2, 3, 4).
High Command Buffer	Adds sequence of commands to the High command buffer parameter. Contents are saved to the keyword DIN.HCMDx. A maximum of 128 characters can be set to drive along with the separator ";". Commands must be entered line by line and when saving to the drive each commands will be formed into single line separated by ";".
Low Command Buffer	Adds sequence of commands to the Low command buffer parameter. Contents are saved to the keyword DIN.LCMDx. A maximum of 128 characters can be set to drive along with the separator ";". Commands must be entered line by line and when saving to the drive each commands will be formed into single line separated by ";".
Ok	Saves the sequence of commands to the drive.
Close	Closes the screen and returns to Digital I/O view. If contents are not saved to drive before closing the screen, confirmation message "The commands have been modified and not save to drive. Do you want close without saving?" is displayed.

Commands and parameters are entered on separate lines with a space between the parameter and the value.

Asemicolonseparatoris not necessary in the editor, but it is required if the buffers are edited inside the terminal window.

10.2.3 Behavior of the Command Buffer

Digital inputs have either a high or a low state. The contents of the buffer are executed at the rising edge of the state change. The contents of the buffer are also loaded at drive power up according to the starting state of the digital input. When the command buffer is initially configured, the buffer is not executed until the first digital input state change is detected.

Tip: Once you have the buffer configured and tested, put the digital input in the most common state that it will be in at start up. Save the parameters to the drive. This will synchronize the NVRAM with the buffer, so at start up, values will not have to be changed.

10.2.4 Delays for the Buffer

There is a delay command that can be used to delay the execution of a command or parameter change (DRV.CMDDELAY). The value can be from 0 ms to 5000 ms.

The following commands may require a delay before the next command in the buffer can be executed:

DRV.EN (100 ms min)

DRV.DIS (50 ms min)

Example:

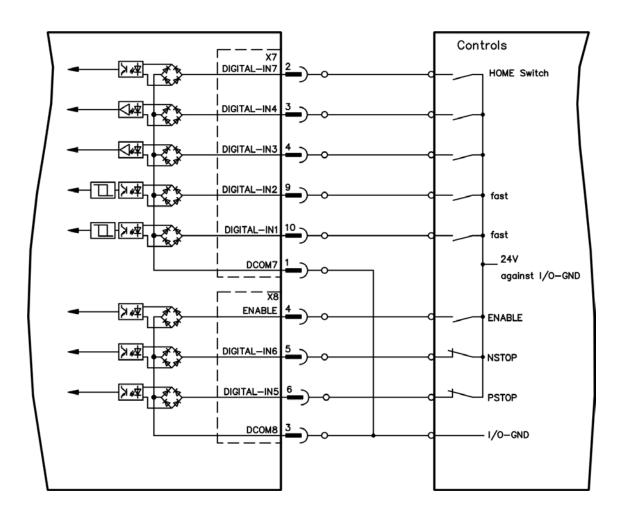
DRV.EN

DRV.CMDDELAY 100

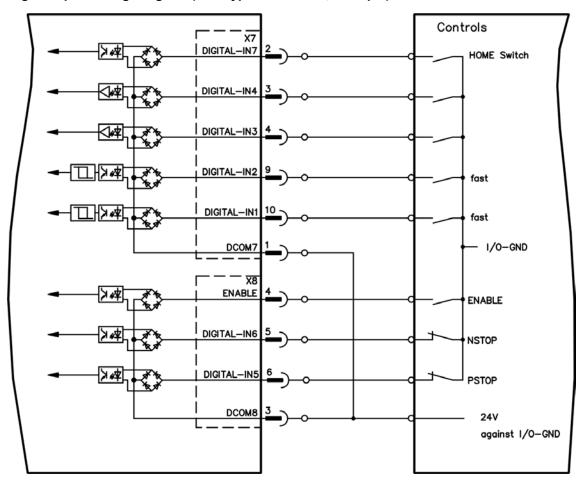
MT.MOVE

The command buffer does not send back warnings when a parameter is invalid or out of range, so make sure the syntax is correct and that the digital input changes during legal drive states for the commands given.

10.3 Digital Inputs (X7/X8)


The drive provides 8 digital inputs (=> p. 273). These can be used to initiate pre-programmed functions that are stored in the drive. A list of these pre-programmed functions is included in the WorkBench. Digital Input 8 is not programmable but is fixed to the ENABLE function.

If an input is programmed, it must be saved to the drive.


NOTEDepending on the selected function the inputs are high or low active.

The inputs can be used with switched +24 V (source type) or switched GND (sink type). See diagrams below for typical examples of digital input wiring.

Digital Input Wiring Diagram (Source type connection, example)

Digital Input Wiring Diagram (Sink type connection, example)

10.3.1 Digital Inputs 1 and 2

These inputs (X7/9 and X7/10) are particularly fast and are therefore suitable for latch functions, for example. They can also be used as 24 V inputs for electronic gearing (=> p. 1)

Technical characteristics

- Floating, reference common line is DCOM7
- Sink or Source type sensors possible
- High: 3.5 to 30 V/2 to 15 mA, Low: -2 to +2 V/<15 mA
- Update rate: Hardware 2 µs

10.3.2 Digital Inputs 3 to 7

These inputs are programmable with the setup software. By default, all inputs are not programmed (off). For more information refer to the setup software.

Technical characteristics

Choose the function you require in WorkBench.

- Floating, reference common line is DCOM7 or DCOM8
- Sink or Source type sensors possible
- High: 3.5 to 30 V/2 to 15 mA, Low: -2 to +2 V/<15 mA
- Update rate: Software 250 µs

10.3.3 Digital Input 8 (ENABLE)

Digital Input 8 (terminal X8/4) is set to Enable function.

- Floating, reference common line is DCOM8
- Sink or Source type wiring is possible
- High: 15 to 30 V/2 to 15 mA, Low: -3 to 5 V/<15 mA
- Update rate: direct connection to hardware (FPGA)

The output stage of the drive is enabled by applying the ENABLE signal (Terminal X8/4, active high). Enable is possible only if input STO has a 24 V signal (see page 1). In the disabled state (low signal) the connected motor has no torque.

A software enable by means of the setup software is also required (AND link), although this can also be permanently enabled with WorkBench.

10.4 Analog Input

10.4.1 Analog Input

If the drive command source is set to analog, then the analog input to the drive supplies the current or velocity command to the control loops of the drive. The default analog input screen displays a summary block diagram of the analog input. You can adjust the analog input settings from this view as follows:

Button or Dialog Box	Description	Parameter		
Offset	The offset adds a bias to the analog input command. This offset is commonly used to remove any biases that may be present on the analog input signal.	AIN.OFFSET		
Input Voltage	The value of the analog input after the offset, deadband, and low pass filters. AIN.VALUE			
Scale	If the opmode is current mode, then this value is the amount of current that will be commanded for each volt on the analog input.	AIN.ISCALE AIN.VSCALE AIN.PSCALE		
	If the opmode is velocity mode, then this value is the velocity that will be commanded for each volt on the analog input.			
Torque Command	The current or velocity command that is sent to the control loops.	IL.CMD PL.CMDor VL.CMD		

Click the **More** button to access a detailed view of the analog input. You can adjust additional analog input settings from this view as follows:

Button or Dialog Box	Description	Parameter
Low Pass Filter	The break point frequency for the low pass filter.	AIN.CUTOFF
Deadband	The threshold for the deadband. This parameter is commonly used to reduce noise while the drive is stationary.	AIN.DEADBAND

Both analog input views provide a link to the encoder emulation output setup; see 8.4.1 Encoder Emulation for more details on this feature.

10.4.2 Related Parameters and Commands

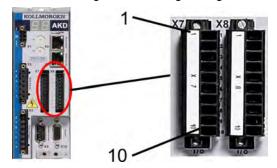
AIN Parameters

10.5 Analog Output

The drive has one analog output. You can either directly control the voltage output or select a different mode to output different signals. Analog output is configured through the X8 connector; for detailed information this connector, see Connection Diagrams, Analog Output.

Button or Dialog Box	Description	Parameter
Analog Output Mode	Select which internal signal is output by the analog output.	AOUT.MODE
I (IISAT)	Enter the analog output value (when AOUT.MODE = 0, analog output signal is determined by the user)	AOUT.VALUEU

Button or Dialog Box	Description	Parameter
Analog Output Value	Displays the voltage that this analog output generates.	AOUT.VALUE
9	Scales the analog output (AOUT.VALUE) for AOUT.MODE = 1, 2, or 3.	AOUT.VSCALE


The analog output modes consist of the following:

AOUTx.MODE	Description
0	User variable. The analog output signal is determined by the user (using AOUT.VALUEU).
1	Actual velocity. The analog signal describes the current velocity value (VL.FB).
2	Velocity error. The analog signal describes the velocity error value.
3	Velocity command. The analog signal describes the velocity command value.
4	Actual current. The analog signal describes the actual current value.
5	Current command. The analog signal describes the current command value.
6	Actual position. The analog signal describes the current position value.
7	Position error. The analog signal describes the position error value.
8	Triangle wave. The analog signal is a triangle wave (sawtooth pattern).
9	Debug mode. In this mode the user can define a drive variable to monitor via the analog output (AOUT.VALUEU).
10	Unfiltered Velocity (VL.FBUNFILTERED)
11	Filtered Velocity - 10Hz Lowpass (VL.FBFILTER)

Analog output return

10.6 I/O Connection

All standard digital and analog I/O signals are connected to X7 and X8.

10.6.1 I/O Connectors (X7 and X8)

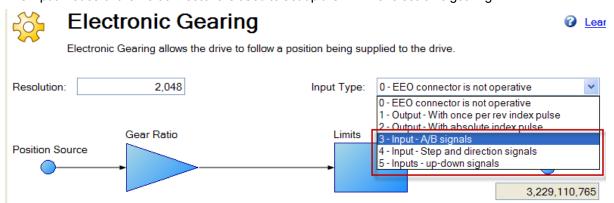
Conn.	Pin	Signal	Abbreviation	Function	Specials	
X7	1	Digital Common X7	DCOM7	Common line for		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I	Digital Common X1	DCOIVIT	X7 pins 2, 3, 4, 9, 10	-	
X7	2	Digital Input 7	DIGITAL-IN 7	Programmable	-	
X7	3	Digital Input 4	DIGITAL-IN 4	Programmable	-	
X7	4	Digital Input 3	DIGITAL-IN 3	Programmable	-	
X7	5	Digital Output 2-	DIGITAL-OUT2-	Programmable	-	
X7	6	Digital Output 2+	DIGITAL-OUT2+	Programmable	-	
X7	7	Digital Output 1-	DIGITAL-OUT1-	Programmable	-	
X7	8	Digital Output 1+	DIGITAL-OUT1+	Programmable	-	
X7	9	Digital Input 2	DIGITAL-IN 2	Programmable	high speed	
X7	10	Digital Input 1	DIGITAL-IN 1	Programmable	high speed	
X8	1	Fault Relay Output	Fault Relay Output	Fault Relay Output	-	
X8	2	Fault Relay Output	Fault Relay Output	Fault Relay Output	-	
X8	3	Digital Common X8	DCOM8	Common line for		
ΛΟ	J	Digital Common Xo		X8 pins 4, 5, 6	-	
X8	4	Digital Input 8	DIGITAL-IN 8	Output stage enable	not programmable	
X8	5	Digital Input 6	DIGITAL-IN 6	Programmable	-	
X8	6	Digital Input 5	DIGITAL-IN 5	Programmable	-	
X8	7	Analog Ground	AGND	Analog GND	-	
X8	8	Analog Output +	Analog-Out	Actual velocity voltage	-	
X8	9	Analog Input -	Analog-In-	Valocity set point	-	
X8	10	Analog Input +	Analog-In+	Velocity set point	-	

 $\label{local-problem} Digital common lines for X7 and X8 are not common to each other.$

The DCOMx line should be connected to the 0V of the I/O supply when using sensors of type "Source" with digital inputs.

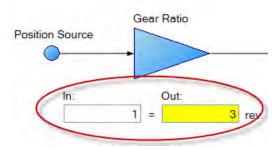
The DCOMx line should be connected to the 24V of the I/O supply when using sensors of type "Sink" with digital inputs.

10.7 Electronic Gearing


10.7.1 Overview

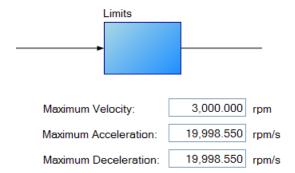
Electronic gearing is the act of sending a digital pulse position command to the AKD drive. The X9 connector is used for controlling the drive through an A/B type signal, pulse and direction (also called step and direction), or up/down command. A common application for electronic gearing is using servos with a stepper controller or daisy chaining multiple AKD drives from one master drive as slave drives.

In order to command an AKD using electronic gearing, the command source (DRV.CMDSOURCE) must be set to **2-Electronic Gearing** and the opmode (DRV.OPMODE) must be set to **2-Position Mode**.



The input modes of the X9 connector are used to set up the AKD for electronic gearing.

Only input modes 3,4, and 5 pertain to electronic gearing input.


Resolution is the post-quadrature value of the counts/revolution of the input. Additionally, a gear ratio can be applied to affect the output ratio of the motor.

The position command (DRV.HANDWHEEL) reads the EEO value, where 4,294,967,296 is a full revolution of the input, then the value rolls over. Gear ratio does not affect the EEO value. If the output is set to 3 output revs per input rev, there will be 4,294,967,296 counts per 3 revolutions of the motor.

10.7.2 Limits

Electronic Gearing has independent limits, as shown below:

These limits (GEAR.ACCMAX, GEAR.DECMAX, GEAR.VELMAX) are applied only during gearing mode and the units are consistent with speed and acceleration of the output motor. All other limits in the drive are active along with gearing limits.

If the master is already moving when entering electronic gearing mode, velocity or position can be matched (GEAR.MODE):

The Gearing type defines how gearing starts if the master is already moving-

Velocity Matching

O Position Matching

In **Velocity Matching**, the motor will ramp up to the same velocity with no concern over lost steps during the acceleration period.

In **Position Matching**, the motor will match the position command from the switchover point by speeding up to recover the lost steps during the acceleration period.

More information on each type of input mode is found here:

- 3 AquadB (see Command encoder signal connection
- 4 Pulse/Direction input (see Pulse / Direction signal connection)
- 5- Up/Down input (see Up / Down signal connection)

10.7.3 Determining Maximum Cable Length

When you use an external incremental encoder as an input to X9, you must determine the maximum allowable cable length.

This information is only applicable when using an external encoder as either a secondary feedback input or a gearing command (DRV.EMUEMODE3). Not applicable for any other X9 mode or when using two AKDs in a master/slave system.

The X9 port has a 5V output used to supply power to an external incremental encoder.

The maximum cable length depends on the current draw of the external encoder and the cable type connecting the X9 port. The following example can be used as a guide to calculate the maximum cable length for your application.

X9 port characteristics:

Nominal Supply Voltage:5 V

Tolerance: 5%

Minimum Supply Voltage: 4.75 V

Maximum current: 0.25 A

Permitted wire gauge: 20-28 AWB (Typical for D9 connector)

Sample Application Hardware:

Example external encoder: Hengstler RI-36H (RS-422 encoder) used with X9 port.

Encoder Nominal Supply Voltage: 5V (+/- 10%)

Minimum Supply Voltage: 4.5 V calculated based on tolerance above

Maximum required encoder supply current: 50 mA

Example cable:

Lapp Li2YCY - 24AWG (0.22 mm^2) Loop resistance: 0.186 Ohms/m

Sample Calculations:

Maximum Permissible voltage cable drop = 0.25 V

- = (Minimum Supply Voltage from AKD) 4.75 V (Minimum supply voltage of RI-36H encoder) 4.5 V Maximum permissible resistance of cable run to X9 = 5 Ohms
- = (Max voltage cable drop) $0.25V \div$ (Maximum encoder current) 0.05A Maximum permissible cable length for example application = 26.9 m
- = (Max cable resistance) 5 Ohms ÷ 0.186 Ohms/m

10.7.4 Related Parameters:

GEAR Parameters

DRV.CMDSOURCE

DRV.EMUEMODE

DRV.EMUERES

DRV.HANDWHEEL

DRV.OPMODE

This screen allows you view and modify the various drive limits.

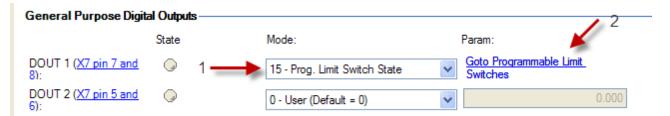
Button or Dialog Box	Description	Parameter
Current Limits		
Positive Peak Current	The maximum positive current allowed.	IL.DLIMITP
Negative Peak Current	The maximum negative current allowed.	IL.DLIMITN
Velocity Limits		
Positive Speed Limit	The maximum speed allowed in the positive direction.	VL.LIMITP
Negative Speed Limit	The maximum speed allowed in the negative direction.	VL.LIMITN
Over Speed Limit	The threshold velocity for an over speed fault.	VL.THRESH
Position Limits		
Maximum Following Error	The maximum position error. If the position error PL.ERR is larger than PL.ERRFTHRESH, then the drive generates a fault	PL.ERRFTHRESH
Position Limit 0	The minimum position the drive can reach before generating a negative software position fault.	SWLS.LIMIT0
Position Limit 1	Position Limit 1 The maximum position the drive can reach before generating a positive software position fault.	
Acceleration Limits		
Acceleration	The acceleration ramp used to profile some types of motion.	DRV.ACC
Deceleration	The deceleration ramp used to profile some types of motion.	DRV.DEC
Motor Limits	Motor limits are set through the Motor Foldback Screen (see 8.8 Foldback	

10.7.5 Limits

The limits screen covers most of the basic system limits, including current, velocity, and position.

- Current Limits: The current limits are set based on the drive ratings. You can change these limits to be lower then the default values for the drive, however, this may effect the expected performance of your application.
- Velocity Limits: The velocity limits are set based on the motor ratings. You can modify these settings
 above the ratings of the motor if the application requires some overhead, but be aware the motor has
 mechanical limitations and may be damaged if run above those limits. It is best to leave these at the
 default ratings for the motor selected.
- Position Limits: The position limits can be set based on your specific machine application requirements. The Maximum Position Error can be set to cause a fault when the position error exceeds the value you insert here. Position Limit 0 is tied to the clockwise (positive) motor direction. As the motor reaches the position entered, the motor will stop and display a warning n107. Position Limit 1 is tied to the counterclockwise (negative) motor direction. As the motor reaches the position entered, the motor will stop and display a warning n108.
- Acceleration Limits: This field allows you to raise accelerations to give the system crisp moves. These
 limits default to a low value, so you may wish to change these after the mechanics and other sections of
 your system are defined.

10.8 Programmable Limit Switch


10.8.1 Overview

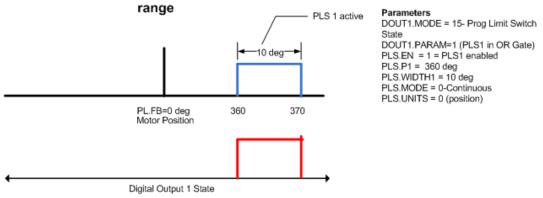
Programmable Limit Switches (PLSs) are used to turn on and off drive digital outputs based on the drive's position. Multiple positions can be combined to affect the state of an output when PLSs are combined.

10.8.2 Using Programmable Limit Switches

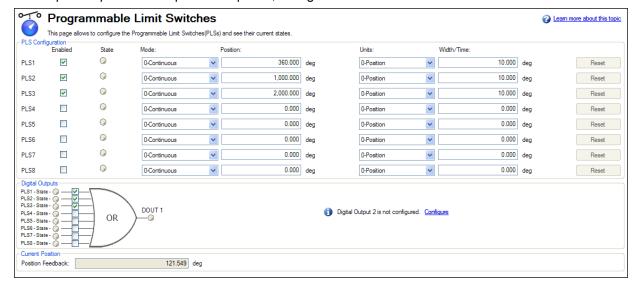
To use PLSs, you must first configure a digital output as follows:

- 1. Click on the Digital I/O icon in the tree view.
- 2. Set the output of your choice to mode fifteen (see 1 below). In this example, digital output 1 is used.
- 3. Now that the digital output mode is set for PLS, you can click on the **Goto Programmable Limit Switch** link (see 2 below) to open the PLS screen (this screen is also shown in the WorkBench tree view).

The PLS screen is used to establish the positions for the output(s) to turn on.

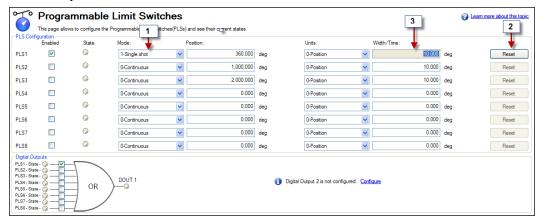


The PLS configuration section of the screen sets the mode and limits of each of the eight PLSs. The PLS is ignored unless it is enabled (see arrow). In the screen example, PLS1 is set for continuous operation in position mode. Every time the 360 degree position (PL.FB) is crossed in either direction, the output will turn on for 10 degrees of motor movement.

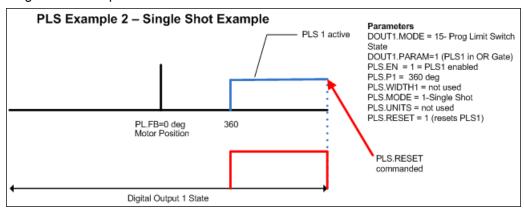


The final step is to configure the OR gate for the PLSs on which output is triggered. The gate appears for setup in the screen when a digital output is configured in Mode 15 – Prog Limit Switch State. Since only PLS1 is configured, select PLS 1 (see arrow above)

PLS Example 1 - Turning on a digital output for a position



To setup an output with multiple turn-on points, configure and enable more PLS's and include them in the OR Gate.



10.8.3 Single Shot Mode

Single shot mode is a special mode of PLS. Single shot mode (see 1 below) turns on the output until it is reset (see 2 below). Normal operation of this mode usually depends on a machine controller to reset the PLS using the fieldbus object for PLS.RESET.

Single Shot Example:

10.8.4 Related Parameters and Commands

PLS Parameters and Commands

10.1 Digital Inputs and Outputs

10.9 Enable/Disable

10.9.1 Enable Modes

The AKD offers several options for hardware and software enables, as well as safe torque off (STO) to cover a variety of conditions.

10.9.1.1 Hardware Enable Mode

The AKD has two methods hardware enable methods. These methods are controlled by DRV.HWENMODE. Mode 0 allows for the drive to enable and clear faults on the rising edge of the hardware enable input. Mode 1 will NOT clear any faults on the rising edge of the hardware enable input, allowing you to review any current faults and manually clearing.

10.9.1.2 Software Enable Default

In addition, the Software Enable has two methods for enabling the AKD. These are controlled by DRV.E-NDEFAULT. Default 0 leaves the software in the disabled state upon start-up. Default 1 enables the software upon start-up.

10.9.2 Disable Modes

Use DRV.DISMODE to select the method for stopping the drive.

Mode 0: Immediately disable drive.

With this condition, the drive will immediately disable the power stages and the driven motor will either coast to a stop or in the case of a vertical or overhung load axis, will fall abruptly. If a brake is present, the brake will be applied according to MOTOR. TBRAKEAPP. Using Digital Input mode 13, you can achieve a controlled stop as described in Mode 2.

Mode 1: Dynamic Brake to a stop.

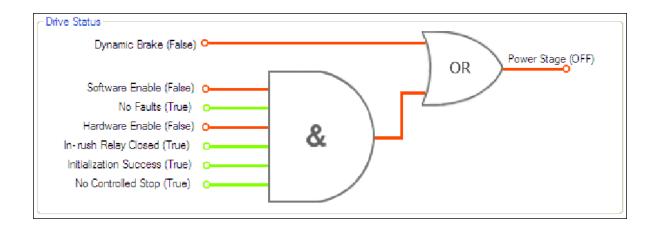
In this situation, the drive will use the dynamic brake feature and stop motion quickly, then disable the power stage. In most cases, the driven motor will stop quickly (pending the joules available and load circumstances). In the case of an overhung or vertical load, the driven motor will attempt to stop, but then will continue to allow the load to fall if no measures have been taken to secure the load.

Note: for Modes 2 and 3, you can access the Controlled stop section to set the values of the controlled stop deceleration rate, the velocity threshold, and time in velocity threshold to deactivate the drive.

Mode 2: Controlled stop, then disable.

In this mode, a controlled stop will take place based on a variety of parameters that you set. First, the driven motor will decelerate at a controlled rate (CS.DEC) until one of two things happens. 1) The motor reaches the velocity limit set (CS.VTHRESH) for a period of time (CS.TO), or 2) The drive emergency time out is reached (DRV.DSTO). Once either of these cases is reached, the power stage will be disabled (and brake applied if present)

Mode 3: Controlled stop, then dynamic brake.


Similar to Mode 2, the motor will decelerate at a controlled rate (CS.DEC) until CS.VTHRESH is reached for a period of time (CS.TO). The drive will then dynamically brake and disable under the same conditions as described in Mode 2.

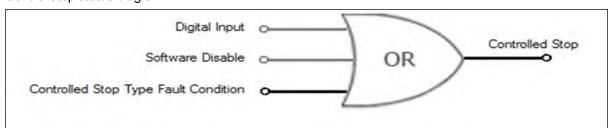
The Disable Timeout Setting determines the amount of time the drive will follow the disable mode before it deactivates the drive regardless of method chosen and alerts with an Emergency Timeout Fault.

All disable modes operate based on the type of disable command received. Any critical faults, hardware disable, or STO disable immediately turn off the power stage, and the motor will coast or free fall, depending on how the motor is secured.

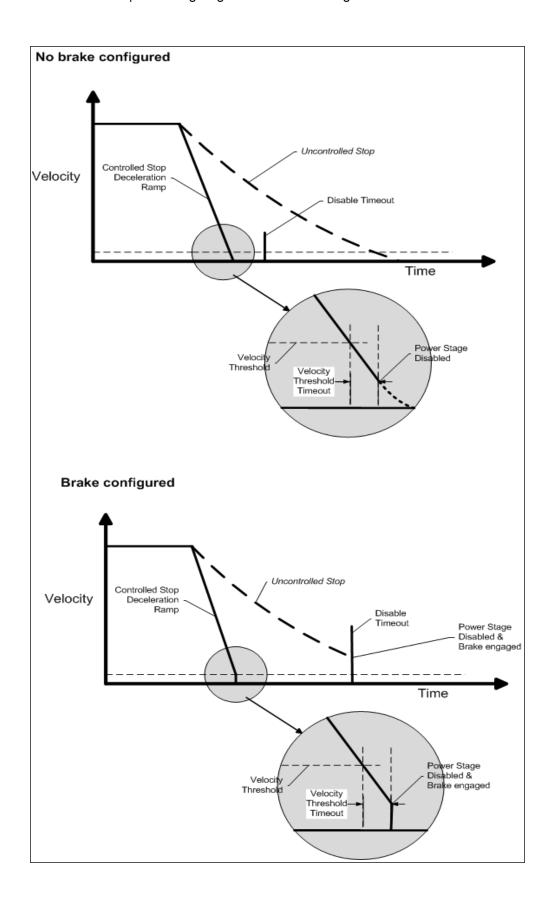
10.9.3 Drive Status

The **Drive Status** area is displayed below the settings area and includes a graphical representation of drive active status with different sets of inputs. If the input or output is enabled, then it is shown in green; if the input or output is disabled, then it is shown in red. The inputs to the OR and & (AND) gates identify which conditions are true (green) or false (red) and follow the normal logic for & (AND) and OR gates. This diagram is useful in finding which input may be preventing the drive from being enabled. Click **More** to see the details of how the control stop is executed displayed both logically and graphically.

10.9.4 Controlled Stop


The Controlled Stop area displays values for parameters associated with controlled stop.

Button or Dialog Box	Description	Parameter
Velocity Threshold	Sets the velocity threshold for controlled stop process.	CS.VTHRESH
Velocity Threshold Timeout	Sets the velocity threshold, which is the time value for the drive velocity to be within CS.VTHRESH before the drive disables	CS.TO
Deceleration	Sets the deceleration value for the controlled stop process.	CS.DEC
Control stop Input	Displays the list of digital inputs configured to controlled stop mode separated by ','. When no controlled stop mode is configured, this box displays the message: No CS Input Configured . Configure Input link will opens the Digital I/O screen where you can configure the controlled stop mode.	


10.9.5 More/Less Button

The **More** button reveals the status diagram for the controlled stop configuration. It also displays the block diagram for the control stop. Two block diagrams available: one for a brake fitted and another for no brake.

Control stop status diagram

Controlled Stop Block Diagram

10.10 Controlled Stop

In a controlled stop, drive motion is brought to a standstill in a controlled manner. The drive commands a zero velocity from the motor. The motor decelerates at the prescribed deceleration value (CS.DEC).

A controlled stop can occur in four ways:

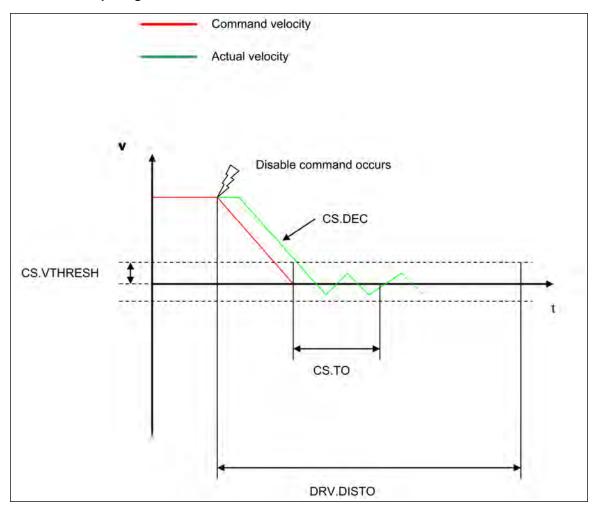
- The user configures a programmable digital input to mode 13 using DINx.MODE. For example, if DIN1.MODE 13 is applied, digital input 1 is set to controlled stop.
- Either a controller or the user (through the WorkBench terminal window) initiates a software disable (DRV.DIS) command.
- CANopen PDO is set to 3442.

CANopen Property	Value
Index/Subindex	3442/0
Data Type	Unsigned 8
Access	W/O
PDO mappable	N/A
Description	Controlled stop
ASCII Object	

• A fault initiates a controlled stop from the drive. See 17.1 Fault and Warning Messages for the faults which initiate a controlled stop.

The controlled stop mechanism is activated in the following cases:

1. DRV.DISMODE = 2 and user executes DRV.DIS from the terminal or WorkBench disable buttons.


You must disable the drive in order to set DRV.DISMODE.

- 2. DRV.DISMODE = 2 and user executes DRV.DIS from a fieldbus connected to the drive.
- 3. A fault happens for which the reaction evolves controlled stop (CS). After the CS is executed, the drive disables.
- 4. A digital input mode (DINx.MODE) is set to 13. If the digital input state changes (active high or low according to DINx.INV) the CS is executed, then the drive disables.
- 5. HW limit switch: A digital input is defined as a positive (negative) limit switch (DINx.MODE 18 or 19). When the limit switch is met, the CS mechanism starts running. In this case, the parameter DRV.DISTO is not active.
- 6. SW limit switch: SWLS defines an active SW limit. When the limit is met, the CS mechanism starts running. In this case, the parameter DRV.DISTO is not active.

Use the drive CS parameters to configure a controlled stop as follows:

- 1. CS.DEC: Deceleration ramp that is used for disable.
- 2. CS.VTHRESH: Velocity 0 threshold. The motor shaft is considered as stopped as soon as the actual velocity (filtered through a 10 Hz filter, such as VL.FBFILTER) is within ± CS.VTHRESH.
- 3. CS.TO: Velocity 0 time. The actual velocity must be consecutively within 0 ± CS.VTHRESH for the time CS.TO, before the drive completes the CS process. This value is used since the motor can overshoot out of the VEL0 window depending on the gains, deceleration ramp, motor inertia and so on.
- 4. DRV.DISTO: Disable time out. This parameter sets an overall and independent running check as to whether or not the drive can achieve the disable state. If the VEL0 window set in step 3 is too small, it is possible that the drive may never reach the end of the CS process. The DRV.DISTO parameter and functionality addresses this issue by disabling the drive after the DRV.DISTO time elapses, even if the CS process did not end.

Controlled Stop Diagram

When configuring the controlled stop feature, please note the following:

- If the HW limit switch is active and any of the other CS activated, the only difference will be that in this case the DRV.DISTO will limit the time before disabling the drive.
- If the value of DRV.OPMODE of the drive is current mode, the drive will not execute the CS but instead stop immediately.
- Set DRV.DISTO to an appropriate value that will allow the motor to decelerate from any velocity to 0 with DRV.DEC. This value must also allow the motor to afterwards remain within VL.FB for CS.TO consecutively within 0 ± CS.VTHRESH.

The drive issues a fault FF703 in case that the DRV.DISTO counter expires during a controlled stop procedure.

10.10.0.1 Related Parameters and Commands

CS Parameters

CS.STATE: Reads the current state of controlled stop process (0 = controlled stop is not occurring. 1 = controlled stop is occurring).

DIN1.MODE TO DIN7.MODE

DRV.DIS

DRV.DISTO

DRV.DISMODE

10.10.1 Related topics:

- 10.12 Emergency Stop
- 10.1 Digital Inputs and Outputs
- 17.1 Fault and Warning Messages

10.11 Dynamic Braking

Dynamic braking is a method to slow a servo system by dissipating the mechanical energy in a resistor driven by the motor back EMF. The drive has a built in advanced (patent pending) dynamic braking mode which operates fully in hardware. When activated, the drive shorts the motor terminals in phase with the back EMF (q axis) but continues to operate the non-force producing current loop (d-axis) with 0 current. This action forces all of the dynamic braking current toward stopping the motor current and insures the fastest stopping/amp of motor terminal current.

The drive hardware also limits the maximum dynamic braking motor terminal current via the DRV.DBILIMIT parameter to prevent the drive, motor, and customer load from encountering excessive currents/forces. When the current is not being limited, the mechanical energy is dissipated in the motor terminal resistance. When the current is being limited, energy is returned to the drive bus capacitors. When the amount of returned energy raises the bus capacitor voltage enough, the drive activates the regeneration control to start transferring the returned energy to the regen resistor. This resistor could be internal or external to the drive depending on drive model and drive wiring.

Whether and how the drive uses dynamic braking mode depends on the drive disable mode (DRV.DISMODE) setting.

10.11.1 Drive Regeneration

When the servo motor is slowing down at a rate faster than friction and motor losses would slow the motor, then mechanical energy can be returned to the drive. This returned energy initially drives the internal bus voltage upwards. When the returned energy is high enough, the regeneration control transfers the excess returned energy into the regeneration power resistor. If the regeneration control cannot fully handle the power returned (for example, because there is not a regen resistor present or its resistance value is too high), then the bus voltage will continue to rise and a bus over voltage fault will happen and disable the drive completely, which allows the motor to freewheel.

10.11.1.1 AKD-x00306 to AKD-x00606

These units do not have an internal regeneration resistor. In many applications machine friction, motor losses, and the limited bus capacitor energy absorption handles the application. But, depending on the exact application requirements, an external resistor can be connected.

10.11.1.2 AKD-x01206 to AKD-x02406 and AKD-xzzz07

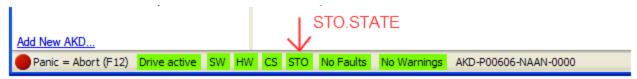
These units have an internal regeneration resistor plus the capability to connect an external resistor if higher power levels are needed.

Related Topics

See section 6.14 Dynamic Braking in the AKDInstallation Manual for detailed information on dynamic braking. DRV.DISMODE

DRV.DBILIMIT

10.12 Emergency Stop


10.13 Safe Torque Off (STO)

Safe torque off (STO) is a restart lock safety feature that prevents a system restart. The STO input provides direct electrical control of the power stage of the AKD drive; it bypasses the processor and will disable the power stage irrespective of software or other hardware signals.

STO is controlled by a digital input on the X1 connector (pin 3) that must have 24V applied to it; otherwise, the drive will not enable. If the STO digital input does not have 24V applied to it and you attempt to enable the drive (using the hardware and software enables) the drive will generate a 602 "Safe Torque Off" fault. If you see this fault you need to apply 24V to the STO input and then clear the fault (DRV.CLRFAULTS) before you can enable the drive. The STO will not generate a fault until you try to enable the drive. You can read the current faults using DRV.FAULTS.

```
-->DRV.FAULTS
602: Safe torque off.
-->
```

The current state of the STO can be read using the STO.STATE parameter (this returns 1 if 24V is being applied to this input). WorkBench also shows you the state of the STO input in the status bar at the bottom of the window.

10.14 Under Voltage Fault Behavior

You can adjust the conditions for an under voltage fault using VBUS.UVMODE in the WorkBench terminal screen:

VBUS.UVMODE = 1 (default)

The drive will not report an under voltage fault unless the drive is enabled and VBUS.VALUE falls below VBUS.UVFTHRESH

VBUS.UVMODE = 0

The drive will report an under voltage condition any time VBUS.VALUE falls below VBUS.UVFTHRESH.

When an under voltage fault occurs, the drive is disabled and issues the following alerts:

- WorkBench alert: 502 Bus Under Voltage
- Drive LED alert: Left LED displays [F], right LED displays [u-V].
- Fault relay output turns on.

11 Using Command Source and Operating Modes

11.1	Overview	120
11.2	Using Command Source and Operation Modes.	120
11.3	Current Loop	121
11.4	Velocity Loop.	124
11.5	Position Loop.	126

11.1 Overview

Operation modes (opmodes) allow you to set up your drive to communicate directly over the Ethernet input, a specific fieldbus, or an analog or digital control.

There are two basic components to how you will command the drive and how it will behave. The "Service mode" indicates how the drive will be communicated to. The drive has communication options via Ethernet, a variety of fieldbuses, through an analog input, and through electronic gearing, or digital inputs. The second component ties to which loop you will be controlling (torque, velocity, or position).

11.2 Using Command Source and Operation Modes

There are two methods to access these two parameters within WorkBench. The first is by selecting the **Settings** screen from the left hand tree. By clicking on the top level of the **Settings** folder, you access the graphical representation of both the Command source and Operation Mode. The drop down box then allows you to select the desired command type and control loop you wish to activate. Please note that some Command Sources can only be used with certain control loops (as an example, Electronic Gearing can only be used in position loop Operation Mode).

11.2.1 Command Source

The command source sets how you communicate with the drive. Initially, you might be communicating via your PC using the Ethernet connection. Each Command Source is listed below:

11.2.1.1 Service

This is the most common source used when establishing initial communications with the drive to set the system up, and when you may need to "service" the drive. The Service source communicates with your PC via the Ethemet port located on the top of the drive at connector X11.

11.2.1.2 Fieldbus

When using a fieldbus, such as CANOpen or EtherCAT, the drive is set with this command source. For CANOpen, use the connectors X12 and X13 located on the top of the drive. For EtherCAT, Connectors X5 and X6 located on the front of the drive are used.

11.2.1.3 Electronic Gearing

If the drive will be used to follow the output of an external encoder, following motion using an electronic gear ratio, then you should use this command source. When using Electronic Gearing, the Operation mode must be set in the Position Loop mode. This is also the mode used for step and direction inputs as well.

11.2.1.4 Analog

This command source allows the drive to be controlled from an analog source. Typically a +/- 10 Vdc signal is attached to connector X8 pins 9 and 10. Varying the analog input will then vary torque, velocity, or position based on the Operation mode selected.

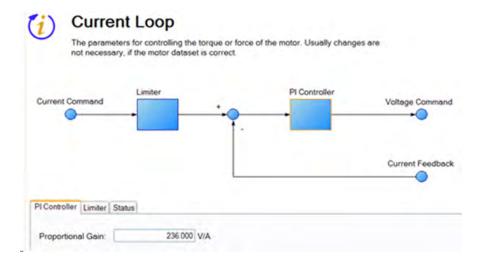
11.2.1.5 Operation Mode

The operation mode identifies which servo loop you will be controlling. The drive offers torque, velocity, or position control. From the setting screen page, a graphical representation of the loop is displayed. By clicking these graphical representations, you can access additional loop information such as gains, filters, and other settings.

11.2.2 Related Parameters

DRV.CMDSOURCE
DRV.OPMODEDRV.OPMODE

11.3 Current Loop


11.3.1 Overview

The current loop is active when the drive operates in current torque (current) mode (DRV.OPMODE = 0). The parameters that govern the current loop are shown in the Current Loop view. The various types of tuning for the drive adjust these parameters automatically, so you normally do not need to adjust the current loop parameters in the current loop screen. The Current Loop view includes an active block diagram. If you click on a block in the diagram, the appropriate tab opens below.

A more detailed block diagram for the current loop is included in Block Diagrams

11.3.2 Current Loop Gain

The current loop is tuned based on the inductance of the motor used with the drive. The current loop gain is automatically set so that the idealized current loop crossover frequency is IL.KP/L in rad/sec where L is the motor line-line inductance.

Current loop gain is set automatically by the drive using the following methods:

- **Option A**. When a feedback device is automatically identified by the drive and the motor data is automatically populated (Motor Autoset = 1-On) the proportional gain of the current loop (il.kp) is set based on the motor data and is shown as a read-only parameter in the current loop screen.
- **Option B.**When the motor is selected using the motor database or using the custom motor tool, the imported inductance value is used to set the current loop proportional gain.

NOTE

Manual adjustments to the current loop proportional gain parameter are not normally required during the motor tuning procedure. If manual adjustments are made to the current loop proportional gain parameter, repeating the motor setup procedure will overwrite the changes and restore the value to the Kollmorgen calculated value.

Related Parameters

IL Parameters
DRV.OPMODE

11.3.3 Current Loop Gain Scheduling

This feature is needed when the motor inductance is saturated during normal operation. Because the current loop gain is calculated using the motor inductance, if the inductance changes, the current loop is at risk of becoming unstable.

If a motor is being used under high loads, the inductance is probably saturating if one or more of the following occurs:

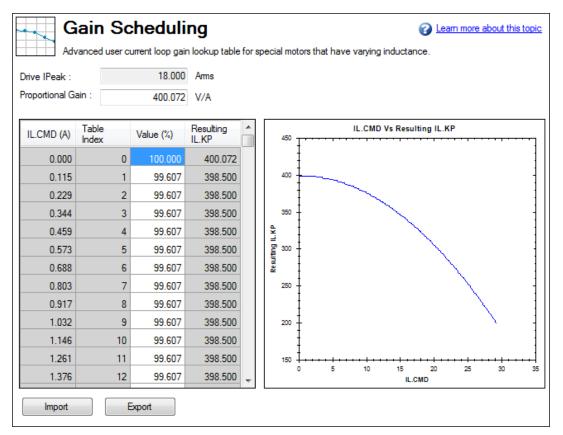
- Audible chirping occurs.
- Chirping gets louder with higher commanded current.
- Instability occurs under high current loads (at or near MOTOR.IPEAK)

To rectify this problem, you can use gain scheduling to change the current loop gain as a function of the current command (IL.CMD).

11.3.3.1 Using the Gain Scheduling View in WorkBench

To use this feature effectively, you should have either an inductance chart of motor inductance as a function of current, or you must have an idea of how the current loop is performing.

If a chart of motor inductance versus current command is available, it is possible to calculate the required current loop gain values over the range of motor currents.


Current Loop Gain = $2000 * 2\pi * Motor Inductance (H)$

Example

Motor Inductance is 3.19 mH, current loop gain would be 40.01

Current Loop Gain = $2000 * 2 \pi * 0.00319 = 40.01$

Once suitable values have been identified, you can enter these values into WorkBench in the **Gain Scheduling** view. The **Import** and **Export** buttons at the bottom of the view allow you to import and export data as .csv files.

By default, the current loop value will be what is defined in IL.KP across the whole range of currents. To change the value of IL.KP over a range of values, simply enter a scaling term: 0 - 100% of the current value.

Example

If the current loop gain entered on IL.KP was 40.124 (shown above) and a current loop gain of 36 was desired, a scaling term of 90% should be entered for the desired current ranges.

40.124 * 0.90 = 36.112

11.3.3.2 Using the Terminal View for Gains Scheduling

You can also use the Terminal to set up the Gains Scheduling Table. If you use the Terminal, then two parameters are required for each lookup table point: IL.KPLOOKUPINDEX and IL.KPLOOKUPVALUE. IL.KPLOOKUPINDEX specifies the lookup table index (0-255), and IL.KPLOOKUPVALUE specifies the scaling term (0-100%) to scale IL.KP.

The current to which a lookup index refers can be calculated as follows:

IL.CMD Range = DRV.IPEAK/157 * IL.KPLOOKUPINDEX

A full list of table values can also be retrieved using IL.KPLOOKUPVALUES, which returns a comma delimited table as follows:

-->IL.KPLOOKUPVALUES

Index Value

0, 100.000

1, 100.000

2, 100.000

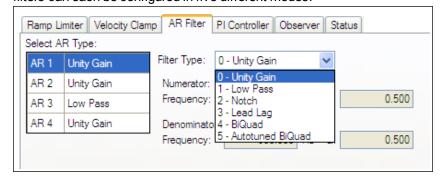
3, 100.000

4, 100.000

- 5, 100.000
- 6, 100.000
- 7, 100.000
- 8, 100.000
- 9, 100.000
- 10, 100.000

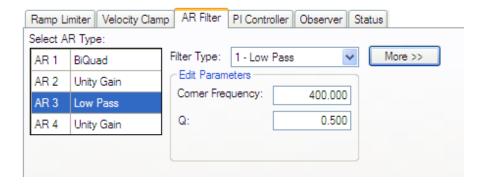
11.4 Velocity Loop

11.4.1 Overview

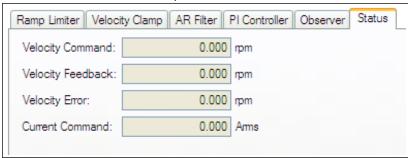

The velocity loop is active when the drive operates in velocity mode (DRV.OPMODE = 1) or position mode (DRV.OPMODE = 2). The parameters that govern the velocity loop are shown in the Velocity Loop view. The various types of tuning for the drive adjust these parameters automatically, so you normally do not need to adjust the velocity loop parameters in the velocity loop screen.

A detailed block diagram for the velocity loop is included in Block Diagrams.

11.4.2 Tabs in the Velocity Loop View

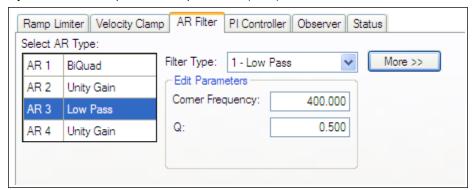

The velocity view includes an active block diagram. If you click on a block in the diagram, the appropriate tab opens below.

- Ramp limiter. The ramp limiter consists of the acceleration limits of the drive. These acceleration limits
 override both motion task and electronic gearing acceleration limits, so they must be set higher than the
 highest required motion task acceleration or gearing acceleration value. These acceleration and deceleration limits are also shown in the Service Motion view and the Limits view (DRV.ACC and DRV.DEC).
- Velocity clamp. The velocity clamp affects the maximum speed of the drive when the command source
 is service (DRV.CMDSOURCE = 0). This speed limit affects motion commanded in service motion and
 in motion tasks. These limits are also found in the limit screen on WorkBench. (VL.LIMITP and VL.LIMITN)
- AR1, AR2, AR3, AR4: These values are the independent bilinear quadratic (bi-quad) filters inside the drive. AR1 and AR2 are in the forward path and AR3 and AR4 are in the feedback path. These bi-quad filters can each be configured in five different modes.



0–Unity Gain. The filter is off, and it will not affect the loop.

1–Low Pass. In modes 1, 2, and 3, the bi-quad filter is configured for each respective type of filtering. The Edit Parameters field is used to set up the filter. The actual bi-quad filter values are shown to the left:



- 2-Notch
- 3-Lead Lag
- **4–Bi-quad** . A manually configured Bi-quad filter. This is an advanced tuning function.
- **5–Autotuned Biquad**. When the PST sets a filter after the PST process is complete, the values are input into the Bi-Quad filter and are shown as a read only values.
- Status. The status tab shows parameters that are relevant to the velocity loop performance.

11.4.3 Velocity Loop Default Settings and Changes

By default, a PI loop with a low-pass filter (AR3) is set in the drive.

The default value for the low-pass filter is 400 Hz. The low-pass filter is important for disturbance rejection, and it also reduces the audible noise of the system.

11.4.3.1 Velocity Loop Changes Based on Slider Tuning

Slider tuning (see 14.1 Slider Tuning) uses the slider control to adjust the proportional gain and integral gain values of the velocity loop based on the desired bandwidth. If you adjust the bandwidth using the slider tuner and then return to the velocity loop screen, you will see different values inside the proportional gain and integral gain fields. No adjustment is made to the filters automatically by using the slider tuner. Only the proportional and integral terms are adjusted.

11.4.3.2 Velocity Loop Changes Based on PST

When the PST (see 14.3 Using the Performance Servo Tuner) is used, changes are made to the proportional gain, integral gain, filters, and other parameters not related to the velocity loop screen directly. The values adjusted are dependent on the drive, motor, load, and the PST settings. The filters that are adjusted by the PST are automatically put into mode **5-Autotuned Bi-quad**.

No adjustments can be made to mode **5- Autotuned BiQuad** filters that are set by the PST. If adjustment to the tuning of the system is desired after the PST process is completed, then these adjustments should be made in the settings of the PST. The PST process can then be repeated.

Related Parameters

VL Parameters

DRV.ACC

DRV.CMDSOURCE

DRV.DEC

DRV.OPMODE

Related Topics

10.7.5 Limits

12.2 Motion Tasks

12.4 Service Motion

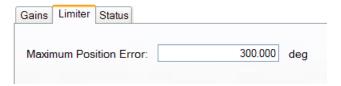
10.7 Electronic Gearing

14 Tuning Your System

11.5 Position Loop

11.5.1 Overview

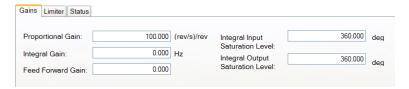
The position loop is active when the drive operates in position mode (DRV.OPMODE = 2). The parameters that govern the position loop are shown in the Position Loop view. The various types of tuning inside AKD adjust these parameters, so you normally do not need to adjust the position loop parameters in the position loop screen.


A detailed block diagram for the position loop is included in Block Diagrams.

11.5.2 Tabs in the Position Loop View

The position loop view includes an active block diagram. If you click on a block in the diagram, the appropriate tab opens below.

- Gains. This tab shows the gains for the position loop.
- Limiter. The value in the Maximum Position Error box (PL.ERRFTHRESH) limits the position error


(PL.ERR) that can be present. When the maximum position error is exceeded, the drive generates fault F439, Following Error. If the maximum position error is set to 0 (default) then the maximum position error is ignored.

• **Status**. This tab shows the present value of commanded position (PL.CMD), position feedback (PL.FB), position error (PL.ERR), and velocity command (VL.CMD).

11.5.3 Position Loop Default Behavior and Changes

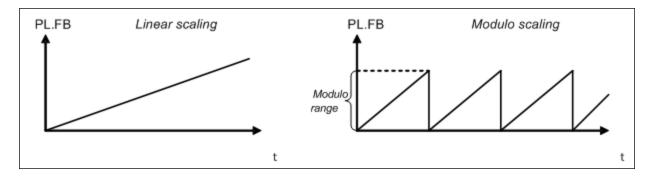
By default, only a proportional gain (PL.KP) is applied in the position loop.

11.5.3.1 Position Loop Changes Based on Slider Tuning

Slider Tuning (see 14.1 Slider Tuning) adjusts the proportional gain of the position loop (along with velocity loop view parameters; see 11.4 Velocity Loop). If you adjust the bandwidth using the slider tuner, then when you return to the position loop screen, you will see a change to the proportional gain only. No adjustment is made to the integral gain or feedforward gain through the slider tuner. The integral saturation levels are not applicable when the integral gain is set to 0. In the **Gains** tab, the boxes for these values may be populated with default values whether or not the integral gain is set to 0.

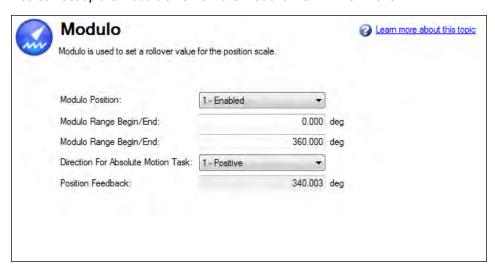
11.5.3.2 Position Loop Changes Based on PST

When the Performance Servo Tuner (PST, see 14.3 Using the Performance Servo Tuner) is used, changes are made to the position loop proportional gain, integral gain, feedforward gain and other parameters not related to the Position Loop view directly. The values adjusted are dependent on the drive, motor, load, and the PST settings.


Related Parameters

PL Parameters DRV.OPMODE VL.CMD

11.5.4 Modulo Position


Modulo position is a function that simplifies rotational applications such as unidirectional rotating assembly tables. When enabled, the modulo axis feature converts several position-based parameters to fit in a defined modulo range. Once this range is defined, a given position value will roll over at the end of the modulo range and return to the beginning of the modulo range. This behavior affects some drive functions, which work with modulo-scaled position variables when the modulo-feature is enabled.

The following figure describes the progress of the actual position value (PL.FB) for linear scaling and modulo scaling when the motor moves continuously in a positive direction:

11.5.4.1 Setting up the modulo axis in WorkBench

You can set up the modulo axis from the Modulo view in WorkBench.

Button or Box	Description
Modulo Position	Enables or disables modulo (PL.MODPEN
Modulo Range Begin/End	Sets the beginning and end of the modulo range (PL.MODP1, PL.MODP2)
Direction for Absolute Motion Task	Sets positive or negative direction (PL.MODPDIR)
Position Feedback	Reads and displays the position feedback (PL.FB)

11.5.4.2 Setting up the modulo axis from the Terminal

You can use the following parameters to configure the modulo-axis feature:

- PL.MODPEN: Enables or disables the modulo-axis feature.
- PL.MODP1: Defines either the beginning or the end of the modulo range, depending on the PL.MODP2 setting.
- PL.MODP2: Defines either the beginning or the end of the modulo range, depending on the PL.MODP1 setting.

11.5.4.3 Parameters affected by the modulo axis

The following parameters are converted into modulo format when the values of these parameters are queried by a user, a fieldbus, or the software oscilloscope.

- PL.FB: The actual position of the drive is converted into modulo scaling.
- PL.CMD: The command position of the drive is converted into modulo scaling.
- CAP0.PLFB: The actual position of the drive, which has been captured by the capture
- engine 0, is converted into modulo scaling.

• CAP1.PLFB: The actual position of the drive, which has been captured by the capture-engine 1, is converted into modulo scaling.

11.5.4.4 Drive functions affected by modulo axis

Software limit switch

The software limit switches in the drive compare the actual position (PL.FB) with threshold values. Motion is stopped when the actual position exceeds the software limits. Since PL.FB is affected by the modulo-axis feature, the software limit switches monitor the modulo-converted PL.FB value. Software limit switches with thresholds outside of the modulo range never limit motion.

Programmable limit switch

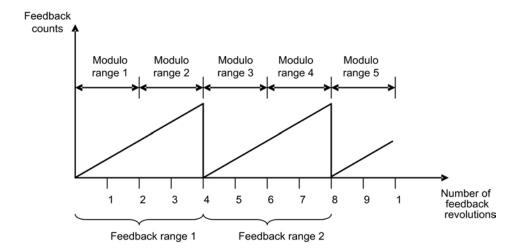
The programmable limit switches compare the actual position (PL.FB) with selectable thresholds and then status flags are set to "true" when the actual position is currently within these position limits. The programmable limit switches monitor the modulo-converted PL.FB value. Programmable limit switches that are set outside the modulo-range never become active.

Digital output Modes 5 and 6

The digital output modes 5 and 6 (position greater than x, position less than x) compare the actual position of the drive with thresholds and activate the associated outputs when PL.FB is lower or higher than the threshold. The digital output mode functionality monitors the modulo-converted PL.FB value. Position thresholds that are set outside the modulo range continuously activate or deactivate the digital output.

Motion tasking to absolute target positions

When modulo is enabled, absolute motion tasks assume that the command is modulo converted. Absolute motion tasks to target positions outside of the modulo range generate a warning, n"Fault and Warning Messages" (=> p. 240) (Motion task target position is out of modulo range).

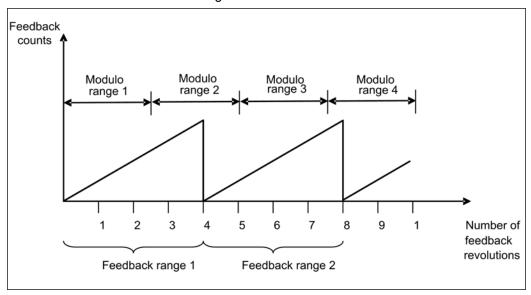

11.5.4.5 Using the modulo position feature with multiturn encoders

A special case exists for the following combinations of events:

- The drive is connected to a multiturn feedback device.
- The modulo axis feature is enabled.
- The selected modulo range does not fit as an integer in the range of the multiturn feedback.
- The application moves further than the total amount of multiturn feedback revolutions. In this case, problems occur because the multiturn feedback position overrun and a modulo range position rollover points do not occur at exactly the same position.

After powerup of the drive, the actual position (PL.FB) will be read from the multiturn feedback device. This position can be considered as a position within the feedback range as described in the figures below.

The following figure illustrates drive behavior when the selected modulo range fits as an integer within the multitum feedback range. For simplicity, assume that one multitum feedback range describes four feedback revolutions and the selected modulo range is set to two feedback revolutions.



As described in the figure above, the selected modulo range of the drive is repeated exactly at the point where the connected multiturn feedback rolls over (Modulo range 1, 3, 5...). The application can move for several multiturn feedback ranges and the drive can recalculate the modulo position correctly after a power cycle. The positions within the modulo ranges represent the same value in modulo format for each feedback range.

Example

The modulo-converted position, which represents 5 or 9 feedback revolutions, corresponds to the modulo position, which represents 1 feedback revolution.

The next figure illustrates the drive behavior when the selected modulo range does not fit as an integer within the multitum feedback range. For simplicity, assume that one multitum feedback range describes four feedback revolutions and the selected modulo range is set to 2.5 feedback revolutions.

As described in the figure above, the selected modulo range is not repeated exactly at the place where the connected multiturn feedback rolls over. The application can move for several multiturn feedback ranges, but the drive cannot calculate the modulo position correctly after a power cycle.

Example

The modulo-converted position, which represents five feedback revolutions, does not correspond to the modulo-position, which represents one feedback revolution.

12 Creating Motion

12.1	Homing.	134
12.2	Motion Tasks	144
12.3	Registration Moves (Motion Task Blending)	149
12.4	Service Motion	152
12.5	Jog Move	153
12.6	Drive Motion Status	153

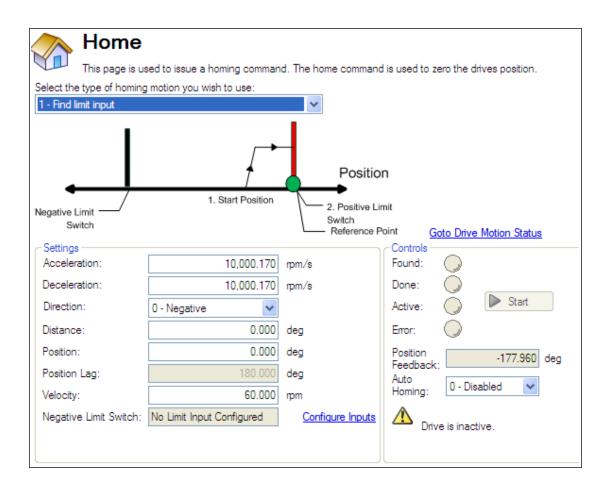
12.1 Homing

12.1.1 Overview

Homing is used to mechanically move a motor (connected to a mechanism) to a specific location on the machine, referred to as "home". Motion tasks then use this home as a reference point for movements that must base a known position on this reference point. Motor movement is usually controlled by a variety of limit switches (end of travel) and a home reference switch. Using these reference points with the logic of the drive allows the machine to find and set the home reference point.

12.1.2 Using Homing

The AKD includes a variety of homing methods (set with HOME.MODE) to accommodate your machine needs:


- Home using current position (HOME.MODE 0)
- Find limit input (HOME.MODE 1)
- Find input limit then find zero angle (HOME.MODE 2)
- Find input limit then find index (HOME.MODE 3)
- Find home input (HOME.MODE 4)
- Find home input then find zero angle (HOME.MODE 5)
- Find home input then find index (HOME.MODE 6)
- Find zero angle (HOME.MODE 7)
- Move until position error exceeded (HOME.MODE 8)
- Move until position error exceeded, then find zero angle (HOME.MODE 9)

Each of these homing methods offers a different way to achieve a home reference point based on your particular system mechanics. All homing methods provide the options of adjusting the acceleration, deceleration, and speed for homing moves. In addition, once the homing move is completed, you can either set an offset position or make an offset move as required. Homing modes, guidance for mode selection, and homing examples are included in 12.1.2.2 Selecting and Using Homing Modes

Note: When using any of the methods that use homing switches and limits, please refer to the Input/Output section for proper wiring techniques.

12.1.2.1 Home Default Window

The Home window provides a means to select your homing method and configure the homing settings. This window also provides a simple controls to start homing and confirm homing success.

Mode Selection:

Use this box to select the appropriate homing mode. Homing modes are described below in <u>Selecting and Using Homing Modes</u>. The active options in the **Settings** area change depending on the homing mode selected.

Settings:

- Acceleration: Sets the acceleration ramp used during the homing procedure.
- **Deceleration**: Sets the deceleration ramp used during the homing procedure.
- **Direction**: Sets the start direction for homing movement.
- **Distance**: Sets a prescribed distance you want the motor to move once the home reference point is found. A zero value (default) corresponds to the axis actively returning to the defined position found during the homing process.
- Position: Sets the current position to a precribed value once the home reference point is found.
- **Position Lag**: Sets the position error threshold, which is used for indicating home reference when using using the hardstop modes 8 and 9.
- Velocity: Sets the initial velocity used for homing moves.
- **Velocity Factor**: In modes where a limit is reached, and direction is reversed, the valocity factor allows you to reduce the velocity as a precentage of the homing velocity.
- Positive/Negative Limit Switch/Home Reference/Peak Current: These fields appear based on the mode selected. For homing to limits and home reference, this field will indicate how the digital inputs are configured as well as providing a link to the digital input page. For Homing to a hard stop, the Peak Current field allows you to set the peak current limit desired during homing.

Controls:

- **Found**: When the home reference is found, then this indicator is green.
- **Done**: When the home move ic complete, this indicator is green.
- Active: This indicator will be green while the Home move is taking place.
- Error: This indicator will be red if something in the homing sequence failed.
- Position Feedback: This window reports the current value for PL.PFB.
- Auto Homing: Allows the system to auto-home on power up.
- Start/Stop: Click this button to start or stop the selected homing method.

12.1.2.2 Selecting and Using Homing Modes

Homing Mode 0: Home Using Current Position

Using the current position is the most basic homing method. This method simply uses the current position of the motor as the home point reference. Two values allow you to further define homing with this method:

- Distance: A value other then zero will cause a movement of the motor the distance entered in counts (or other units based on your units settings). You can use this to establish a home point at some prescribed distance from the initial starting position of the motor. This home will be at the offset distance entered from zero.
- Position: You can use this parameter to set the value of the home position other then zero. This allows
 you to offset your home reference away from zero. PL.FB will be set to the value you enter when the
 motor reaches the home reference point (based on the method selected).

The distance and position offsets are available and behave similarly on all of the homing types. Either the motor will move an additional distance (distance value) after it finishes the homing method, or will set the position to the amount entered in the position value.

Homing Mode 0 Example

Use the current position as home and have the motor end motion 180 degrees from home:

- 1. Select Mode 0 from the drop down box.
- 2. Enter 180 into the **Distance** box.
- 3. Click Start,
- 4. The motor will move 180 degrees from the start position. The **Position Feedback** box (PL.FB) will show 180 (the motor is now sitting 180 degrees from home).

Homing Mode 1: Find Limit Input

The find limit input mode creates a move to a limit input. This method can be used if you have a positive or negative limit switch available that you want to establish as a home reference point. **NOTE: Limit switches should** be set to Active Low (when switch power is lost, no current is flowing, thus drive homes at the point of the loss in power of the limit switch).

The sequence of this homing mode is as follows:

- 1. The motor starts to move in the positive or negative direction, depending on the value you set in the **Home** screen (in the **Settings** section, **Direction** box).
- 2. The motor stops as soon as the hardware limit switch has been detected and then reverses direction.
- 3. The home position is set when the limit switch is no longer active. The actual and command position of the drive is immediately set to the home position value (HOME.P) and the motor ramps down to zero velocity. The axis is then moved to the position (HOME.P) + distance offset (HOME.DIST).

The values for distance and position can be used as described in homing mode 0.

A CAUTION

When homing to a limit switch, the limit switch must remain in the triggered state while the motor decelerates to zero and begins to reverse. A very low acceleration rate combined with a high approach velocity may overshoot the switch and cause it to become active. This action will cause a homing error fault.

Homing Mode 1 Example

Use the positive end of travel limit as home reference, and then set this position to be -20 degrees.

- 1. Select Mode 1 from the drop down box and enter 20 into the Position box.
- 2. Set the direction to positive. When Start is selected, the motor will move until it encounters the positive end of travel switch.
- 3. As soon as the switch is triggered, the motor will reverse direction until the switch is no longer active.
- 4. As soon as the switch is no longer active, the position will be set to -20 degrees and the motor will ramp to 0. Depending on the velocity you are homing with, and the settings of the acceleration/deceleration ramps, the position feedback will be close to the position you entered.

Homing Mode 2: Find Input Limit then Find Zero Angle

Similar to the Find Input Limit method, the find input limit then find <u>zero angle</u>¹ mode follows the same steps, but upon completion of the move, it continues to move to find the zero angle reference of the motor.

NOTE: Limit switches should be set to Active Low (when switch power is lost, no current is flowing, thus drive homes at the point of the loss in power of the limit switch).

The specific steps are as follows:

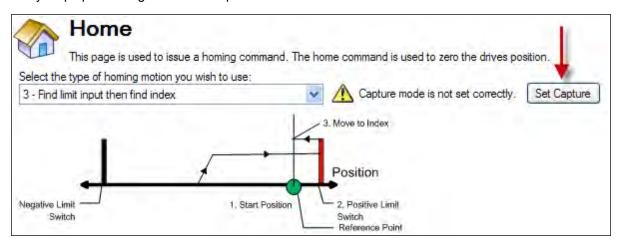
- 1. The motor starts to move according to the direction (HOME.DIR) setting.
- 2. The motor stops as soon as the hardware limit switch has been detected and changes direction of movement
- 3. The home position has been found as soon as the hardware limit switch is no longer active. The actual and the command position of the drive will immediately be set to the HOME.P value plus distance to the mechanical zero angle of the feedback device according to the current direction.
- 4. The motor moves to the home position (HOME.P) plus the distance move offset is applied (if present), which is located at the mechanical zero-angle of the feedback.

The values for distance and position can be used as described in home mode 0.

When homing to a limit switch, the limit switch must remain in the triggered state while the motor decelerates to zero and begins to reverse. A very low acceleration rate combined with a high approach velocity may overshoot the switch and cause it to become active. This action will cause a homing error fault.

Homing Mode 2 Example

Use the positive end of travel limit as home reference and then move to the zero angle of the motor


- 1. Use the positive end of travel limit as home reference and then move to the zero angle of the motor.
- 2. Select Mode 2 from the drop down box.
- 3. Set the Direction to Positive.
- 4. When Start is selected, the motor will move until it encounters the positive end of travel switch.

¹Mechanical zero angle of the feedback = 0 degree.

5. As soon as the switch is triggered, the motor will reverse direction and move to the zero angle of the motor.

Homing Mode 3: Find Input Limit then Find Index

Similar to the Find Input Limit method, this follows the same steps, but upon completion of the move, it continues to move to find the index pulse of the motor. This method can only be used with feedback devices that have an index pulse such as incremental encoders and analog sine encoders with an index channel (Feedback selection 10, 11, 20, 21). This method requires that Capture Mode is turned on in the home screen. With Mode 3 selected, a **Set Capture** button appears (see arrow below). Click **Set Capture** to set the Position Capture mechanism correctly for proper homing with an index pulse.

Once homing is triggered, the homing routine is performed as follows:

- 1. The motor starts to move according to the HOME.DIR setting.
- 2. The motor stops as soon as the hardware limit switch has been detected and changes direction of movement.
- 3. The motor ramps down to a reduced velocity as soon as the hardware limit switch is no longer active (please refer also to HOME.FEEDRATE). The drive is searching for the index-signal during this time. The home-position has been found as soon as the index-signal has been detected by the drive.
- 4. The actual and the command position of the drive will be set to the HOME.P value as soon as the index pulse is found. The drive then ramps down to velocity 0. The axis is then moved to the position (home.p) + distance offset (home.dist).

A CAUTION

When homing to a limit switch, the limit switch must remain in the triggered state while the motor decelerates to zero and begins to reverse. A very low acceleration rate combined with a high approach velocity may overshoot the switch and cause it to become active. This action will cause a homing error fault.

Homing Mode 3 Example

Use the positive end of travel limit as home reference, and then move to the index reference of the motor feedback device at 50% of the original home velocity.

- 1. Select Mode 3 from the drop down box.
- 2. Set the Direction to Positive.
- 3. In the Home screen click Set Capture.
- 4. Set the velocity factor to 50%.

5. When Start is selected, the motor will move until it encounters the positive end of travel switch. As soon as the switch is triggered, the motor will reverse direction, decelerate to a reduced velocity based on the Velocity Factor value, and move until the motor encounters the index pules of the feedback device.

Homing Mode 4: Find Home Input

Homing Mode 4 establishes the home reference based on an external home switch connected to a drive digital input (DINx.MODE - 11 Home Reference).

The sequence of this homing mode is as follows:

- 1. The motor starts to move according to the direction (HOME.DIR) setting.
- 2. The home position has been found as soon as the home-switch becomes active while traveling in the selected direction of motion (HOME.DIR). The actual and command position of the drive will immediately be set to the position (HOME.P) value and the motor ramps down to velocity 0. The axis is then moved to the position (home.p) + distance offset (home.dist).

The hardware limit switches are monitored during the homing procedure. The drive behaves as follows in case that a hardware limit switch is active before the home-switch has been activated:

- a. The motor changes the direction until the home switch is crossed.
- b. The motor ramps down to zero velocity and reverses direction again after crossing the home-switch.
- c. The home-switch will now be activated according to the direction (HOME.DIR) setting and when the home-position has been found. The actual and the command position of the drive will immediately be set to the position (HOME.P) value and the motor ramps down to zero velocity. The axis is then moved to the position (home.p) + distance offset (home.dist).

Homing Mode 4 Example

Move in the negative direction towards the home reference point and then move 180 degrees from the reference point

- 1. Select Mode 4 from the drop down box.
- 2. Set the **Direction** to **Negative** and enter 180 for distance.
- 3. Click Start.
- 4. The motor moves until it encounters the home reference switch. As soon as the switch is triggered, the motor moves an increment of 180 degrees as desired.

Homing Mode 5: Find Home Input then Find Zero Angle

The sequence of this homing mode is as follows:

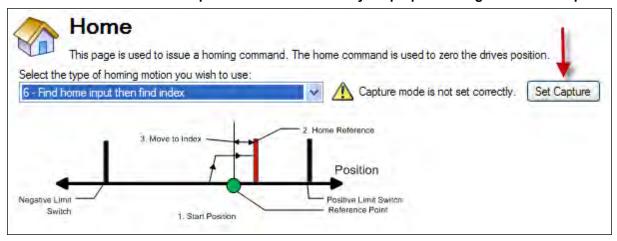
- 1. The motor starts to move according to the Direction (HOME.DIR) setting.
- 2. The home position has been found as soon as the home-switch becomes active while traveling in the selected direction of motion (HOME.DIR). The actual and the command position of the drive will immediately be set to the Position (HOME.P) value plus the distance to the mechanical zero angle of the feedback device according to the current direction.
- 3. The motor moves to the home Position (HOME.P) value plus the distance move offset is applied (if present), which is located at the mechanical zero-angle of the feedback.

The hardware limit switches are monitored during the homing procedure. The drive behaves as follows in case that a hardware limit switch is active before the home-switch has been activated:

- a. The motor changes the direction until the home switch is crossed.
- b. The motor ramps down to zero velocity and changes afterwards the direction again after crossing the home-switch.
- c. The home-switch will now be activated according to the HOME.DIR setting and when the home-position has been found. The actual and the command position of the drive will immediately be set to the position (HOME.P) value plus distance to the mechanical zero angle of the feedback device according to the current direction.

d. The motor moves to the home Position (HOME.P) value plus the distance move offset is applied (if present), which is located at the mechanical zero-angle of the motor feedback.

Homing Mode 5 Example


Move in the positive direction towards the home reference point and then move 60 degrees from the zero angle location.

- 1. Select Mode 5 from the drop down box.
- 2. Set the Direction to Positive and enter 60 for distance.
- 3. When Start is selected, the motor will move until it encounters the Home reference switch. As soon as the switch is triggered, the motor will move to the zero angle location plus an additional 60 degrees as desired.

Homing Mode 6: Find Home Input then Find Index

Similar to the Home input method, this follows the same logic as the other homing methods, first completing the home to input method, and finding the index pulse of the motor feedback.

This homing mode starts motion until a digital input, which is assigned to act as a home-switch, has been activated. The motor moves afterwards with a reduced velocity (HOME.FEEDRATE) until the index signal has been detected by the drive. NOTE: This method requires that Capture Mode is turned on. This is done in the home screen. With Mode 6 selected, a "Set Capture" button will appear (see arrow below). Pressing the button sets the Position Capture mechanism correctly for proper homing with an index pulse..

The home-switch must be activated according to the setting of the HOME.DIR setting.

The sequence of this homing mode is as follows:

- 1. The motor starts to move according to the HOME.DIR command.
- 2. The motor decelerates to a reduced velocity according to the HOME.FEEDRATE setting as soon as the home-switch becomes active during a motion in direction of the HOME.DIR setting.
- 3. The actual- and the command position of the drive will immediately be set to the HOME.P value as soon as the index-signal has been detected. The motor decelerates until velocity 0 has been reached.

The hardware limit switches are monitored during the whole homing procedure. The drive behaves as follows in case that a hardware limit switch is active before the home-switch has been activated:

- a. The motor changes the direction until the home-switch is crossed.
- b. The motor ramps down to zero velocity and changes direction again after crossing the home-switch.
- c. The home-switch will now be activated according to the HOME.DIR command. The motor decelerates to a reduced velocity according to the HOME.FEEDRATE setting as soon as the home-switch becomes active.
- d. The actual and the command position of the Drive will immediately be set to the HOME.P value as soon as the index-signal has been detected. The motor decelerates until zero velocity has been reached. The axis is then moved to the position (HOME.P) + distance offset (HOME.DIST).

Homing Mode 7: Find Zero Angle

The sequence of this homing mode is as follows:

- The home value is immediately found by the drive and the actual and the command position of the drive will immediately be set to the Position (HOME.P) value plus the distance to the mechanical zero angle of the feedback device according to the current direction.
- 2. The motor moves to the home Position (HOME.P) value, which is located at the mechanical zero-angle of the feedback.

Homing Mode 7 Example

Move in the positive direction towards the zero angle location.

- 1. Select Mode 7 from the drop down box.
- 2. Set the direction to Positive.
- 3. When Start is selected, the motor will move to the zero angle location.

Homing mode 8: Move Until Position Error Exceeded

This method is also referred to as move to hard or mechanical stop. The AKD has several options related to this method as well. For this basic method, the motor will move until it encounters a hard stop, causing the position error to exceed a specific threshold you set. Once the threshold is exceeded, the motion stops and home reference is established. You can use the Distance or Position as described initially in this section. One caution; make sure you choose the direction appropriately to move off of the stop if you use the distance offset.

The sequence in this homing mode is as follows:

- 1. As this home move is initiated, the moptor will move according to the Direction (HOME.DIR) value until the position error exceeds the Position Lag (HOME.PERRTHRESH) value.
- 2. The motor is now at home position (HOME.P) value.

Homing Mode 8 Example

Move in the positive direction towards a hard stop and limit the current to 1 amp. Allow 30 degrees of error before considered at the hard stop.

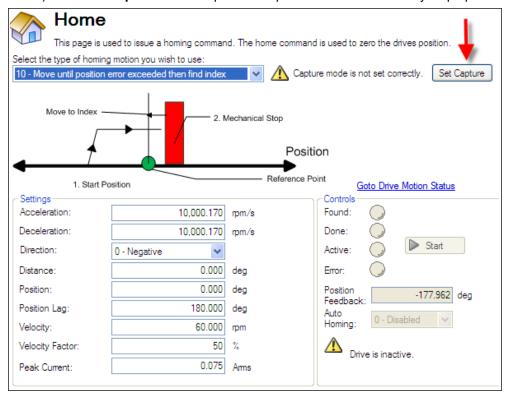
- 1. Select Mode 8 from the drop down box.
- 2. Set the Direction to Positive, Position Lag to 30 degrees and Peak Current to 1.
- 3. When Start is selected, the motor will move to the hard stop with a peak current of 1 amp.
- 4. As the position error exceeds the 30 degrees, the home Position (HOME.P) is set.

Homing Mode 9: Move Until Position Error Exceeded then Find Zero Angle

The sequence in this homing mode is as follows:

- 1. As this home move is initiated, the motor will move according to the Direction (HOME.DIR) value until the position error exceeds the Position Lag (HOME.PERRTHRESH) value.
- 2. The home value is immeadiately found by the drive and the actual and the command position of the drive will be set to the Position (HOME.P) value plus the distance to the mechanical zero angle of the feedback device according to the current direction.
- 3. The motor moves to the home Position (HOME.P) plus the distance move offset is applied (if present) value, which is located at the mechanical zero-angle of the feedback.

Homing Mode 9 Example


Move in the positive direction towards a hard stop and limit the current to 1 amp. Allow 30 degrees of error before considered at the hard stop. Then move to the zero angle of the motor and designate this as the 180 point.

- 1. Select Mode 9 from the drop down box.
- 2. Set the Direction to Positive, Position to 180, Position Lag to 30 degrees and Peak Current to 1.
- 3. When Start is selected, the motor will move to the hard stop with a peak current of 1 amp. As the position error exceeds the 30 degrees, the home Position (HOME.P) is set and the Position will be set to 180.

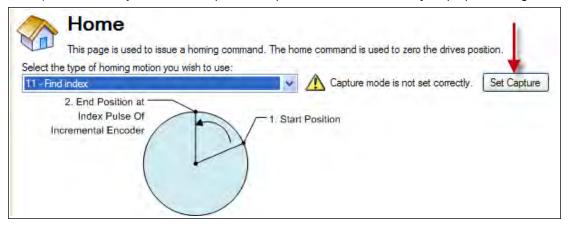
12.1.2.3 Homing Mode 10: Move Until Position Error Exceeded then Find Index

This method is similar to HOME.MODE 8, but looks for the index pulse after it encounters the hard stop. For this method, the motor will move until it encounters a hard stop, causing the position error to exceed a specific threshold that you set. Once the threshold is exceeded, the motion will reverse and look for an index pulse.

This method can only be used with feedback devices that have an index pulse such as incremental encoders and analog sine encoders with an Index channel (Feedback selection 10, 11, 20, 21). This method requires that Capture Mode is turned on in the home screen. With Mode 10 selected, a **Set Capture** button appears (see arrow below). Click **Set Capture** to set the position capture mechanism correctly for proper homing with an index pulse.

- 1. Motor advances into the mechanical stop and then reverses direction.
- 2. The motor is searching for the index pulse during this time.
- 3. If the motor finds the Index pulse, then the Home-position is found.
- 4. The actual and the command position of the drive will be set to the HOME.P value as soon as the index signal is found. The drive then ramps down to velocity 0.
- 5. If another mechanical stop is found before the Index signal, then the homing sequence will fail and the system needs to be reviewed for proper wiring.

Homing Mode 10 Example: Move Until Position Error Exceeded then Find Index.


- 1. Select mode 10 from the drop down box.
- 2. Set the direction to positive.
- 3. In the home screen click Set Capture.
- 4. Set position lag and peak current values based on your application requirements.

- 5. When start is selected, the motor moves in the positive direction until a hard stop is encountered.
- 6. The motor reverses and moves until it encounters the index reference and then it stops.
- 7. If another hard stop is encountered before the index reference, home fails.

Unlike Homing Mode 3, the Home position is set as soon as the index pulse is found, irrespective of the direction of motion.

Homing Mode 11: Find Index Signal

This method can only be used with feedback devices that have an index pulse such as incremental encoders and analog sine encoders with an Index channel (Feedback selection 10, 11, 20, 21). This method requires that Capture Mode is turned on in the home screen. With Mode 11 selected, a **Set Capture** button appears (see arrow below). Click **Set Capture** to set the position capture mechanism correctly for proper homing with an index pulse.

Once homing is triggered, the homing routine is performed as follows:

- 1. The motor starts to move according to the HOME.DIR setting.
- 2. The Motor is searching for the index pulse during this time.
- 3. If the Motor finds the Index pulse, then the Home-position is found.
- 4. The actual and the command position of the Drive will be set to the HOME.P value as soon as the index-signal is found. The Drive then ramps down to velocity 0.
- 5. If the Limit switch is active before Index signal, then the Motor changes the direction and then repeats steps 3 and 4.

Homing Mode 11 Example: Find Index Signal.

- 1. Select Mode 11 from the drop down box.
- 2. Set the Direction to Positive.
- 3. In the home screen press the "set capture" button.
- 4. When Start is selected, the motor will move until it encounters the index reference and then it stops.
- 5. If Limit switch is encountered before Index reference, the Motor changes direction and searches for Index signal in the opposite direction.

Unlike Homing Mode 3, the Home position is set as soon as the index pulse is found, irrespective of the direction of motion.

Homing Mode 12: Homing to a home-switch, including mechanical stop detection

This homing mode starts a motion until a digital input, which is assigned to act as a home switch, has been activated. The home switch must be activated according to the setting of the HOME.DIR setting. The home position is found as soon as the home-switch was activated during a motion in direction of the HOME.DIR setting.

The sequence of this homing mode is as follows:

- 1. The motor starts to move according to the HOME.DIR setting.
- 2. The home position has been found as soon as the home-switch becomes active during a motion in direction of the HOME.DIR setting. The actual- and the command position of the Drive will immediately be set to the HOME.P value and the motor ramps down to velocity 0.

This homing mode is similar to the homing mode 4, but checks if the motor hits a mechanical stop instead of the hardware limit switches. A mechanical stop is detected as soon as the absolute value of the position error (PL.ERR) is larger than the position error threshold (HOME.PERRTHRESH) setting. The current command value is limited to the HOME.IPEAK value during the homing process. The motor behaves as follows when a mechanical stop has been detected before the home switch was found:

- 1. The motor changes the direction until the home switch is crossed.
- 2. The motor ramps down to velocity 0 and changes afterwards the direction again after crossing the home switch.
- 3. The home-switch will now be activated according to the HOME.DIR setting and the home-position has been found. The actual and the command position of the drive is immediately set to the HOME.P value and the motor ramps down to velocity 0.

12.1.3 Using Homing: Advanced

The various homing methods in the AKD offer several options for setting up your home reference. When using any of the methods that use homing switches and limits, please refer to the Input/Output section for proper wiring techniques.

12.1.3.1 Related Parameters and Commands

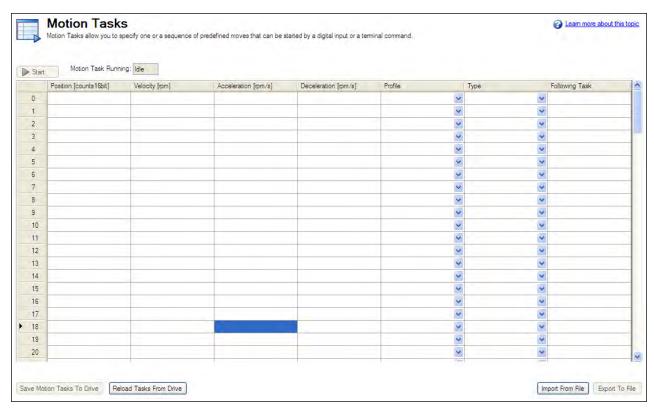
HOME Parameters

PL.FB

"CAP0.MODE, CAP1.MODE" (=> p. 326): Sets index capture method

12.1.3.2 Related Topics

10.1 Digital Inputs and OutputsDIN ParametersDOUT Parameters

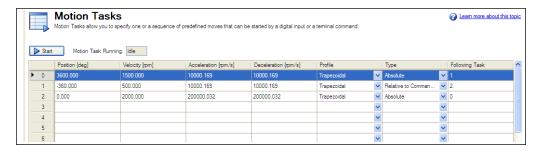

12.2 Motion Tasks

12.2.1 Overview

The AKD offers several options for executing moves, which are called "motion tasks" in WorkBench. You can directly link an input to a single motion task, assign inputs as a BCD pointer and execute, command over the Ethemet connection, or automatically execute a motion task as the result of the completion of another move event. Using WorkBench, you can also set up a single motion task or a sequence of motion tasks through the Motion Task screen, which is accessed from the Settings view. The Motion Task view allows you to modify a variety of parameters for a given move, including move profile, move type, velocity, distance, and acceleration limits.

12.2.2 Motion Task Input Table

Motion tasks can be easily entered and manipulated using the Motion Task Table. With this table, you can enter specific motion tasks and edit tasks, as well as insert and delete tasks, much like an Excel spreadsheet. The data table you build remains in WorkBench until you load the tasks into the drive. Once the tasks are loaded, you have access to the graphical representation of the moves (as in previous versions of WorkBench).

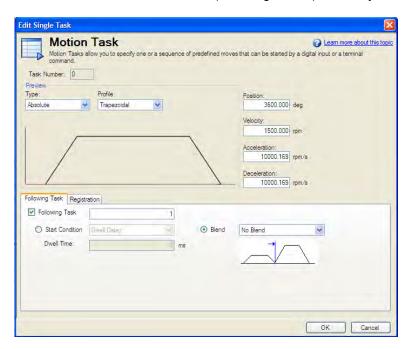


Enter values in each column for each task that you require. Once you enter an item, that field will change color indicating it has been edited but not yet loaded to the drive. Continue entering your tasks row by row. If you find that you skipped a task, you can easily insert it before or after a row that you highlight, and right-click to open the menu options. You can also select a task and using the right click access the copy and paste commands.

For delays and motion blends, double click on the line you want to edit and the delay and blend options will be available to adjust. You must load any changes or modifications to the drive before they will be available for use.

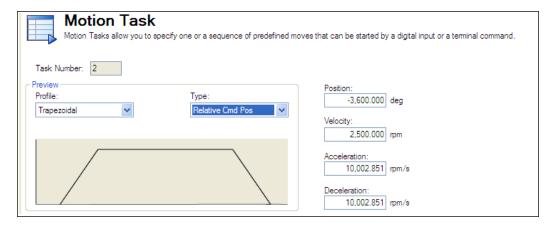
12.2.3 Using Motion Tasks

Use the Motion Task view to create and execute new motion tasks within WorkBench. As you add motion tasks, the new tasks appear as branches. You can use the root Motion Task view to view all tasks at once and execute individual tasks. When you select the Motion Task view, the Motion Task table is opened, as shown below.



From this view, you can perform the following actions:

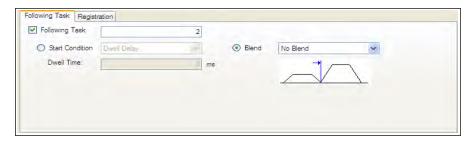
Button or Dialog Box	Description
Start	By highlighting an existing motion task, you can use this button to initiate that task (and subsequesnt tasks it may be linked to). In order to start any Motion Task, the motor must have been homed.
More/Less	This expands the Task table to include additional information regarding each task.
Save Motion Tasks To Drive	Saves the motion tasks in the table to the drive. This field is highlighted in pink if any values in the table have changed and have not been saved to the drive


Button or Dialog Box	Description
Reload Tasks From	Uploads motion tasks table with current values from the drive. This action deletes
Drive	any values listed in the table.
Import From file	Allows import of a .xml file to the task table.
Export To File	Exports to a .xml file the current list of tasks in the table.

All of the task parameters can be added to the Motion Tasks Table when **More** is selected. You can also view individual tasks in the Motion Task (Edit Single Task) screen by double-clicking on the task row.

Once in the edit screen, you can adjust move type, position command, velocity and accelerations as well as sequencing options. The editable fields include:

• **Type**: Sets the type of move, absolute or incremental type moves.



- **Profile**: This area sets the basic shape of the move. The basic move is trapezoidal, but S-curve (1:1) and custom profiles are also available using a "Profile Table".
- Position: This is the command position (PL.CMD), based on the type of move selected.
- Velocity: Sets the peak or traverse velocity depending on the move parameters
- Acceleration: Sets the profile acceleration ramp (this can not be set higher then the drive acceleration limit setting - DRV.ACC)

• **Deceleration**: Sets the profile deceleration ramp (this can not be set higher then the drive deceleration limit setting - DRV.DEC)

In addition to these profile settings, you can set additional parameters on how your next move will be executed. These parameters include:

• **Following Task**: By checking this box, you can indicate which task you want to follow the task that you are editing.

- **Start Condition**: This box allows for different start conditions to initiate the following task. Currently, the only option is a dwell delay. The dwell delay time can be entered in the dwell time box.
- **Blend**: It is possible to blend moves together by using the blend option. This option allows either a blend to velocity, or blend to acceleration.

Once you have entered the data, you can click on the Motion Task root directory to bring the table up to execute your moves. For more advanced motion tasks, specific constraints can be added. Currently, you can have a task that is either an interrupt task, or non-interruptible.

Advanced: Constraints

- Interrupt: This constraint can be used to interrupt a task that has not been finished. In other words, this constraint only will initiate the interrupt task motion if another task with no constraints is underway. This selection is a good option for registration tasks when you only want the move to happen if the current task has not finished.
- **Non-Interruptible**: When this constraint is selected, then the task can not be interrupted by another motion task or task call from inputs.

12.2.3.1 Motion Profiles

Trapezoidal moves include a fixed ramped acceleration (set by MT.ACC), a traverse period at velocity (set by MT.VEL), and a fixed ramped deceleration (set by MT.DEC). The distance traveled during the move is determined by the type of move (absolute or incremental). Position is set using MT.P. Note that for short moves, the traverse velocity may not ever be reached.

12.2.3.2 Motion Types

Motion tasks can use the following motion types:

- Absolute
- Relative to command position (PL.CMD)
- Relative to previous target position
- Relative to feedback position

Motion types define how the target position will be calculated. These can be either incremental (relative) or absolute. An incremental move is a move that increments a specific distance. The AKD allows the user to increment based on two different beginning positions as described below. Absolute moves move to a specific position based the actual position form an established zero or home point.

Absolute motion task

An absolute move type will move to the actual position indicated by MT.P. A home move would have been established to provide the reference for actual positions on the machine. In this case, the target position = PL.CMD=MT.P

Example:

You want to move to a position that is 68 degrees from home reference.

On the Motion Task edit page, Select the Absolute move type, and then enter 68 into the position block (units should be set in degrees). Enter the traverse speed and adjust the acceleration and deceleration parameters as needed. Once you move off the edit screen you can select this task and initiate a start. Regardless of your current position, the motor will now rotate to the absolute position of 68 degrees as referenced from the home position.

Motion task relative to command position (PL.CMD)

This type is simply an incremental move. The target position is based on the current position represented by PL.CMD plus the increment you want to move. Specifically, Target Position = PL.CMD + MT.P.

Example:

Your current motor position at the time you activate the motion task is 38 degrees. You want to move an increment of 30 degrees.

On the Motion Task edit page, select the **Relative to Command Position** move type, and then enter 30 into the position block (units should be set in degrees). Enter the traverse speed and adjust the acceleration and deceleration parameters as needed. Once you move off the edit screen you can select this task and initiate a start. The motor will move 30 degrees form the current position. After the motion task, the motor will now be at 68 degrees (38 + 30 = 68).

Motion task relative to previous target position

Using the last target position as the start point, this profile will move the increment chosen from that old position. This motion type is recommended in situations where a previous task may have been interrupted, or you want to eliminate any accumulated error. The target position will look at the previous target position and then add the increment you enter for this task. Specifically, Target Position = Previous Target Position + MT.P.

Example:

You initiated a motion task to increment 360 degrees, but that task was interrupted and the motor was stopped at 175 degrees. You use this method and increment another 360 degrees, the motor will complete the motion at 720 degrees (basically, it finished the first move to 360, and then made the additional distance requested of 360 degrees).

The task would be set up similar to the Relative command position example above. To view this in action, set up 2 tasks, once Relative Command Position and the second, Relative Old Target Position. Use low velocities so you can stop motion before the move is completed. Start the first move and then stop before it finishes. Then select the second move. The motor will stop at the desired end position if the stop had not occured. Try this again, but do not use the Relative Old Target Position and you will see the difference.

12.2.4 Using Motion Tasks: Advanced

12.2.4.1 Joining multiple tasks

Tasks can be joined in sequence using the task setup screen. Dwells can be added to allow the following tasks to wait a specific amount of time before starting. Tasks can also be blended to provide for smoother transitions

between multiple moves. AKD allows blending with either acceleration or velocity.

12.2.4.2 Start Conditions

AKD currently provides only one alternatives to start a following task at this time (more are planned):

• **Dwell Delay**. Starts the following task after the dwell time entered (MT.FTIME)

12.2.4.3 Blending

As an alternative to dwells, the AKD can blend motion tasks to provide smooth transitions between multiple tasks. This feature extends the life of your machine life by minimizing mechanical wear due to hard move transitions (jerks).

- No blend. No blend, move starts upon completion of the previous task
- **Blend into Acceleration**. Blends the acceleration of the current task into the following task. As the target position of the first task is reached, the acceleration blends into the second task. This prevents the motor from decelerating to zero before starting the second move. This only works where both accelerations are driving the motor in the same direction.
- Blend into Velocity. Blends the velocity of the current task into the following task. In this method, the target position is reached as the velocity of the second move is reached. The belnding begins prior to reaching the target position, and is completed at the target position of the first move, and the traverse velocity of the second move. This only works when both velocitys are in the same direction.

Related Parameters and Commands

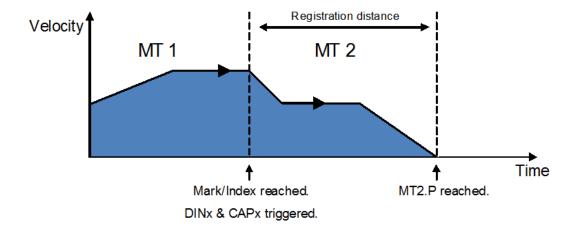
MT Parameters and Commands

DRV.MOTIONSTAT: Bit 0 monitors if motion tasking is active.

AIN Parameters

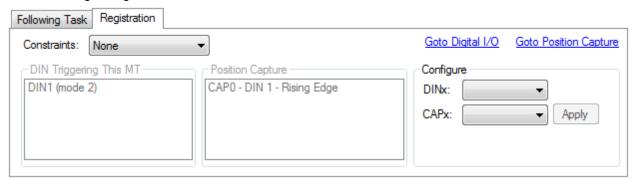
AOUT Parameters

DIN Parameters


DOUT Parameters

HOME Parameters

12.3 Registration Moves (Motion Task Blending)


Registration moves are also known as "indexing on the fly" or "motion task blending". In a registration move, a digital input interrupts a running motion task and starts a new one. The start position of the new motion task is latched at the time the digitial input is activated. The target position of the new motion task is calculated based on the latched position value, for a very accurate target position.

Typical applications for using the registration move are feed-to-length applications, which must guarantee proper positioning with respect to special mark or index. If this mark is reached, an external trigger signal aborts the current move and starts the registration move.

12.3.1 Configuring Registration Moves in WorkBench

You can configure registration moves from the Motion Task editor:

Box	Description
Constraints	Configures bits 13 and 14 from the MT.CNTL key-
	word
DIN Triggering (read-only)	Displays the list of all digital inputs that are con-
	figured with mode 2 pointing on this motion task, or
	all digital inputs that have mode 4 configured. These
	are potentially all digital inputs that can trigger this
	motion task. This field is read-only, indicating current
	configuration.
Position Capture (read-	Displays the list of capture engine that are configured
only)	with mode 4. These are potentially all registered posi-
	tion that can be used for this MT.
Configure (write-only)	Configures a digital input and the capture engine to
	be use as registration source for this MT.

12.3.2 Configuring Registration Moves from the Terminal View

You can also configure registration moves from the terminal view using drive parameters. To configure a registration move, you must configure three sets of parameters.

```
DINx
MODE = 2 or 4
PARAM = z
```

```
CAPy
MODE = 4
TRIGGER = x-1
```

```
MT ( NUM = z)
CNTL = 5*
ACC = user def.
V = user def.
P = user def.
```

*other options are possible (Bit 13 & 14); see 12.3 Registration Moves (Motion Task Blending) and the MT.CNTL parameter description.

- Digital input (DINx): Configure DINx to mode 2 or 4 so that input x will trigger the registration move.
- Capture (CAPx): Either capture engine 0 or 1 may be used to trigger a registration move. Set
 CAPx.MODE to 4, where "x" indicates the capture engine to be used. CAPx.TRIGGER must be set to x 1, where x is the DIN used above. All other capture parameters can be set as desired (see capture parameter descriptions).
- Motion tasking (MT): A registration move requires the standard motion task parameters (ACC, DEC, V,
 P). It also requires that the motion control word be set as follows:
 - 0x0005 standard registration move (this move can be interrupted and can start regardless of previous velocity)
 - 0x2005 non-interruptible registration move (move must complete before any other motion task can start)
 - 0x4005 interruptible registration move but will not start if velocity is 0
 - 0x6005 non-interrutible registration move that will not start if velocity is 0
 - After the motion task is configured MT.SET but be used to complete the setup of the motion task.

Example

Mark triggers digital input 2.

Capture machine 0 is used.

Motion task 3 is the registration move.

Motion task 3 is only activated if a preceeding motion task is active.

Motion task 3 is configured with 1,000 rpm/s^2 acceleration and deceleration , target velocity of 10 rpm and a relative position of 50,000 counts.

Commands:

```
DIN2.MODE 2
DIN2.PARAM 3
CAPO.MODE 4
CAPO.TRIGGER 1
MT.NUM 3
MT.CNTL 16389
MT.P 50000
MT.ACC 1000
MT.DEC 1000
MT.V 10
```

MT.SET

The registration move is now active.

12.4 Service Motion

Service Motion allows you to set up simple motion. It is typically used during initial set up to exercise the system. It can be used to help troubleshoot the system, execute tuning, make repetative moves for verification of mechanical set up, or for other general simple motion needs. There are multiple ways to set up motion depending on the desired result in torque, velocity or position modes. In all modes, you can run a momentary pulse, set up reversing motion, or initiate continuous motion. The chart below identifies the commands available on the **Sevice Motion** view:

Button or Dialog Box	Description
Pulse	Alternates between the commanded current or velocity and zero velocity. You can specify the time period between the commanded value and the return to zero. Setting a time to zero will generate a continuous command.
Reversing	Alternates between the two commanded values. You can specify the time the command will be held in each state.
Continuous	Runs the commanded current or velocity continuously.
Velocity 1/Velocity 2	Sets the two different velocities that are commanded
Time 1/Time 2	Sets the time for which the different commands are generated. Setting a time to zero generates a continuous command.
Acceleration/Deceleration	Used to set acceleration and deceleration values when in velocity and position modes.
Start/Stop	Starts and stops the motion.
Position Feedback	Displays the present position of the motor.
Velocity Feedback	Displays the present velocity of the motor.

The **Drive Motion Status** view indicates when the drive is performing service motion.

Related Topics

Drive Motion Status

Related Parameters

SM.I1

SM.I2

SM.I2

SM.MOVE

SM.T1

SM.T2

SM.V1

SM.V2

12.5 Jog Move

This screen verifies that the servo system is able to command motion. Verify the settings for velocity, acceleration, and deceleration. Adjust these settings if necessary. Click **Jog** and continuous motion will occur until you click **Stop**. If motion does not occur, check for warnings, faults, or prompts from WorkBench.

If erratic motion and or vibration occur when motion is commanded, open the wizard **Tuning** screen and reduce the desired bandwidth significantly. If erratic motion continues, exit the **Setup Wizard** and use the **Performance Servo Tuner** and **Service Motion** screens in the settings tree for more advanced setup of the servo system.

NOTE

In order to tune the system the drive must be in service-type command source and either velocity or position opmode. If the drive is in torque opmode, then a popup screen will allow you to switch into velocity mode.

12.6 Drive Motion Status

Drive Motion Status allows you to view the current status of the drive internal motion. An LED indicates the status of various possible motion states (as read by the DRV.MOTIONSTAT parameter).

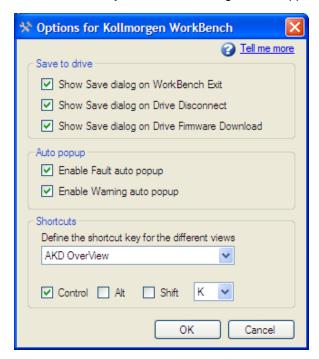
The **Drive Motion Status** box displays the DRV.MOTIONSTAT output in hexadecimal form. The boxes below **Drive Motion Status** indicate the drive state. When drive motion is activated, a green LED is shown. When error occurs, a red LED is shown as indicated below:

Related Topics

Homing Service Motion Motion Tasks

Electronic Gearing

Emergency Stop


DRV.MOTIONSTAT

13 Saving Your Drive Configuration

13.1	Save Options	156
13.2	Save On Exit	156
13.3	Save On Disconnect	157
13.4	Save On Firmware Download	158

13.1 Save Options

WorkBench offers several options for saving your drive configuration. From the WorkBench menu, if you select **Tools** and then **Options**, the following window appears:

The **Save** options are applied as follows:

Button or Dialog Box	Description
Show Save dialog on WorkBench exit	If this box is checked, then every time you exit WorkBench a dialog will ask you if you wish to save the drive parameters to nonvolatile memory.
	If this box is not checked, the dialog will not be shown.
Show Save dialog on Drive Disconnect	If this box is checked, then every time you disconnect from a drive a dialog will ask you if you wish to save the drive's parameters to nonvolatile memory.
	If this box is not checked the dialog will not be shown.
Show Save dialog on Drive Firmware Download	If this box is checked and any parameter is changed, then every time you download a firmware to a drive, a dialog will ask you if you wish to save the drive's parameters to nonvolatile memory. If this box is not checked the dialog will not be shown

13.2 Save On Exit

When you exit WorkBench while you are connected to a drive, you may see this dialog box:

As you are working with a drive all the changes you make are stored in the volatile memory within the drive. If you power cycle the drive or loose power to the drive then any changes you have made to the drive would be lost. You can save the drive parameters to nonvolatile memory at any time and these saved parameters will be restored when the drive next powers up.

While you are connected to the drive WorkBench monitors all the changes you make to the drives parameters. An asterisk in the navigation tree shows if a parameter has been changed. If you do not change any drive parameters this dialog will not be shown.

Button or Dialog Box	Description
Yes	Saves the parameters to the nonvolatile memory within the selected drives and then exits WorkBench.
No	WorkBench will exit. No drive parameters will not be saved to nonvolatile memory.
Cancel	This will stop the exit command and WorkBench will remain open.
Do not ask me again	If you check this WorkBench will not show this dialog again. There is an option in the Options dialogue to restore this setting.

13.3 Save On Disconnect

When you disconnect from the drive, you may see this dialog box:

As you work with a drive, all the changes you make are stored in the volatile memory within the drive. If you restart the drive or lose power to the drive, then any changes you made to the drive would be lost. You can save the drive parameters to nonvolatile memory at any time, and these saved parameters will be restored when the drive next powers up.

While you are connected to the drive, WorkBench monitors all the changes you make to the drive parameters. An asterisk in the navigation tree shows if a parameter has been changed. If you do not change any drive parameters, this dialog box will not be shown.

Button or Dialog Box	Description
Yes	Saves the parameters to the nonvolatile memory within the drive and then finish disconnecting.
No	Disconnects the drive. The drive parameters are not saved to nonvolatile memory.
Cancel	Stops the disconnect command. You remain connected to the drive.
Do not ask me again	Does not diplay this dialog box again. If you check this box, WorkBench does not show this dialog again. The Options dialog includes a command to restore this setting.

13.4 Save On Firmware Download

When you download firmware to the drive, you may see this dialog box:

As you work with a drive, all the changes you make are stored in the volatile memory within the drive. If you restart the drive or lose power to the drive, then any changes you made to the drive are lost. To save these changes, you can save the drive parameters to nonvolatile memory at any time. If you save the changes to the nonvolatile memory, these saved changes will be restored when the drive next powers up.

While you are connected to the drive, WorkBench monitors all of the changes that you make to the drive parameters. An asterisk in the navigation tree indicates that a parameter has been changed. If you do not change any drive parameters, this dialog box will not be shown.

Button or Dialog Box	Description
Yes	Saves the parameters to the nonvolatile memory within the drive and then opens dialog box for the user to select the firmware file for downloading.
No	The drive parameters are not saved to nonvolatile memory. It opens dialog box for the user to select the firmware file for downloading.
Cancel	Stops the download command.
Do not ask	Does not display this dialog box again. If you check this box, WorkBench does not show this
me again	dialog again. The Options dialog includes a command to restore this setting.

14 Tuning Your System

14.1	Slider Tuning.	160
14.2	Load Inertia	160
14.3	Using the Performance Servo Tuner.	160
14.4	Tuning Guide	189

Most servo systems require some level of tuning (setting up the desired response of the system usually with the load attached). This can be done through several methods available within AKD WorkBench.

Slider Tuning - Slider tuning offers a very simplistic approach to tuning and can get you underway quickly. With this method, just the proportional and integral gains are adjusted based on the desired bandwidth you wish to achieve. You can take into account your load inertia if it is known. None of the Bi-quad filters are impacted by the slider tuning.

Performance Servo Tuner - This is an easy way to get a more sophisticated tuning accomplished. The details of how the PST works are included in the advanced section of this subject. However, the PST approach is a simple one-button solution that lets the system configure all of the tuning parameters for you. The PST is a robust solution to get your sytem tuned and ready to operate in a wide variety of mechanical configurations and loads.

Manual Tuning - Certain applications may require manual tuning where you set the gains and filters based on the specific performance you are looking for. You may also need to "tweak" the tuning that was set up in either the slider or the PST section to optimize your application performance.

14.1 Slider Tuning

This view allows you to vary the tuning of your drive using the slider.

14.1.0.1 Gentle, Medium, and Stiff

These buttons select three of the most common bandwidths:

- Gentle works in all but the most challenging situations.
- Medium is the default and works in most situations.
- · Stiff works for unloaded motors.

14.1.0.2 The Slider

As you drag the slider to the right, the stiffness increases. In many situations, you cannot drag the slider fully to the right side because the system will become unstable.

14.1.0.3 Inertia Ratio

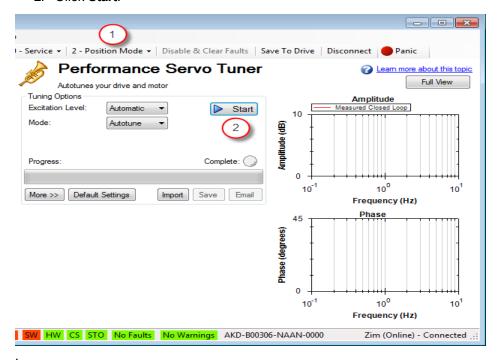
If you know the inertia ratio of your load, then entering it can improve the performance of your system. If you do not know the inertia of your load then WorkBench will assume a ratio of 1:1, which will give good performance in many configurations. The inertia ratio is the ratio of your load with respect to the inertia of your motor.

14.2 Load Inertia

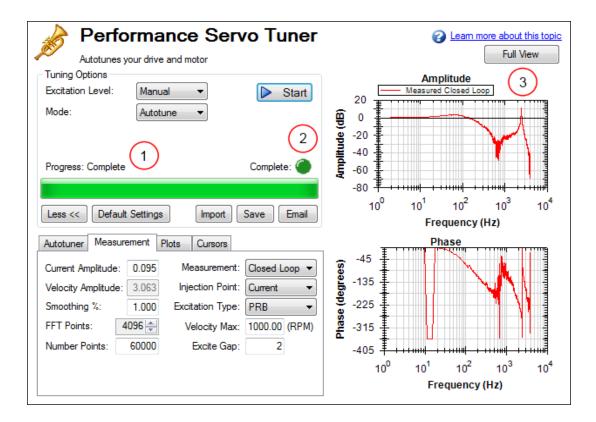
14.3 Using the Performance Servo Tuner

14.3.1 Overview

The Performance Servo Tuner (PST) tunes your system quickly and easily. The advanced technology in the PST achieves high performance and stability for both simple and complicated loads. The PST can work in a "one button" mode that requires no decisions from the user. It can also be set up in specific modes to control how the PST operates for specific requirements. Finally, the PST collects frequency response data (a Bode plot) that can be used for advanced analysis.

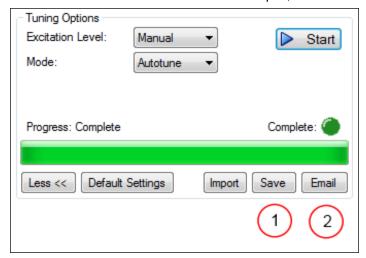

NOTE

The PST will not work reliably on a vertical axis since the motor may rest against an end stop; in this case, the inertia will not always be correctly identified.

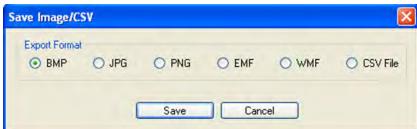

14.3.2 Using the PST

The PST defaults to a "one button" mode, in which the PST is completely automatic after pushing the start button. In the **Settings** select your desired operation mode, navigate to the **Performance Servo Tuner**view, and then tune your system as follows:

- Select whether you would like the drive to be tuned in 1-Velocity or 2-Position Mode. If the drive is in torque mode, the PST will tune in position mode by default. This is set by using the tool bar and changing the mode to either velocity or position. The drive must be disabled in order to change the operation mode.
- 2. Click Start.



The PST will then perform several tests and display results as shown below. The progress bar (1) shows the relative progress of the PST, so you can estimate when the tuning will be finished. When the tuning is complete, the green **Complete** LED (2) illuminates, and a Bode plot (3) is displayed showing the frequency response of the tuned system.



14.3.2.1 Saving and Emailing Bode Plots

To save screenshots and raw data of a Bode plot, click on either Save (1), or Email (2).

Clicking **Save** opens a prompt to select how to save the screenshot or data. Selecting BMP, JPG, PNG, EMF, or WMF saves the Bode plot as an image. Choosing CSV saves the raw data that is currently plotted as a comma delimited file. Click **Save** to save the file to your hard drive in the desired format.

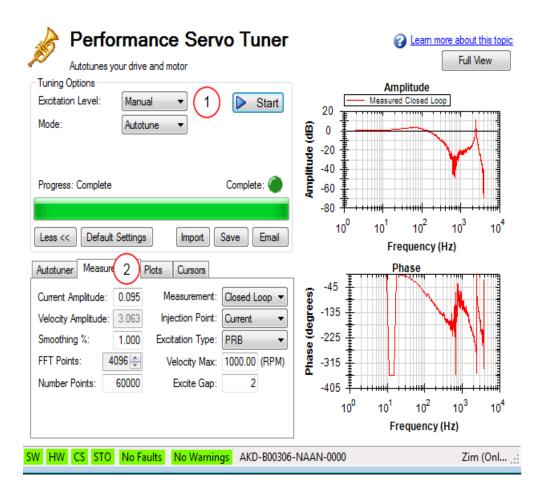
Clicking **Email** opens a similar prompt. Select the file format in which you wish to save the image or raw data, and an email will be created for you with the file automatically attached for your convenience. Click **Email** to create the email with the selected file attachment.

14.3.2.2 Importing a Frequency Response

If you have previously saved a frequency response measurement into a CSV file, it can be imported for later viewing. Click the **Import** button, and browse to your saved CSV file. You can import while in offline mode for convenience. Importing a frequency response is useful for developers off-site to analyze a machine tool.

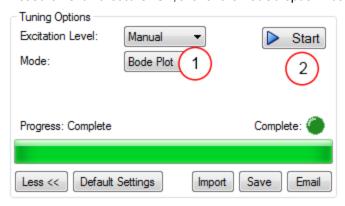
14.3.3 Measurement Options

By default, the PST determines the excitation level automatically and autotunes the drive and motor.


The PST also allows you to enter a manual excitation level or to take only Bode measurements (without autotuning the system).

14.3.3.1 Using Manual Excitation Levels

By default, the PST is set to use the automatic excitation level. To obtain the automatic excitation level, the PST runs a friction test at the beginning to determine how much excitation is needed to break friction and get an accurate measurement.

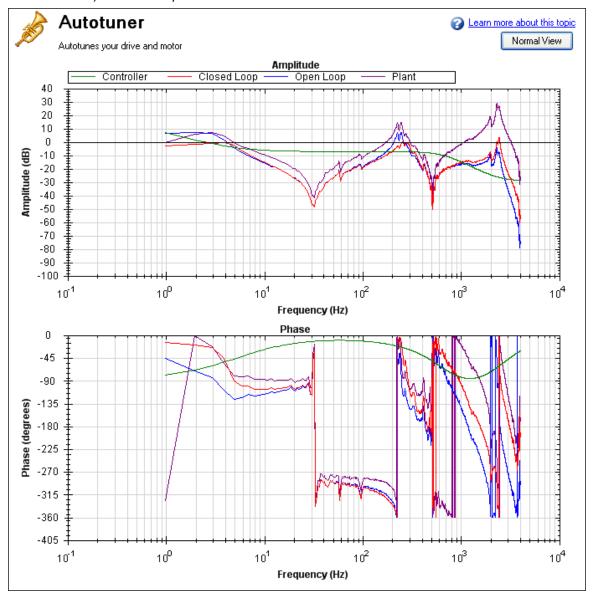

To change this excitation level, click on the **Excitation Level** drop down box (1), and select **Manual**. Then enter a new **Current Amplitude** (2) in amps.

Note: If the **Injection Point** is set to **Current**, then the **Current Amplitude** box will be enabled to enter an excitation level; if the **Injection Point** is set to **Velocity**, the **Velocity Amplitude** box will be enabled to enter an excitation level.

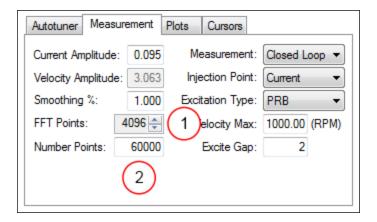
14.3.3.2 Taking a Bode Measurement without the PST

Youmay wishtotakeonly the frequency response of a system, rather than using the PST. To take a frequency response measurement without the PST, click on the **Mode** dropdown box (1) and select **Bode Plot**, then click **Start** (2).

14.3.4 Using the Performance Servo Tuner: Advanced

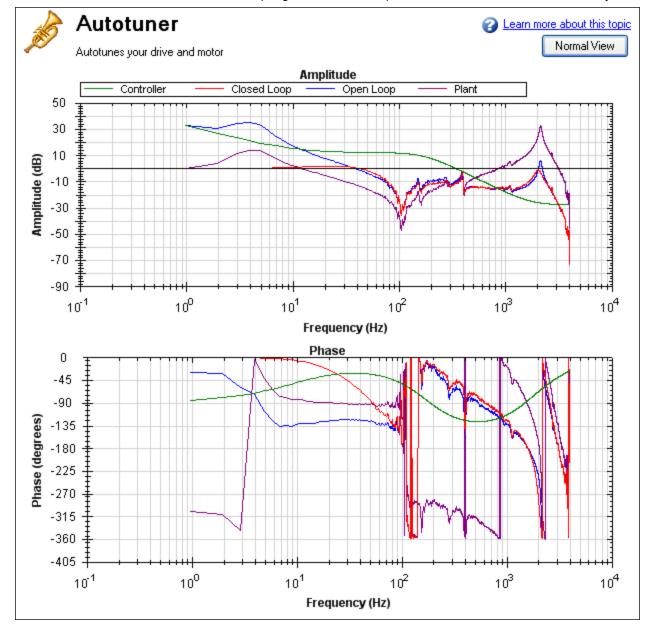

The Performance Servo Tuner (PST) can be set up to use specific modes or limits in tuning to provide tuning in ways you can control, while still taking advantage of the PST's ability to make decisions quickly and effectively for you.

To use the advanced modes of the PST, click the **More** button to display the additional features for advanced autotuning:

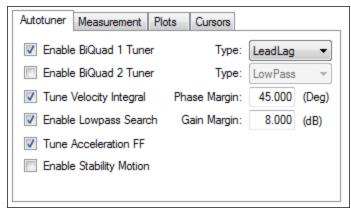

14.3.4.1 Typical Cases for Advanced PST Use

Tuning Systems with Low-Frequency Resonances

Systems with low-frequency resonances are challenging because low frequency data is difficult to measure. While the PST can tune these systems, you can expect lower system performance. If your system has a first anti-resonance of 30 Hz (pictured below), you can expect approximately 15 Hz (half the frequency of the first anti-resonance) of closed loop bandwidth.

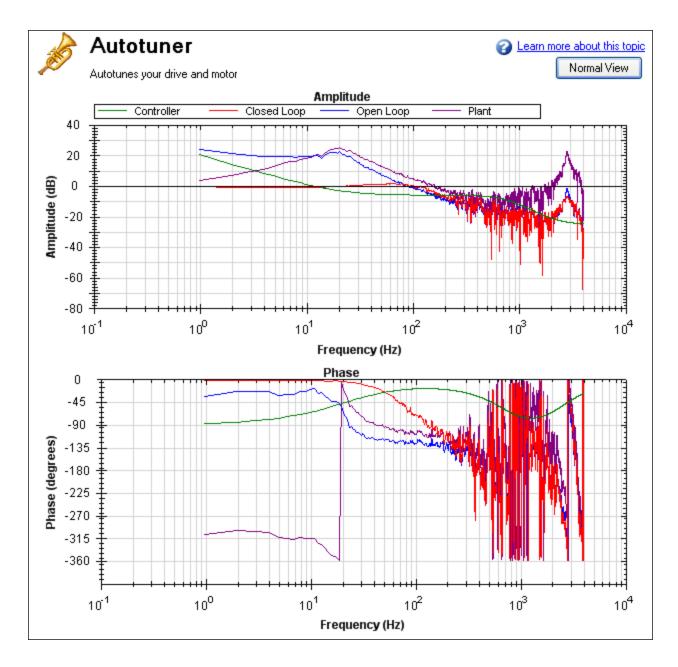


In addition, in order to accurately measure the low frequency resonances, the fast Fourier transform (FFT) resolution must be sufficiently fine to accurately measure the low-frequency resonance. A good place to start is to have an FFT resolution of 1/10 of the frequency of the lowest anti-node. In the case shown above, an anti-resonance of 30 Hz is present, so the resolution should be approximately 3 Hz FFT resolution. The PST can function with the resonance if it is accurately measured, as shown below. To adjust the FFT resolution, adjust **FFT Points** in the **Recording Options** tab as needed.

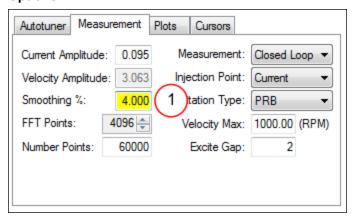


Tuning Systems with High-Frequency Resonances

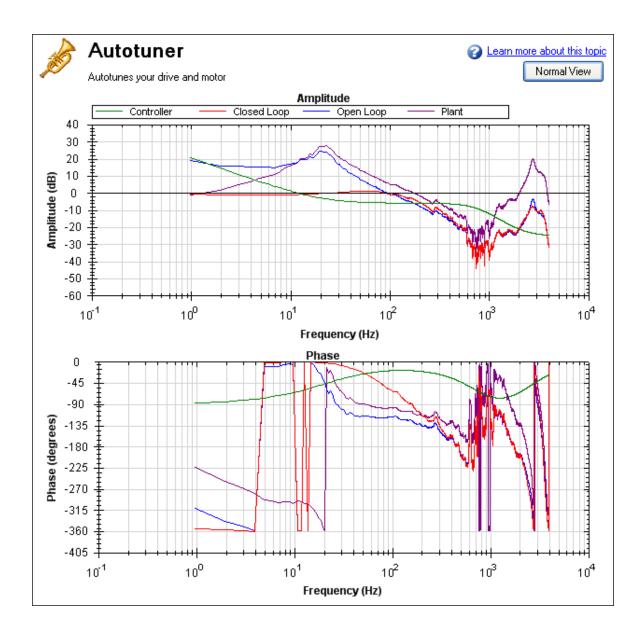
Some systems have resonances at very high frequencies (greater than 1 kHz). When the resonance is this large, it can prove a challenge in tuning, because these systems generate high noise levels that are often audible. An example of a large resonance is shown below. This example is from a steel flywheel mounted to an AKM 22E motor. The source of the resonance is the spring mass relationship between the motor rotor, shaft, and flywheel.



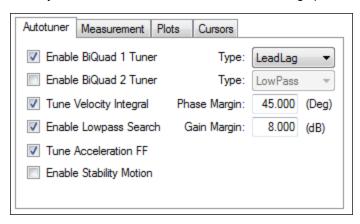
One way to resolve this problem is to use a low-pass filter in the feedback path. To use this filter, simply check the **Enable Lowpass Search** in the PST, which is the default behavior.



Tuning systems with noisy frequency responses


When using a motor with a low-resolution incremental encoder or resolver, the high frequency response may be noisy. Below is a Bode plot created after autotuning of an incremental encoder with 8,192 counts per revolution.

To make the Bode plot easier to read, increase the smoothing factor (1) in the advanced **Measurement Options**.



After increasing the smoothing percentage, the Bode plot traces become cleaner and easier to read:

14.3.4.2 PST Options

When you click **More** in the PST view, the following options are displayed:

Enable BiQuad 1 Tuner

Check this box to use the first anti-resonance filter in the forward path (AR1). You can specify the type of filter to use in the **Type** box to the right of **Enable BiQuad 1 Tuner**.

Enable BiQuad 2 Tuner

Check this box to use the second anti-resonance filter in the forward path (AR2). You can specify the type of filter to use in the **Type** box to the right of **Enable BiQuad 2 Tuner**. Enabling this option may significantly slow your computer during this operation.

Biguad Type

For Biquad 1 and 2, you can choose what type of filter to implement. The four options are:

- 1. **LeadLag**: The LeadLag filter is the default, and will work for most servo systems.
- 2. **Lowpass**: A Lowpass filter requires the least amount of processing time. The PST will place the lowpass to get the maximum bandwidth possible.
- 3. **Resonator**: The Resonator filter is like a Notch filter with tunable bandwidth and notch depth. The Resonator takes longer to calculate than the LeadLag filter.
- 4. **Custom**: The Custom filter takes the longest to calculate and does not restrict the PST to a filter shape. This filter type provides excellent results, but may significantly slow your computer while the filter is calculated.

Tune Acceleration FF

This box turns on and off the acceleration feedforward tuner. If this box is checked, the PST will measure the inertia attached to the motor shaft, and using this measurement, will calculate an appropriate acceleration feedforward and write it to the drive (IL.KACCFF)

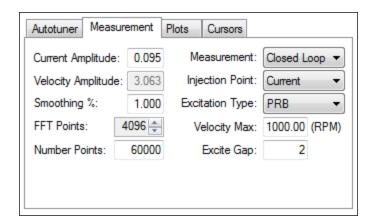
Enable Stability Motion

When this checkbox is checked, after the PST has completed, the PST will command a short move in the clockwise direction, then back to its origin and monitor the motor's parameters to determine if the tuning is stable. If an instability is detected, the drive will generate Fault F133: Instability during Autotune.

Phase and Gain Margins

The PST always ensures that the tuning satisfies stability criteria that can be adjusted in units of phase margin (in degrees) and gain margin (in dB). The PST uses default values for phase and gain margin, but you can adjust these values to ensure higher stability or to allow the PST to be more aggressive by using lower gain and phase margins.

Tune Velocity Integral


Check this box to tune VL.KI (velocity loop integral gain). If this box is unchecked, the PST will set VL.KI to zero.

Enable Low Pass Search

Check this to tune a fourth-order low pass filter in the feedback path (AR 3 and 4). If this box is unchecked, the PST will not modify the anti-resonance filters in the feedback path.

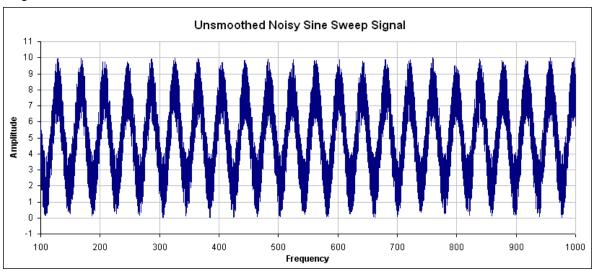
14.3.4.3 Measurement Options

The PST screen also provides options for measurements:

Current Amplitude

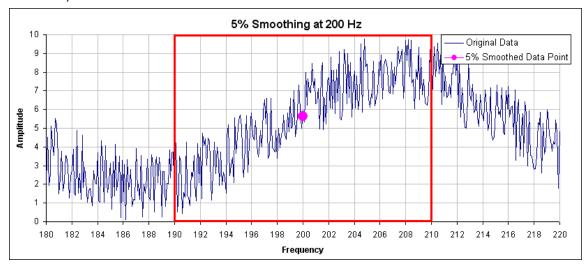
This box sets the amplitude of the current used to excite the system during a current injection mode excitation. This amplitude applies to all excitation types when the **Injection Point** is set to **Current**. The **Current Amplitude** box is disabled if the **Injection Point** is set to anything else.

Velocity Amplitude


This box sets the amplitude of the velocity used to excite the system during a velocity injection mode excitation. This amplitude applies to all excitation types when the **Injection Point** is set to **Velocity**. The **Velocity Amplitude** box is disabled if the **Injection Point** is set to anything else.

Smooth %

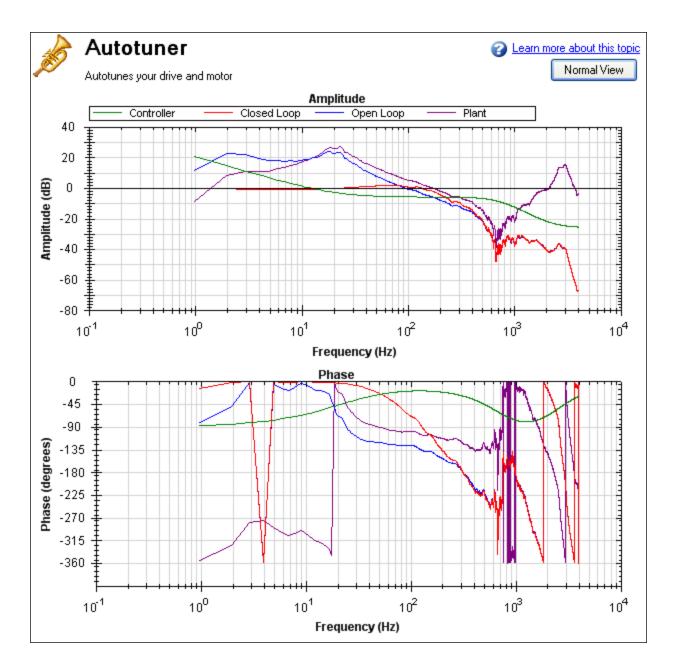
This value applies a moving average smoothing filter to the frequency response gathered during autotuning. This process reduces noise in the frequency response that can occur when making short frequency response measurements, using low resolution encoders, conducting low amplitude frequency response tests, or for other reasons. The smoothing filter iterates through each frequency on the FFT plot. For each frequency, all frequencies within the **Smooth** % range will have their magnitudes averaged.


For example, if you smooth a Bode plot with 5% smoothing, at 100 Hz, it will average all the values between 95Hz and 105Hz; when the filter gets to 1000 Hz, the filter will average all the values between 950 Hz and 1050 Hz.

As an example, assume a noisy sine sweep signal and use a 5% smoothing factor. Below is a noisy signal with a range of 100 Hz to 1000 Hz.

In this example, examing how the smoothing filter affects a single point shows how the smoothing filter works on a full plot. If you zoom in on 200 Hz \pm 1-5%, this gives a range of 190 Hz \pm 210Hz. The smoothing filter averages

this range of values and puts the average right on 200 Hz. The figure below shows the zoomed data around 200 Hz and the averaged value of all frequencies +/- 5% (the red box illustrates the range of frequencies being smoothed).



In the PST, the smoothing filter will do this analysis for every frequency point on the Bode plot. If the data is too noisy, then you can increase the smoothing percentage to smooth the noise out and see the underlying data patterns. A comparison of a system with 0.1% smoothing and 8% smoothing is shown below.

0.1% smoothing

8% Smoothing

Note: Smoothing decreases the peaks of resonances; if smoothing is too high, a resonance may be completely hidden. If the PST cannot identify a resonance due to high smoothing, the system may become unstable.

Measurement

This box sets the measurement type used during a measurement. The PST functions only if **Plant** measurement is selected; autotune does not function in other measurement modes.

- Closed Loop directly measures the closed loop frequency response of the servo.
- Plant directly measures the plant, including drive, motor, and mechanics coupled to the motor.
- **Controller**directly measures the controller response, which includes the tuning in the velocity and position loops, and anti-resonance filters 1 & 2.

Injection Point

The **Injection Point** box sets the source location of the excitation used during autotuning. **Current** mode uses a torque disturbance at the torque output. During current injection point measurements, the excitation will use the **Current Amplitude** value to set the size of the excitation.

Velocitymode uses a velocity command to excite the system. During velocity injection point measurements, the excitation will use the **Velocity Amplitude**value to set the size of the excitation.

Excitation Type

Excitation Type box allows you to chooses the type of excitation. Noise, pseudo random binary (PRB), and sine are the options available.

• **Noise** uses a pseudo random noise signal to excite the system. The signal varies between +/- current or velocity amplitude (depending on injection point). The signal contains a frequency spectrum that goes from a lower limit equal to:

16,000/(Excite Gap * Number Points) Hz

to a higher limit equal to:

(16,000/Excite Gap) Hz

The richness of the frequency spectrum comes from variance in the amplitude of the noise signal.

• **PRB** uses a pseudo random binary signal to excite the system. The signal is either + or – current or velocity amplitude (depending the injection point). The signal contains a frequency spectrum that goes from a lower limit equal to the larger of:

 $(16,000/(2^BODE.PRBDEPTH*Excite Gap))$ or 16,000/(Excite Gap*Number Points) Hz to a higher limit equal to:

(16,000/Excite Gap) Hz

BODE.PRBDEPTH is set to 19 by the PST. The richness of the frequency spectrum comes from variance in the phase of the signal, not the amplitude.

• **Sine** requires that you specify the start frequency, end frequency, and frequency step size. The sine sweep takes significantly longer than a noise or PRB measurement, but is often cleaner. Be careful when selecting a step size: too large of a step size may miss important resonances, and too small of a step size increases measurement time.

FFT Points

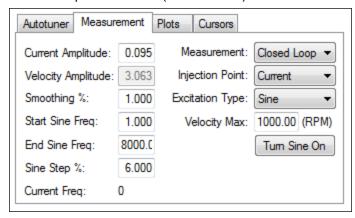
The **FFT Points**box is only visible and applicable in noise and PRB measurements. **FFT Points** sets the resolution of the FFT's measurement. The frequency resolution is equal to

16,000/(Excite Gap * FFT Points)

By increasing **FFT Points**, the resolution becomes finer, but noise in the frequency response increases.

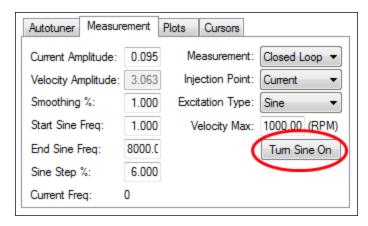
Excite Gap

The **Excite Gap** box is only visible and applicable in noise and PRB measurements. This box sets how frequently the test excitation is updated. The excite gap minimum value is 1; this value is normally set to 2 for autotuning. The excite rate is 16,000/gap. You can limit high frequency excitation by increasing the **Excite Gap** value.


Number Points

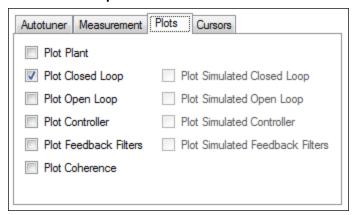
The **Number Points** box is only visible and applicable in noise and PRB measurements. This box sets the length of recording while measuring the frequency response of the system. The measurement length is:

Number Points * Excite Gap/16,000 seconds


Velocity Max

The **Velocity Max** box allows the user to specify the maximum velocity the motor should be able to move while performing excitation. This box is not in effect for normal drive operation; it is only visible during the PST excitation phases. This value is implemented as soon as the PST begins, and as soon as the PST is finished, the previous overspeed threshold (VL.THRESH) is restored.

If **Excitation Type** box is set to **Sine**, different configuration options become available.


- **Start Sine Freq**: The Sine sweep test will begin at this frequency. The start frequency must be greater than zero and less than the end sine frequency. **Start Sine Freq** is only visible and applicable to Sine measurements.
- End Sine Freq: The Sine sweep test will end at this frequency. The end frequency must be less than or equal to 8,000, and more than the sine start frequency. End Sine Freq is only visible and applicable in Sine measurements
- Sine Step %: This box sets the sine step size. The sine sweep is discrete, not continuous. Each frequency is a multiple of the previous. For example, if the first frequency was 1 and the step size was 6%, the second frequency would be 1 * 1.06 = 1.06 Hz, the third frequency would be 1.06 * 1.06 = 1.12 Hz. This continues until the current frequency exceeds the End Sine Frequency value. Sine Step % is only visible and applicable in Sine measurements
- **Current Freq**: This field displays the current frequency of the sine sweep . **Current Freq** is only visible and applicable in Sine measurements
- Turn Sine On: This button allows the user to excite the system at a single sine frequency. When this button is pressed, it grays out boxes that do not apply. You may change the sine frequency and amplitude. To stop the sine excitation, click Turn Sine Off. Turn Sine On is only visible and applicable in Sine measurements.

NOTE

When the sine excitation is used on low resolution encoders, high frequency excitation may cause less than 1 count of encoder movement. If

14.3.4.4 Plot Options

By default, only the measured closed loop plot is selected. You can control which of these responses are displayed on the Bode plot by checking or unchecking the Plot Plant, Plot ClosedLoop, Plot Open Loop, Plot Controller, and Plot Coherence checkboxes shown. The options Plot Simulated Closed Loop, Plot Simulated Open Loop, Plot Simulated Controller, and Plot Simulated Feedback Filters are only available in Bode plot mode, not PST mode.

Coherence

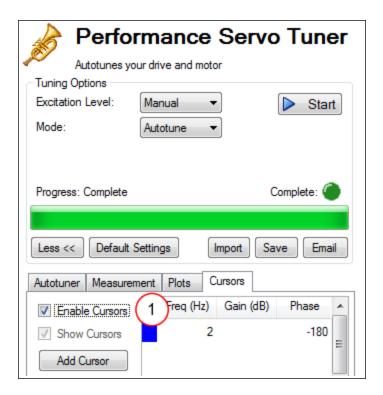
The coherence option is only available for noise and PRB measurements; it is not available for Sine excitation measurements.

Coherence is an indicator of how accurate your data is. For example, 0 dB (1 in linear numbers) means you have perfect coherence. Another way to think of this concept is that for one unit of input, you get one unit of output. Coherence is calculated as follows:

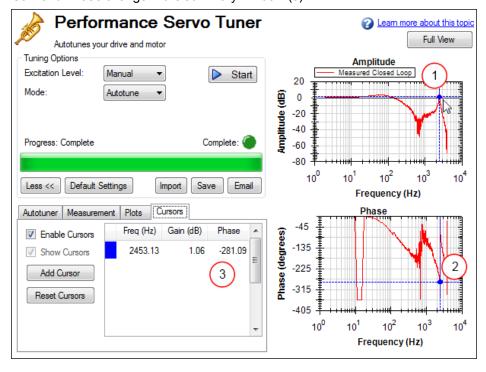
Coherence =
$$\frac{(Pxy \times Pxy^*)^2}{(Pxx \times Pxx^*) + (Pyy \times Pyy^*)}$$

where:

Pxx = Power Spectral Density of Input signal


Pyy = Power Spectral Density of Output signal

Pxy = Cross Spectral Density of Input and Output


* designates complex conjugate

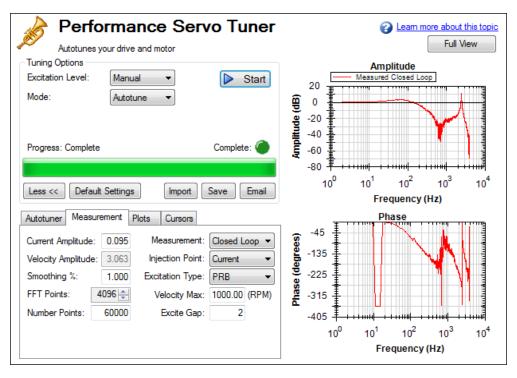
14.3.4.5 Cursors

Enabling cursors allows you to note specific points of interest on the Bode plot and create a table of reference points in the summary table. To enable cursors, click the **Enable Cursors** checkbox (1).

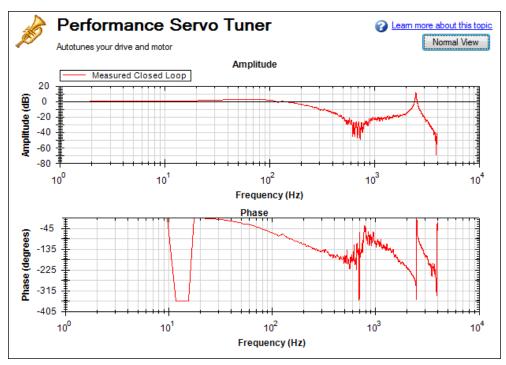
To move the cursor, move your mouse over the cursor in either the Amplitude (1), or Phase (2) plots, click and hold the left mouse button, and drag the cursor to a new location. Notice as you drag the mouse, the Frequency, Gain and Phase change in the summary window (3).

To add more cursors, click **Add Cursor**; you can add 10 cursors to the Bode Plot. When selecting a cursor, the cursor closest to the mouse will be selected. While dragging the cursor, the cursor will snap to the closest trace on the plot.

 $When cursors \, are enabled, zoom functions \, on the graph are disabled. \, To re-enable zooming, un-check \textbf{Enable Cursors}.$


The dotted crosshair lines are only drawn for the active cursor selected; to remove all cursors from the screen, but retain their position, uncheck **Show Cursors**. To reset all cursors, click **Reset Cursors**.

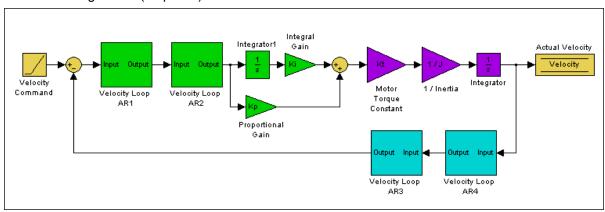
Note: If a CSV file is saved or emailed after placing a cursor on the Bode plot, a cursor summary is included in the CSV raw data.


14.3.4.6 Resizing Bode Plots

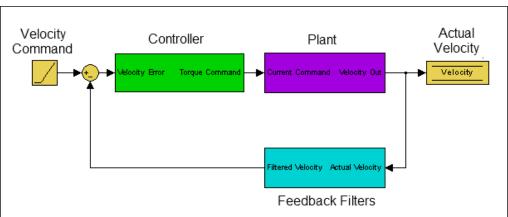
In the PST view, the **Full View**and **Normal View**button (1) in the upper right of the window allows you to see the Bode Plot in greater or less detail. When viewig the Bode Plot in full view, the PST settings are hidden behind the Bode Plot. To access the PST settings, click the **Normal View** button in the upper right of the window.

Simple measurement normal view

Simple measurement full view


Reading and Understanding the Bode Plot

You can operate the PST without understanding how to read a Bode plot; however, understanding Bode plots will help you to use more advanced tuning techniques, which are covered more in depth in the Advanced Tuning For Velocity and Position Loops documentation.


Four Bode plot traces are displayed by default:

- 1. Controller (green): This trace represents the frequency response of the tuning in the velocity loop and position Loop, this trace also includes anti-resonance filter 1 and 2 (also referred to as [C]).
- 2. Closed loop (red): This trace shows the frequency response of G/(1 + G * H) where G = C * P, and H is the frequency response of anti-resonance filters 3 and 4.
- 3. Open loop (purple): This trace shows the frequency response of G * H, where G = C * P, and H is the frequency response of anti-resonance filters 3 and 4.
- 4. Plant: This trace shows the frequency response of the mechanics of the drive and motor (also referred to as [P])

The diagram of the velocity loop on the drive below explains the frequency response that each of these traces represents: "Tuning Guide" (=> p. 189)

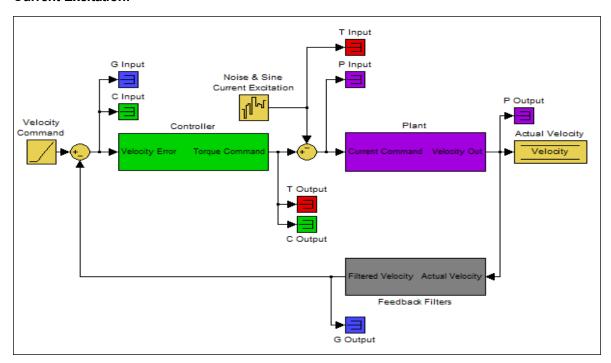
These blocks can be grouped into Controler, Plant, and Feedback sections:

All of the green blocks have been grouped together to create the Controller [C]. The Controller is the portion of the control loop containing all velocity and position loop tuning, including the forward path filters.

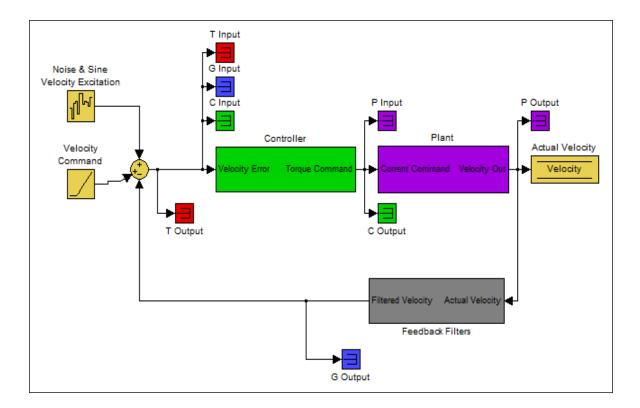
All of the purple blocks have been combined to make the Plant [P]. The plant represents the mechanical and electrical properties of the motor, drive and any mechanical bodies attached to the motor.

The two feedback filters have been combined into one block. This value is never measured directly; however it contributes to both the Open Loop [G] and Closed Loop [T] frequency responses.

The definition of the Open Loop [G] frequency response is:


Open Loop = Controller x Plant x Feedback Filters

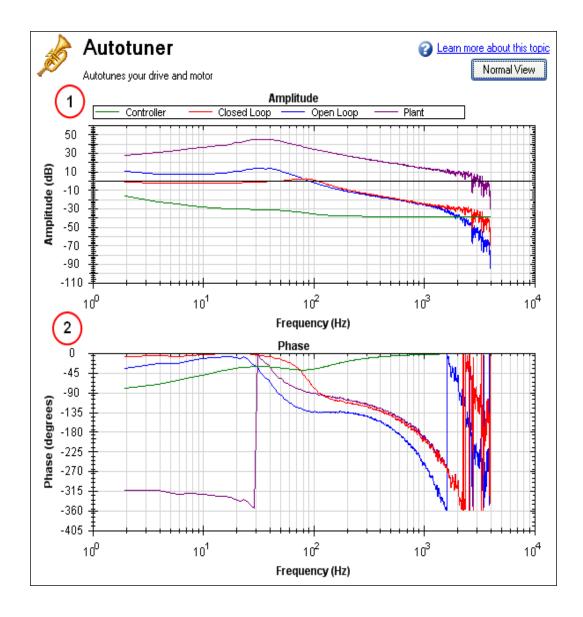
The definition of the Closed Loop [T] frequency response is:


$$ClosedLoop = \frac{Controller \times Plant}{1 + Controller \times Plant \times FeedbackFilters}$$

Below is a diagram of measurement points (input and output) for each of these frequency responses. The input and output markers have been color coded with the color they appear in the PST:

Current Excitation:

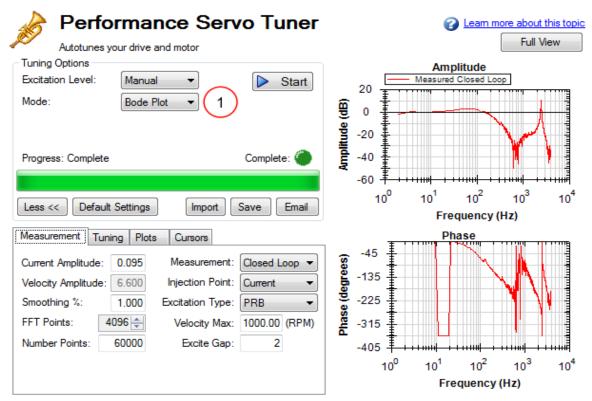
Velocity Excitation:



The resulting plots are the frequency response of output/input for each measurement.

For more information regarding these traces, please refer to the Advanced Tuning For Velocity and Position Loops documentation.

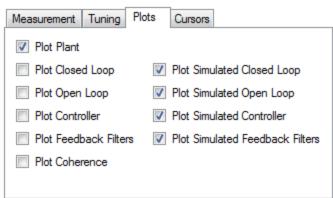
Below is a Bode plot of a motor with no load. The top plot is the magnitude plot (1); this plot shows the gain of the system with respect to frequency. This plot is often used to determine the bandwidth of the servo system.


The lower plot is the phase plot (2). This plot is used in conjunction with the magnitude plot to determine stability, and helps you to understand what kind of latencies exist in the servo system, or if latencies are induced by filters in the velocity loop.

Using the Performance Servo Tuner to Manually Tune Systems

Often, you must manually adjust a control loop in order to obtain optimal machine performance. You can use the Performance Servo Tuner (PST) interface to tune your control loop for best performance. A powerful feature of the manual tuning interface is the ability to simulate the frequency response before it is measured. This feature allows the user to take a base measurement, disable the motor, adjust tuning parameters, and simulate the frequency response of the motor without taking a new measurement. This process saves time and protects equipment from dangerous oscillations.

To begin the manual tuning process, put the Performance Servo Tuner into Bode Plot mode.

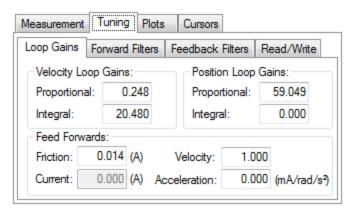

Several differences exist between PST and Bode Plot Interfaces:

- When the PST is put into Bode Plot mode, the **Autotuner** tab is removed from the advanced features, and replaced with a **Tuning** tab.
- The **Plots** tab unlocks simulated traces for closed loop, open loop, controller, and feedback filters.

Using the Tuning Simulation

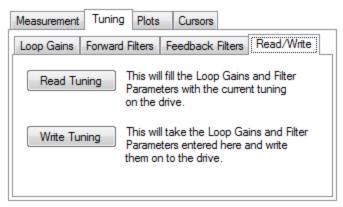
To simulate tuning, there must be a valid Plant Plot in the PST (whether measured with a Bode Plot measurement or a full Autotune).

To selecting simulated plot traces, click on the **Plots** tab and check the following boxes:



These selected boxes are the most common configuration for tuning; however, simulation will occur regardless of the checkboxes selected .

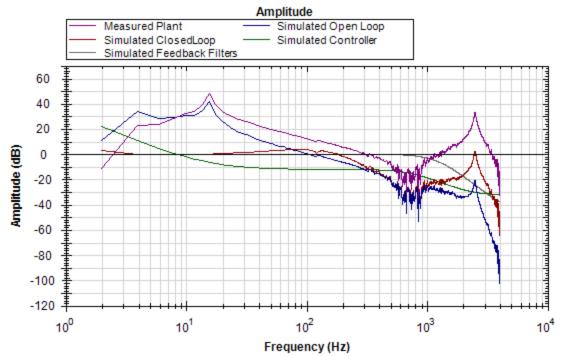
The boxes on the left plot the existing frequency response of the drive based on the tuning parameters that are loaded. The boxes marked "Simulated" (on the right) use the plant data from the measurement and the tuning parameters in the PST to simulate the performance of those tuning parameters without loading them to the drive.


Using the Performance Servo Tuner Manual Tuning Interface

To use the PST manual tuning interface, click on the **Tuning** tab.

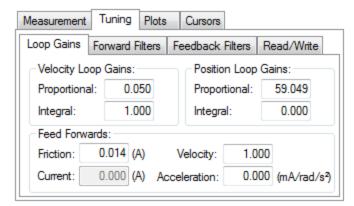
This tuning interface loads the tuning parameters on the drive each time a measurement is taken. Tuning parameters are split up into Loop Gains (Velocity Loop, Position Loop), Forward Path Biquad Filters, and Feedback Path Biquad Filters.

After modifying tuning gains, you must click on the **Read/Write** tab and click the **Write Tuning** button.

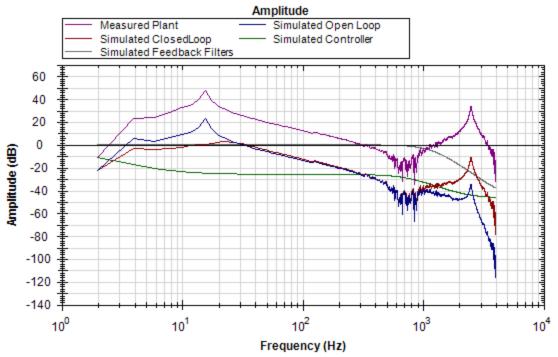


To restore the tuning on the drive to the PST interface, click the **Read Tuning** button.

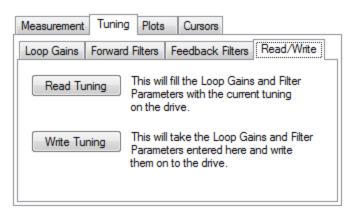
Note: If tuning gains are modified and a Bode Measurement is made without clicking the **Write Tuning** button, the PST will overwrite the tuning gains in the interface with the tuning parameters on the drive.

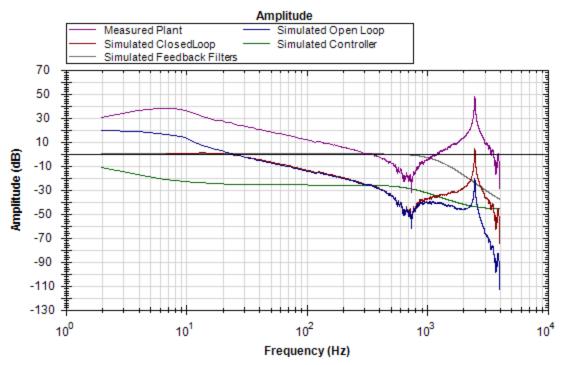

Simulating Modified Loop Gains with the Performance Servo Tuner

Here is the frequency response of a test system after using the PST.



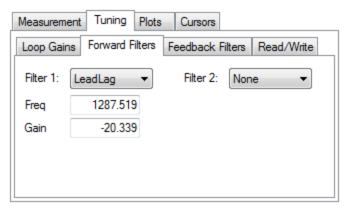
The Velocity Loop Proportional gain here is 0.248. If an application did not need to be tuned as stiff as this, then you could use the PST simulator to detune the motor to the desired bandwidth. A followup Bode Measurement can verify that the simulated response is correct.


Use the boxes in the Loop Gains tab to change tuning gains until the desired frequency response is achieved.


The detuning of velocity loop proportional and integral gains simulated that the bandwidth of the servo has been detuned from ~100 Hz to ~30 Hz.

Next, write the tuning parameters to the drive using the Write Tuning button on the Read/Write tab.

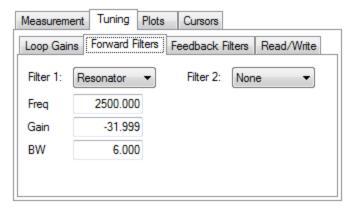
Now, complete a Bode Plot measurement to compare the simulated result with the new measured result.

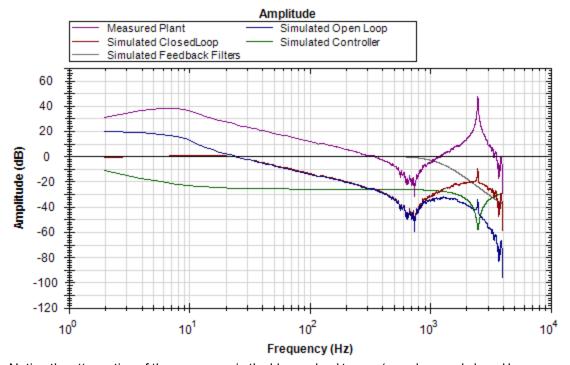

The new measured Bode Plot indicates we achieved slightly lower than 30 Hz bandwidth. The servo is stable, and tuning can be refined until desired performance is reached.

Simulating Filters with the Performance Servo Tuner

Resonances add many challenges to tuning a servo. Using the correct filter in an application can greatly improve system performance when resonances are present.

The Bode plot in this example shows a sharp, high-magnitude resonance at 2500 Hz. Because this is the only resonance, this is an indicator that a resonator (a tunable notch) filter may increase performance.


Click on the Forward Filters tab:


The results of the autotune are still on the drive, and provide adequate tuning. A lead lag filter is the default tuning filter, and is a good general case filter for most servo loops.

Because this test fixture has such a prominent single resonance, we can improve performance (and reduce noise) by placing a notch filter at this resonance.

By tuning a Resonator to best cancel the resonance in the plant, the resonance in the open loop, and therefore the closed loop can be minimized.

The resulting frequency response using the above resonator configuration is shown below:

Notice the attenuation of the resonance in the blue and red traces (open loop and closed loop, respectively).

Using Filters to Reduce Noise

To reduce noise, it is best to place filters in the feedback path. This placement attenuates the noise resulting from a noisy encoder being amplified by the current loop. This noise can be filtered by a forward path filter, however if a filter is placed in the forward path that introduces phase lag (like a lowpass) then your motion profile will exhibit that phase lag in the command signal. If the filter is placed in the feedback path, this lag will be avoided.

14.4 Tuning Guide

14.4.1 Overview

This section covers tuning the velocity and position loops in the AKD. Servo tuning is the process of setting the various drive coefficients that are needed for the drive to optimally control the servo motor for your application. There are different ways to tune, and several are covered here. We will give you guidance on what the different methods of tuning are and when to use them.

The AKD works in three major operation modes: torque, velocity, and position operation mode. No servo loop tuning is required for torque mode. Velocity loop and position loop tuning are covered below.

The AKD has an auto tuner that will provide the tuning that many applications will need. This section describes the tuning process and how to tune the AKD, specifically for cases where the user does not want to use the auto tuner. Tuning in this section will focus on tuning in the time domain. This means that we will look at the velocity or position response vs. time as the criteria we use to decide how well tuned a control loop is tuned.

14.4.2 Determining Tuning Criteria

Choosing the proper specifications for a machine is a prerequisite for tuning. Unless you have a clear understanding of the type of performance needed to push the machine into production, the tuning process will cause more problems and headaches than it solves. Take time to layout ALL the requirements of the machine—nothing is too trivial to consider.

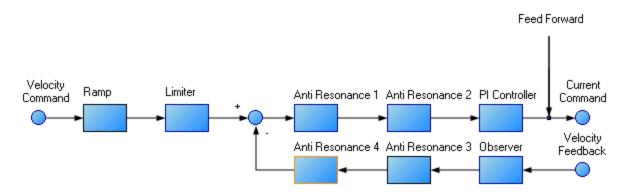
- Determine what the most important criteria are. The machine was likely designed and developed with a
 certain performance in mind. Include ALL performance criteria in the specification. Do not concern yourself with whether or not the criteria sound scientific. (i.e. If the motion needs to visibly look smooth, put it
 in the specification. If it can't have any noise, put it in the specification.) At the end of the development
 phase, the machine's performance should match the performance previously set in the specification. This
 will ensure that the machine meets its performance goals and that it is ready for production.
- Test the machine with realistic motion. Do not simply tune the machine to make short linear motion, when it will make long, s-curve motions in the real world. Unless you test the machine with realistic motion, there is no way to determine if it is ready for production.
- Determine some specific, quantitative criteria for identifying unacceptable motion. It's better to be able to tell when a motion is unacceptable than to try and figure out the exact point where acceptable motion becomes unacceptable. Here are some examples of motion criteria:
 - a. +/-x position error counts during the entire motion.
 - b. Settling to within +/- x position error counts, within y milliseconds.
 - c. Velocity tolerance of x% measured over y samples.
- DO NOT pick criteria based on what is the most popular technique of the day. It is important to focus on
 the things that will get the machine into production with reliable performance, based on fundamental understanding of the system.

After you have constructed a detailed servo performance specification, you are now ready to start tuning your system.

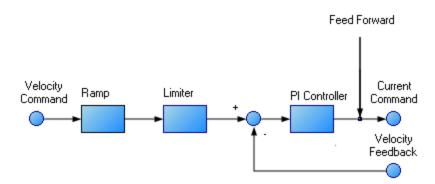
14.4.3 Before You Tune

In the worst case, if something goes wrong during tuning, the servo can run away violently. You need to make sure that the system is capable of safely dealing with a servo run away. The drive has several features that can make a servo run away safer:

- Make sure that the limit switches turn the drive off when tripped. If a complete run away occurs, the motor can move to a limit switch very quickly.
- Make sure the max motor speed is set accurately. If a complete run away occurs, the motor can reach max speed quickly and the drive will then disable.


14.4.4 Closed Loop Tuning Methods

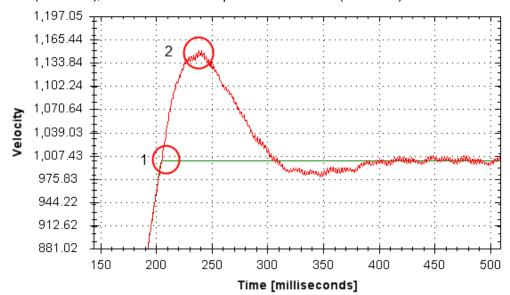
The closed loop control loop is responsible for the desired position and / or velocity (trajectory) of the motor and commanding the appropriate current to the motor to achieve that trajectory. The challenge in closed loop control loops is to make a system that not only follows the desired trajectory, but also is stable in all conditions and resist external forces, and do all of this at the same time.


When in velocity operation mode, only the velocity loop is tuned. When in position operation mode, both the velocity and position loops must be tuned.

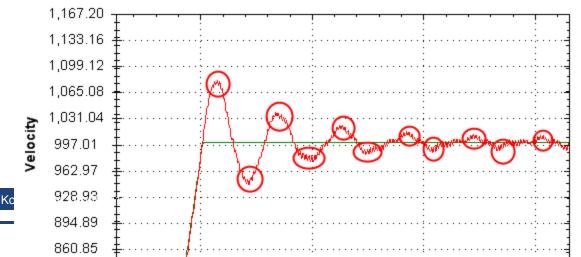
14.4.4.1 Tuning the Velocity Loop

The velocity loop on the AKD consists of a PI (proportional, integral) in series with two anti resonance filters (ARF) in the forward path and two anti resonance filters in series in the feedback path.

To perform basic tuning of the velocity loop, you can use just the PI block and set ARF1 and ARF2 to unity (no effect) and set the observer to 0 (no effect). Using just the PI block simplifies the process of tuning the velocity loop. To start tuning you can adjust the PI Controller block first. A simplified velocity loop without anti resonant filters and observer is shown below. This is how you can think of the loop before the anti resonant filters and observer is used.

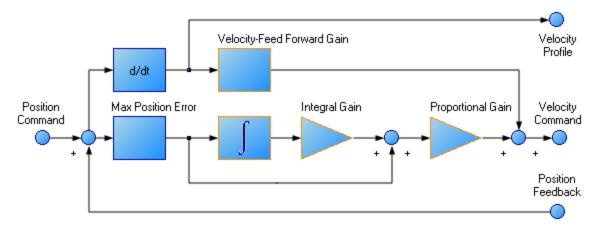

Procedure for simple velocity loop tuning:

- 1. Set DRV.OPMODE to velocity or position, as appropriate for your application. If DRV.OPMODE is set to position, set VL.KVFF to 1.0.
- 2. Set VL.KP to 0.
- 3. Set VL.KI to 0.
- 4. Set service motion to make a motion that is similar to the move speeds that will be used in the real application. Do not set the service motion to a speed higher than ½ of the maximum motor speed, to allow for safe overshoot during tuning. Set acceleration to an appropriate value for your application. Set service motion to reversing. Set time1 and time2 equal to 3 times the expected settling time for the system. 1.0 second is a reasonable value for time1 and time2, if you don't know the expected settling time.
- 5. Enable the drive and start the service motion. You should see no motion, as there are no velocity loop tuning gains at this point.


6. When adjusting VL.KP and VL.KI, below record VL.FB and VL.CMD. These are the traces that are used to determine the performance of the velocity loop.

- 7. Adjust VL.KP. Keep increasing VL.KP by a factor of 2 until you either:
 - Hear an objectionable noise from the system (buzzing, humming, etc.)
 - See velocity overshoot. No velocity overshoot should be present when using only VL.KP.
 - When you reach one of the limits above, decrease VL.KP to the value where there were no objectionable noises or overshoot.
- 8. Adjust VL.KI. Increase VL.KI by a factor of 1.5 until you either:
 - Hear or see objectionable noise or shuddering from the system
 - See > 15% overshoot
 - Here is an example of 15% overshoot. This is zoomed in view of a service motion commanded to 1000 RPM (location 1), where the overshoot peaks at 1150 RPM (location 2).

• Here is an example of 11 overshoots. Each overshoot is shown by a red circle.



- When you reach one of the limits above, decrease VL.KI to the value where there were no objectionable noises or overshoot.
- 9. Stop the service motion

14.4.4.2 Tuning the Position Loop

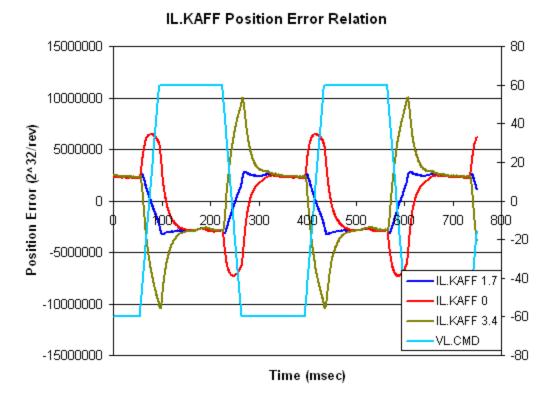
The position loop is a second loop that builds upon a correctly tuned velocity loop to provide accurate control over position. The position loop is a simple element that consists of a PI loop. It is simplest to tune the P and I terms in the velocity loop and use only the P term in the position loop.

At most, use only three non-zero P and I terms from both the velocity loop and the position loop. One combination would be VL.KP, VL.KI, and PL.KP. Another valid combination would be VL.KP, PL.KP, and PL.KI. The VL.KP, VL.KI, and PL.KP combination is shown here.

Procedure for tuning position loop:

- 1. Set VL.KVFF to 1
- 2. Increase PL.KP until either:
 - You see 25% overshoot
 - You see > 3 overshoots
 - You hear objectionable noises from the system.
 - When you reach one of the limits above, decrease PL.KP to the value where there were no objectionable noises or overshoot.

14.4.5 Torque Feedforward Tuning Methods


The torque based feedforward terms on the AKD effectively model the physics of your motor and allow the drive to command the appropriate current, even before the encoder has time to send data back to the drive. Torque based feedforward terms allow you to lower following error with virtually no stability penalty.

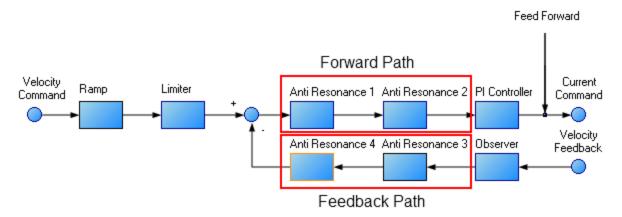
14.4.5.1 Shape Based Feedforward Tuning

To adjust IL.KAFF:

- Tune the VL.KP and VL.KI as shown above in the velocity loop tuning section. Set DRV.OPMODE to velocity (or set PL.KP and PL.KI to 0 and vl.kvff to 1).
- Set up a short, repeating service motion with accelerations that are representative of the moves you will use in your application (exact values for acceleration are not critical).
- Turn up IL.KAFF until the position error (PL.ERR) is proportional to the inverted velocity command. The adjustment of IL.KAFF will focus on removing bumps on acceleration and deceleration. The pic-

ture below has an ideal value of IL.KAFF of 1.7.

14.4.6 Using Anti-Resonance Filters


The AKD has four anti resonance filters. Two filters are in the forward path and two are in the feedback path.

Similarities

• Both types are typically used to enhance stability and performance of the system.

Differences

- Forward path filters result in higher phase lag in closed loop system response.
- Forward path filters limit spectrum from reaching the motor / feedback path filters only filter the feedback after it has been to the motor.

1.6.1 Types of Anti Resonance Filters

Low Pass

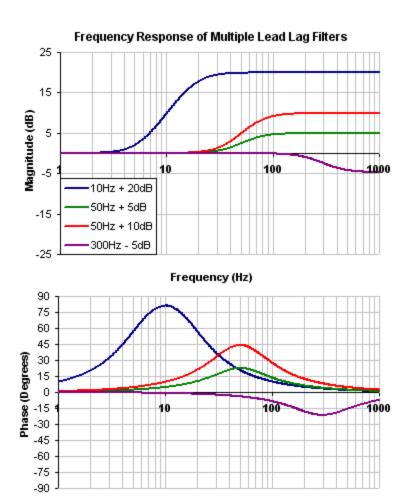
A low pass filter allows signals through below a corner frequency and attenuates the signals above the same corner frequency. The behavior at the corner frequency can be specified with the low pass Q.

To specify a lowpass filter, you must specify the frequency and Q for both the zero and pole on anti resonance filter 1. To do this, see the following example using the terminal commands that sets:

- Filter Type = Biguad
- Zero frequency = 700 Hz (This is the Lowpass cutoff frequency)
- Zero Q = 0.707
- Pole frequency = 5000 Hz
- Pole Q = 0.707

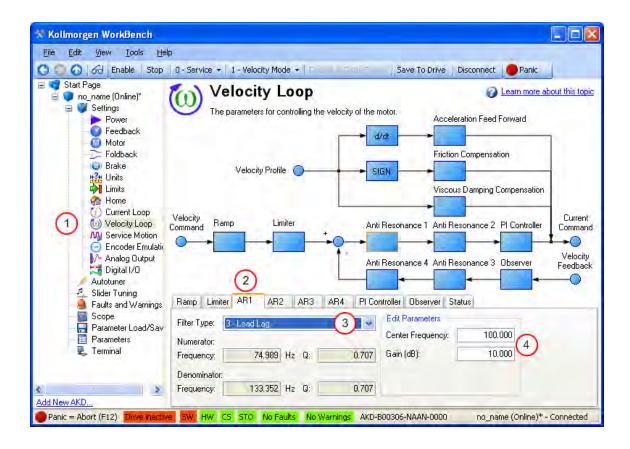
VL.ARTYPE10

VL.ARZF1700

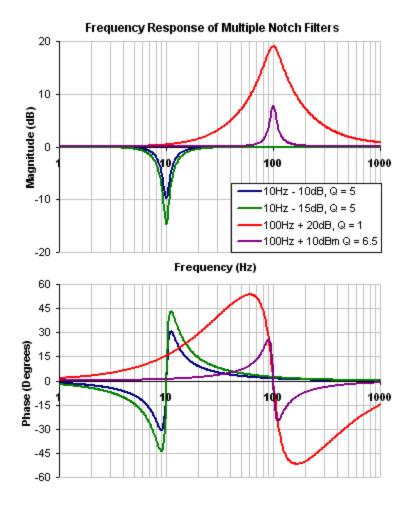

VL.ARZQ1 0.707

VL.ARPF1 5000

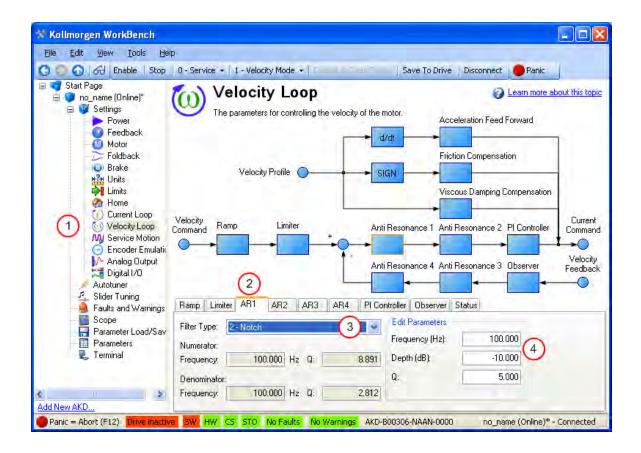
VL.ARPQ1 0.707


Lead Lag

A lead lag filter is a filter that has 0 dB gain at low frequencies and a gain that you specify at high frequencies. You also specify the frequency that the gain at which the transition occurs.


To specify a Lead Lag filter, you must specify the Center Frequency and high frequency Gain (dB). To do this, see the following example by clicking on the Velocity Loop:

Click on Velocity Loop (1), then select the AR1 Tab (2), using the Filter Type drop down, select Lead Lag (3), lastly, enter the desired Center Frequency and Gain of the Lead Lag filter (4).

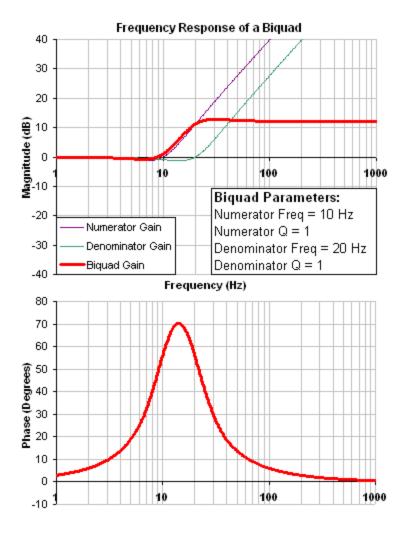

Notch

A notch filter changes gain at a specific frequency. You specify the frequency at which the gain change occurs (Frequency (Hz)), how wide of a frequency range the cut occurs (Q), and how much the gain changes (Notch Depth (dB)).

To specify a notch filter, you must specify the Frequency (Hz), Depth (dB) and Width (Q) of the notch. To do this, see the following example by clicking on the Velocity Loop:

Click on Velocity Loop (1), then select the AR1 Tab (2), using the Filter Type drop down, select Notch (3), lastly, enter the desired Frequency, Depth and Q of the Notch filter (4).

Biquad

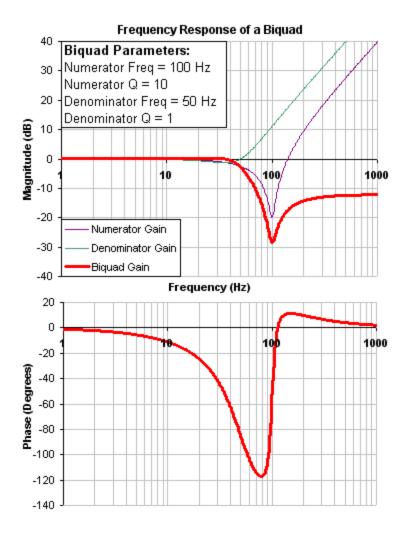

A biquad is a flexible filter that can be thought up as being made up of two simpler filters; a zero (numerator) and a pole (denominator). In fact, the pre-defined filters mentioned above are really just special cases of the biquad.

Both the zero (numerator) and the pole (denominator) have a flat frequency response at low frequencies and a rising frequency response at high frequencies. The transition frequency and damping must be specified for both the numerator and denominator.


Analyzing the numerator and denominator, the frequency response calculation is simple:

If the numerator and denominator are plotted in dB, the biquad response is numerator – denominator. Understanding how the numerator and denominator work is crucial in understanding how a biquad frequency response is created.

Below is an example of a biquad filter similar to a Lead Lag filter type. To help understand how to determine the frequency response of the biquad, the numerator and denominator response have been plotted. If the denominator is subtracted from the numerator, the biquad response is the result.



The biquad filter is very flexible, this allows custom filters to be designed. Below is an example of a resonance filter using a biquad, notice how the high Q values affect the numerator and denominator. This gives a biquad frequency response similar to a mechanical resonance.

The previous two examples used a numerator frequency lower than the denominator frequency, yielding a positive gain in high frequencies. If the denominator frequency is lower than the numerator frequency, then high frequencies will have a negative gain.

Below is an example where the numerator frequency is higher than the denominator, notice the high frequencies have a negative gain.

To specify a biquad filter, you must specify the frequency and Q for both the zero and pole on anti resonance filter 3. To do this, see the following example using the terminal commands that sets:

- Filter Type = Biquad
- Zero frequency = 100 Hz
- Zero Q = 0.7
- Pole frequency = 1000 Hz
- Pole Q = 0.8

VL.ARTYPE30

VL.ARZF3 100

VL.ARZQ3 0.7

VL.ARPF3 1000

VL.ARPQ3 0.8

14.4.6.1 Biquad Calculations

In the s-domain, the linear biquad response is calculated:

Biquad Frequency Response =
$$\frac{s^2 + \frac{\omega_N}{Q_N} s + \omega_N^2}{s^2 + \frac{\omega_D}{Q_D} s + \omega_D^2}$$

To convert from idealized s-domain behavior to a more realistic z-domain behavior, we convert using a pole / zero transform. To calculate the frequency response for an individual frequency:

$$t = 62.5 \mu \sec$$

$$N_{Rad} = 1 - (2Q_N)^{-2}$$

$$N_{2Unscaled} = 1$$

$$if(N_{Rad} > 0): N_{1Unscaled} = -2e^{-2\omega_N \zeta_N t} \cos(\omega_N t \sqrt{1 - \zeta^2})$$

$$if(N_{Rad} <= 0): N_{1Unscaled} = -2e^{-2\omega_N \zeta_N t} \cosh(\omega_N t \sqrt{1 - \zeta^2})$$

$$N_{0Unscaled} = e^{-2\omega_N \zeta_N t}$$

$$D_{Rad} = 1 - (2Q_D)^{-2}$$

$$D_2 = 1$$

$$if(D_{Rad} > 0): D_1 = -2e^{-2\omega_D \zeta_D t} \cos(\omega_D t \sqrt{1 - \zeta^2})$$

$$if(D_{Rad} <= 0): D_1 = -2e^{-2\omega_D \zeta_D t} \cosh(\omega_D t \sqrt{1 - \zeta^2})$$

$$D_0 = e^{-2\omega_D \zeta_D t}$$

$$N_{\textit{Scale}} = \frac{N_{\textit{0Unscaled}} + N_{\textit{1Unscaled}} + N_{\textit{2Unscaled}}}{D_{\textit{0}} + D_{\textit{1}} + D_{\textit{2}}}$$

$$N_2 = N_{2Unscaled} / N_{Scale}$$

$$N_1 = N_{1/Inscaled} / N_{Scale}$$

$$N_0 = N_{\text{OUnscaled}} / N_{\text{Scale}}$$

$$\angle_{\tau} = \omega t = 2\pi * freg * t$$

$$Num_{Re} = N_2 Cos(2 \angle_z) + N_1 Cos(\angle_z) + N_0$$

$$Num_{lm} = N_2 Sin(2 \angle_z) + N_1 Sin(\angle_z)$$

$$Den_{Re} = D_2Cos(2\angle_7) + D_1Cos(\angle_7) + D_0$$

$$Den_{lm} = D_2 Sin(2 \angle_z) + D_1 Sin(\angle_z)$$

$$Gain_{dB} = 20 \log_{10} \left(\frac{\sqrt{Num_{Re}^{2} + Num_{Im}^{2}}}{\sqrt{Den_{Re}^{2} + Den_{Im}^{2}}} \right)$$

$$Phase_{deg} = \frac{180}{\pi} \left(tan^{-1} \left(\frac{Num_{Re}}{Num_{Im}} \right) - tan^{-1} \left(\frac{Den_{Re}}{Den_{Im}} \right) \right)$$

14.4.6.2 Common Uses Of Anti Resonance Filters

Low pass filters in the feedback path. This is a common way to deal with noisy feedback sensors. When used in combination with noisy feedback sensors, significant reduction in audible noise can result.

Lead / lag filters in the forward path. This is a common way to achieve phase lead for control loops without exciting high frequency resonances.

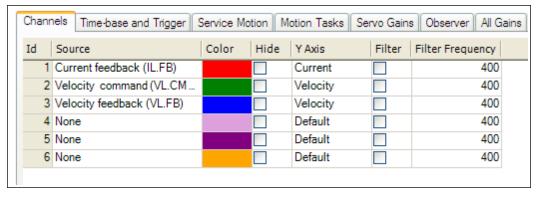
Low pass filters in the forward path. This is a common way to limit high frequency energy from reaching a system that can not productively use energy at these high frequencies. This is also used to lower the effect of system resonances over a wide range of frequencies.

Notch filters are used to cancel system resonances. Notch filters are designed to be the opposite in amplitude of system resonances. Notch filters are applied to very specific frequencies, and therefore you must know your system resonance frequencies accurately to use them effectively.

15 Scope

15.1 Overview

The scope allows you to plot up to six different parameters from the drive. Use **Full View** and **Normal View** to toggle between the scope setup (normal) and a larger view of only the scope output (full). You can configure, save, and restore scope settings from the normal view. The lower right corner of the normal view also includes a box that indicates status and drive and scope control buttons (**Enable Drive**, **Start Recording**, and **Refresh**).


15.2 Using the Scope

You can set up scope plots using the tabs summarized below:

Tab	Function
Channels	Select data source, plot axes, and plot appearance.
Time Base and Trigger	Select how much data to record and when to start recording the data.
Service Motion	Generate basic motion.
Servo Gains	Adjust the servo loop gains.
All Gains	View all current tuning gains in the drive and manually edit gains.
AR1, AR2, AR3, AR4	Adjust filter settings.
Save and Print	Save the plot as a raw data file or as an image file; email the plot; print the plot; open the data file in Excel.
Measure	Display basic data read from the plots.
Cursors	Turn on the cursors and view the data at the cursor positions.
Display	Pan, zoom, and control the grid and background color.

15.2.1 Scope Channels Tab

The **Channels** tab allows you to select and record up to six channels simultaneously. Select the data to record for each channel from the lists in the **Source**, **Color**, **Y-axis**, and **Filter** and **Filter** Frequency columns. Once a recording is shown on the scope screen, you can click **Hide** to remove a channel from the scope display.

15.2.1.1 Source Column

To set a channel to record, click the source you want to set and choose the appropriate channel. You can choose from None (no data is collected on that channel), preset trace types, or enter a user defined trace. Choosing "<User Defined>" allows you to record data from pre-defined locations. These locations are provided by the factory to collect less common values.

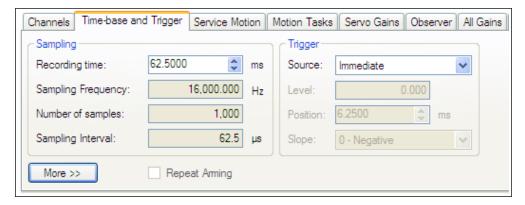
15.2.1.2 Color Column

For valid sources, you can click on the color in the Color tab and choose a different color than the default, or create a custom color.

15.2.1.3 Hide Column

Youcancheckthe Hidebox to hide agiven plottrace. This feature can make it easier to focus on specific data as needed.

15.2.1.4 Y-Axis Column

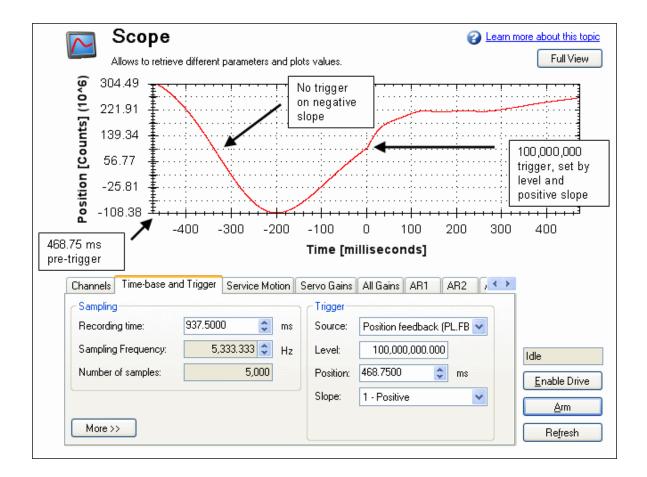

The Y-axis column allows you to choose on which Y-axis the channel will be displayed. Several predefined Y-axis groups exists. Click on the item in the column to change the label for the trace.

15.2.1.5 Filter and Filter Frequency Column

Check this box and use the frequency column to apply a low pass filter to the data collected. The filter is applied when the data is collected. It is not applied to data already collected if this is checked after the data is collected.

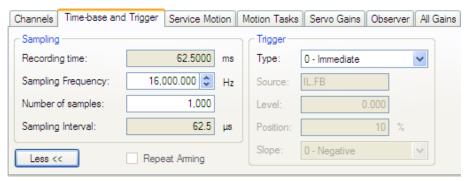
15.2.2 Scope Time-base and Trigger Tab

Use the **Time-base and Trigger** tab to select how much data to record and when to start (trigger) recording the data. You can set length of recording in ms and the sampling frequency in Hz. The number of samples is a calculated value displayed for reference. The trigger can be set to trigger immediately when you click **Start Recording** to trigger when a specified value for a given signal is reached. The default **Time-base and Trigger** view specifies recording time, sampling frequency, and either an immediate trigger or a trigger based on a specified signal. Click the **More** button in this view to specify a given number of samples, sampling frequency, sampling interval, and access additional trigger options.



In this tab, you can set length of recording in ms and the sampling frequency in Hz. The number of samples is a calculated value displayed for reference. You can also choose the trigger source to be **Immediate** (triggers as soon as you click the **Start Recording** button) or to be one of many predefined sources.

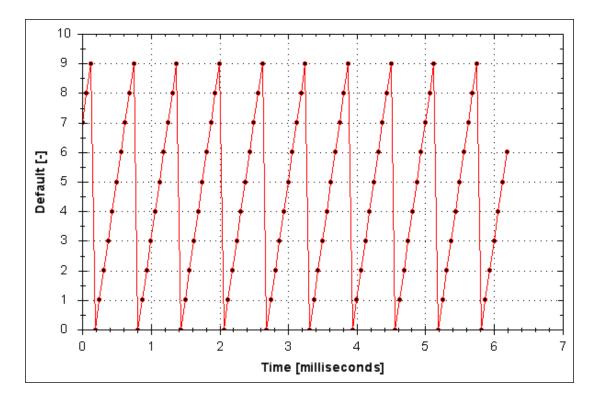
If you choose a source other than **Immediate**, you can set the level, position, and slope for the trigger value.


- Level sets the value of the source that triggers the recording to start.
- Position sets the amount of time that the scope displays before the trigger occurred.
- Slope sets whether the source data must pass the level value in a positive or negative direction.

An example of triggering is shown below:

15.2.2.1 Scope Time-base and Trigger, More View

Click **More** to display additional options for configuring the time-base and trigger.


In the **Sampling** area of this view, you can specify the recording length by entering a sampling frequency and a number of samples. Here, the recording time is a calculated value displayed for reference.

What is triggering?

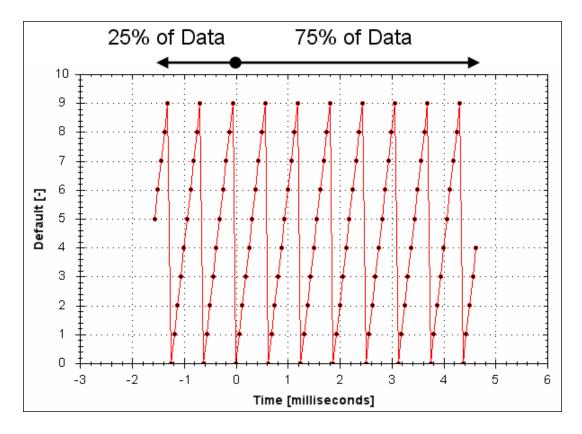
Triggering allows you to precisely control the start point of data collected in the scope. For example, if you are looking for a large spike, you can set the trigger to start the scope to begin recording when it sees the large spike. This section describes the triggering functionality of the scope.

Test Signal

As an example, it is useful to examine variations on a record of a test signal that generates a sawtooth signal. The signal starts at 0 and increases by one every drive sample (1/16,000 second) to a maximum of 9, then returns to 0. This signal continues indefinitely. The record of this signal is shown below.

15.2.2.2 Trigger Type

The **Trigger** area in the **More** view offers more flexibility than the default view. You can specify four types of trigger types (REC.TRIGTYPE):

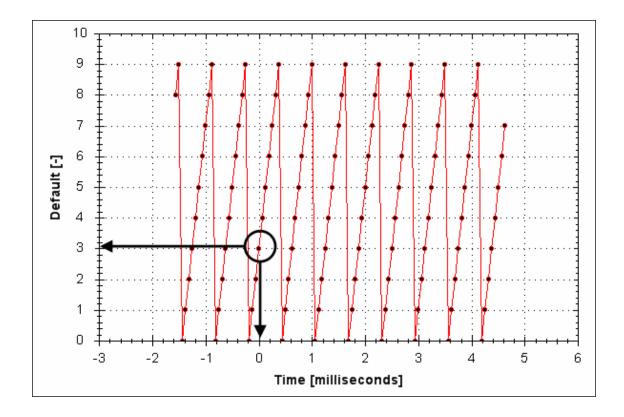

- **Immediate 0**. This mode will start recording as soon as the recording command (REC.TRIG) is received by the drive.
- Command / On Next Command 1. This trigger type lets you specify a trigger on the next telnet command received by the drive. This is useful in a telnet session via Hyperterminal (or a similar program). WorkBench is constantly sending telnet commands, so this is not typically used in a WorkBench session.
- Parameter / On Source Signal 2. This trigger type lets you specify a trigger source and set of conditions to trigger recording of data. This is very similar to the triggering used on oscilloscopes.
- Boolean 3. This trigger type lets you trigger on a boolean (0 or 1), such as drive active status.

15.2.2.3 Trigger Position

Trigger Position (REC.TRIGPOS) allows you to collect data that occurs before the trigger occurs. If you have a rare condition, you may want to see the conditions that led up to it. Trigger position lets you control how much signal is collected before the trigger condition occurred.

Trigger position is specified in units of percent (%). If you specify a trigger position of X%, X% of the data is before 0 ms in the data time and 100-X% (the rest of the data) is at or greater than 0 ms. In the picture below, trigger position is set to 25% (REC.TRIGPOS 25).

In the WorkBench scope, the 0 time point is clear. When collecting the data via REC.RETRIEVE or similar commands, the time is not returned, so some caution should be used when the trigger point is important to understand. Trigger position is not used in trigger type "Immediate" (TRIGTYPE 0).

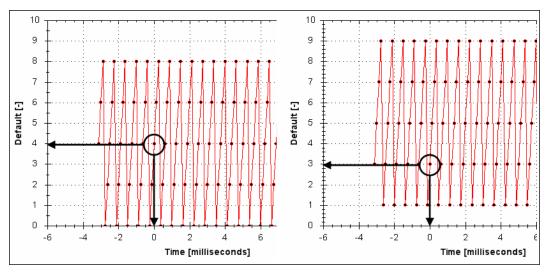

15.2.2.4 Trigger Value

The trigger value (REC.TRIGVAL) specifies a target value that should trigger the recording to start. The trigger value is used in trigger type Parameter / On Next Signal only.

The trigger value is not used in the boolean trigger type. Use the trigger slope to set the polarity of the boolean trigger. When the trigger slope is positive, the trigger value will trigger when:

- The trigger source is less than the trigger value in the previous recording sample
- The trigger source is greater than or equal to the trigger value in the current recording sample

Below is an example showing triggering of trigger value of 3 (REC.TRIGVAL 3) and positive trigger slope (REC.TRIGSLOPE 1). You can see that the recording triggers at time zero when the source reaches the value of 3.


When the trigger slope is negative, the trigger value will trigger when:

- The trigger sources is greater than the trigger value in the previous recording sample.
- The trigger source is less than or equal to the trigger value in the current recording sample.

15.2.2.5 Effects of Recorder Gap

When the recording rate is less than 16,000 Hz (REC.GAP > 1), there can be some impact on the triggering of the recorder. When using pretriggering and a recording rate of less than 16,000 Hz, the trigger only evaluates every N samples, where N is the value of REC.GAP. Two effects result from this condition:

You cannot be sure of the moment that the recorder is triggered any closer than N samples. An example of
this is shown below where the trigger value is set to 3, the trigger slope is positive and the recorder gap is
2. Both examples are the same data, but one instance collected and triggered on the odd data. The other
example collected and triggered on the even data.

2. You can miss triggers, whose duration is less than N samples, where N is the value of REC.GAP. This is because the trigger is only evaluated every N samples.

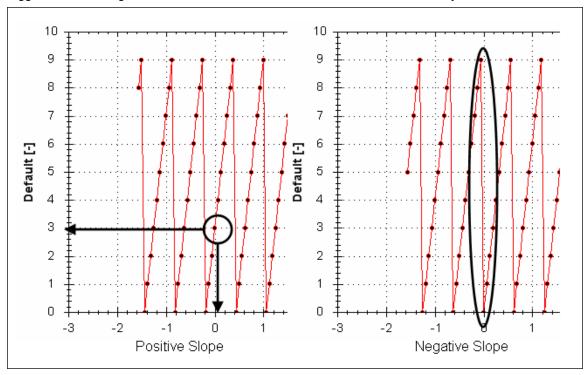
A workaround for the above effects is available by setting the recorder trigger position to zero (REC.TRIGPOS 0). This eliminates conflicts between pretrigger and post-trigger timing and will guarantee trigger evaluation every sample, eliminating the cases above.

15.2.2.6 Trigger Slope

Trigger Slope specifies whether you trigger on a positive or negative change in the trigger source. The effect of the trigger slope is different for trigger type Boolean and On Next Signal modes.

Boolean Trigger Type

When using Boolean type:


- A positive slope will trigger when the trigger source is 1
- A negative slope will trigger when the trigger source is 0

The boolean trigger type is a state trigger. There is no need to transition from 0 to 1 to trigger with the positive slope. If the trigger source is 1 from the start, the positive slope will immediately trigger.

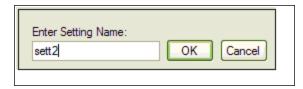
On Next Signal Trigger Type


With "On Next Signal" trigger type allows you to specify if the recorder should trigger when the signal crosses the trigger level in the positive or negative direction. The signal only needs to reach the trigger level; it does not need to pass the trigger level.

In the examples below, the trigger value is set to 3 (REC.TRIGVAL 3.000). You can see that with positive slope, the trigger occurs exactly when the signal transitions from 2 to 3, because it reached 3. The negative slope case triggers when the signal transitions from 9 to 0, because it crossed 3 on the way.

15.3 Scope Settings

Scope settings are used to store and retrieve the scope parameters. You can save multiple settings, called "presets", under different names. You can save, delete, import, or export the presets. The settings are stored in Work-Bench project file (default.wbproj) and settings are common to all the drives in WorkBench.



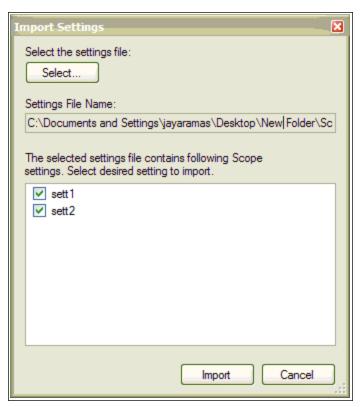
15.3.1 Load a setting (preset) to Scope screen

In Scope Settings section, the existing presets are listed in the **Select Setting** box. To load a setting to the scope screen, select the desired preset from the **Select Setting** list.

15.3.2 Create a new preset

- 1. Modify any scope parameters.
- 2. Select Save and Print tab.
- 3. Click Save current settings As. The following dialog is displayed:

4. Enter the setting name and click **OK**. The current settings are saved as a preset with the given name and displayed in the list.


15.3.3 Save or delete preset

Save saves any modification to the open preset. Delete deletes the open preset.

15.3.4 Import preset

Import the presets contained in the selected settings file as follows:

- 2. Select the settings file by clicking "Select..." button.
- 3. All the scope presets will be displayed contained in the selected settings file.
- 4. Select/Deselect the presets and then click on Import.
- 5. If preset name already exists in application the confirmation message will be shown to user to replace it or to ignore.

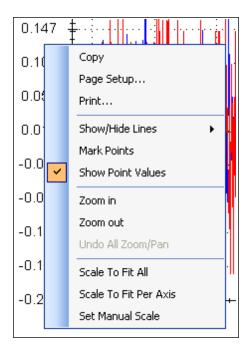
15.3.5 Export preset

Export a preset to a file as follows:

1. Click **Export** and the following dialog is displayed:

- 2. The existing presets are displayed and user can select/deselect the preset to export.
- 3. Select the file name to export.
- 4. Click **Export** to export the selected presets to a file.

15.3.6 Scope axis scaling and zooming


The scope provides two mechanisms to allow the you to visualize the data:

- Scaling: you can choose the scale for the different axes.
- Zooming: you can choose a particular portion of the scope that you want to observe more in details, and then come back to previous scaling.

Two different scaling modes are provided on each axis:

- Manual: you can determine the minimum and maximum value of the axis (X or Y axis).
- Scale to fit: the program will compute a scale for this axis that will display all the curves bound to it (X or Y axis).

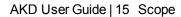
These functionalities are accessible through the contextual menu when right-clicking in the axis zone. A simple left-click in the axis zone will provide the manual range functionality. A supplementary functionality allows you to perform a scale to fit on all axes is also available, which allows a good overview.

The zoom functionality allows you to navigate in a portion of the graphic. When you reset the zoom, the initial scales are shown.

In the display tab, when "Remember Axis Scale" is set, the scales of the axes are kept between two sequential recordings. You can fine tune the scale to visualize a particular behavior and record a second time and see the same behaviour without having to redo all the tuning. When not checked, a scale to fit all will be performed after each record. This setting is resetted when exiting WorkBench and should be explicitly set at next startup.

15.3.7 Manual range per axis

Click **Manual Y Axis** to open a dialog box to set the range for the axis. Enter the Y-axis minimum value and Y-axis maximum value. Click **OK** to reset the Y-axis to new range.



15.3.8 Unit display on Y axis

The unit on the Y-axis is displayed if all scope signals units are identical for that Y-axis. If different units apply to different signals, the units are displayed as [-]. For example, if the velocity Y-axis has signals VL.FB and IL.CMD, then the unit displayed is [-], since the units for these parameters are different. If IL.CMD is hidden, then the correct unit for VL.FB, rpm, is displayed.

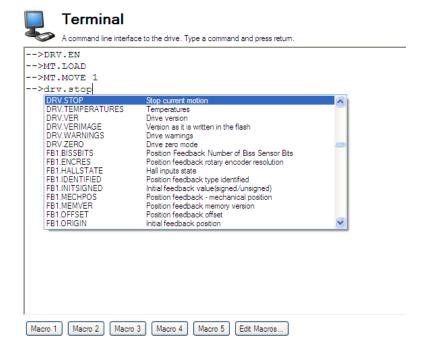
Related Parameters:

BODE Parameters

This page intentionally left blank.

16 Using Parameters and the Terminal Screen

1	16.1	Terminal	218
1	16.2	Viewing Parameters	221
1	16.3	Parameter List	221
1	16.4	Parameter Load/Save	221
1	16.5	Parameter Comparer	221
	Sum	mary of Parameters and Commands	225


16.1 Terminal

16.1.1 Overview

The terminal mode provides a quick and easy way to issue commands to the drive directly. Typically used by "power users" who are familiar with the command set, the terminal mode can help in setup, troubleshooting, and other diagnostic actions. When using the terminal mode, WorkBench shows the parameter and command set in a popup view and uses an autocomplete tool to help you select the proper parameter or command. Right-click in the command entry area to open a popup menu for editing commands and for clearing the screen. The terminal also provides a macro editor that allows a series of commands to be executed via a single command (called a macro). Macros are useful when you must frequently execute a sequence of commands.

16.1.2 Using the Terminal

Click Terminal in the navigation tree to issue parameters and commands in the terminal mode. You can enter parameters and commands at the prompt as shown in this example:

The terminal supports the following keyboard shortcuts:

Keyboard Shortcut	Description		
F2	Executes the last command.		
Up Arrow	Gets the previous command from the command history.		
Down Arrow Gets the next command from the command history.			
CTRL+J Shows the list of commands that the drive supports.			
CTRL+L Opens the Parameter Load/Save view.			
ESC	Hides the command list if command list is open. Clears the line if command list is not open.		
Enter (Return)	Executes the current command. This command sends the text you have typed to the drive and then prints the text the drive returns on the next line.		

16.1.3 Macros

Macros are a short sequence of instructions that can be sent to the drive using a single button. You can create up to five macros within the terminal mode using the macro editor. Each of the macros can be given a name and will appear as a button below the Terminal screen area. When you select the button, the command set tied to that macro will appear in the Terminal area and the commands will be executed. If there are commands which are not entered correctly, the terminal screen area will indicate the errors.

You can access macros and the macro editor from the buttons are located at the bottom of the terminal screen. Click a macro button to execute the associated macro. The **Edit Macros** button opens the macro editor used to create and edit macros. You can also assign custom names to the macro buttons with this editor.

16.1.3.1 Creating a Macro from Terminal commands

You can create a macro from a sequence of terminal commands as follows:

1. Enter the sequence of commands.

2. Copy the sequence of commands, then click **Edit Macro**. Select a macro from the tree on the left, then paste the sequence of commands into the Commands area of the Edit Macros window.

3. Select **Save** to save your macro.

16.1.3.2 Macro Editor

The macro editor allows you to create and modify up to five macros. WorkBench automatically saves the macros that you create. If you exit WorkBench and then start WorkBench again, the macros you defined will still be available.

To create or edit a macro from the editor, open the **Terminal** screen and click on **Edit Macros** (located at the bottom of the screen). Select the macro you wish to edit from the tree on the left, then use the features described below to build the macro. You can add comments in the macro after the ";" symbol.

Button or Dialog Box	Description
Name	Allows you to give each macro a unique name. This name will be shown on the button in the terminal view.
Commands	Displays the commands that are sent to the drive when you use this macro. The response from the drive is displayed in the terminal.
Import	Overwrites the selected macro with the contents of a macro file exported from another computer.
Export	Sends the selected macro to a text file to that you can import into Work-Bench running on another computer.
Insert Delay	Inserts a step into the macro that causes a delay for a specified number of milliseconds before continuing. A line that starts with #delay 5000 will pause the execution of the macro for 5000 milliseconds.
Close	Closes this window and returns to the terminal view.

16.2 Viewing Parameters

You can view and edit parameters in the **Parameters** screen. You can view and write parameters in the **Terminal** screen.

16.3 Parameter List

This screen displays a list of the current values of all the parameters that the drive supports. You can sort some of the rows by clicking the column headers.

Button or Dialog Box	Description
Refresh	Reads all the parameters from the drive and update the contents of the table.
Print	Sends the data that you see on the screen to the printer.
eMail	Opens an email message and attaches a comma separated file to the email message.
More/Less	Adds two more columns to the table with the range and default values for each parameter.

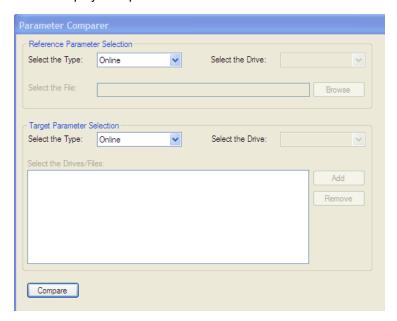
16.4 Parameter Load/Save

To copy a configuration (all the drive parameters that are stored in the drives nonvolatile memory) from one drive to another, click the **Save to File** button on the first drive and then use the **Load from File** on the second drive. If you wish the second drive to keep these new parameters after the drive is turned off, then you can save the parameters to the nonvolatile memory with **Save To Drive**.

Button or Dialog Box	Description
Save To File	Copies all the drive parameters and creates a file.
Load From Drive	Sets all the drive parameters within the drive to the values contained within the file you select.
Save to Drive	Saves all drive parameters into the nonvolatile memory of the drive. Each time the drive powers on, it will start with these saved parameters.
Default	Returns all the drive parameters back to their default values. Any changes you have made are lost.

16.5 Parameter Comparer

The **Parameter Comparer** tool is used to compare parameters from different drives and to compare motion tasks of different drives. You can select this tool from the menu bar, **Tools> Parameter Comparer**.

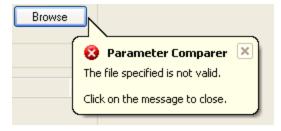

Parameters can be compared between the following:

- Drives (Online / Offline)
- Drives and Files
- File and Drives
- File and Files

The **Parameter Comparer** screen includes the three sections shown below:

- Reference Parameter Selection
- Target Parameter Selection

• Display Comparison

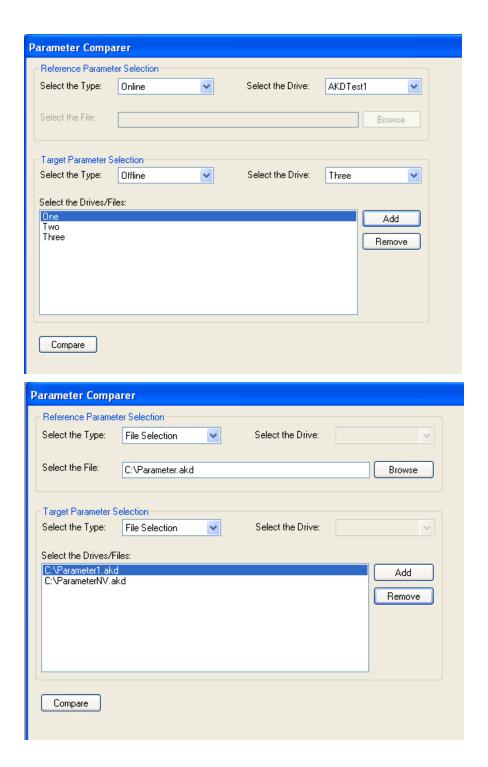

16.5.1 Reference Parameter Selection

You can select the drive type (Online/Offline) and file to compare in the Reference Parameter Selectionarea.

When a drive type (Online/Offline) is selected, the drives connected to the WorkBench are displayed in the **Select the drive** box. By default, the first drive is selected. If no drives are connected, then the **Select the drive**box will be in disabled state.

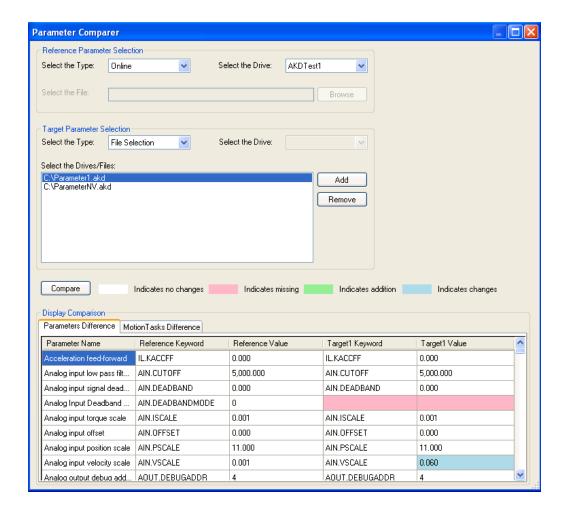
If **File Selection** is chosen from the **Select the Type** box, then the **Select the drive** box is disabled and the **Select the File** box and **Browse** button become enabled for the user to browse the parameter file (*.akd).

A warning message is displayed if you select an incorrect file, as shown below:



16.5.2 Target Parameter Selection

Target Parameter Selection includes the following:

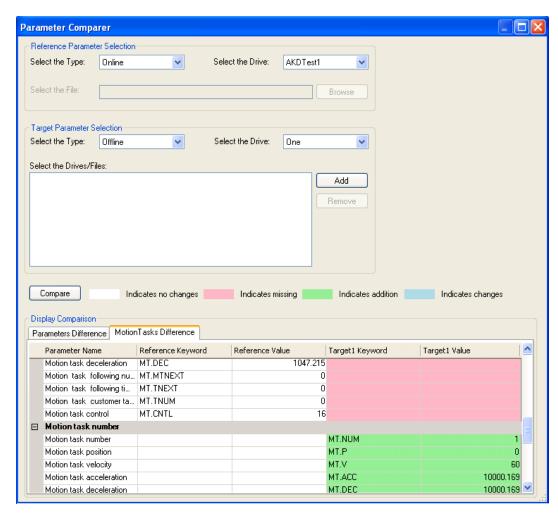

- Select the Type box to select the type (drive (online/offline) and File).
- Select the Drive box to select the drives connected to the WorkBench.
- Select the Drives/Files box to load files or drives which are to be compared.
- Add button to add Drives/Files selected to the list box.
- Remove button to remove the selected item from the list box.

Many target drives/files parameters can be compared with one reference drive/file parameters as shown below.

16.5.3 Display the comparison

Clicking **Compare**displays the comparison shown below:

Display Comparison contains two sections:


- Parameters Difference
- Motion Tasks Difference

Each of these sections displays:

- Parameter name
- Reference keyword
- Reference value
- Target keyword
- Target value

16.5.4 Motion Task Comparison

Motion Task Comparison is displayed as shown below:

A separate section is shown for each motion task.

Motion Tasks Difference and Parameters Difference are color coded as shown in the table below.

Keyword exists in the reference file /drive and does not exists in the Target files/drives.			
Parameter does not exist in reference file/drive and exists in Target files/drives.			
Keyword exists in both reference and target files/drives, and the value or the parameter keyword			
changes.			
Reference and target parameter do not vary.			

If you click the **Compare** button without selecting the drive or file, you will receive a message prompting you to make a selection.

Summary of Parameters and Commands

This table contains an alphabetical list of parameters and commands, with a brief description for each. The parameter name and description are linked to the parameter tables. The description field also notes if a parameter is not active in all opmodes. Generally speaking, all parameters and commands are active in all opmodes, with the following exceptions:

Parameter or Command	Active in Opmodes
GEAR (all parameters and commands)	2 (position) only
HOME (all parameters and commands)	2 (position) only
MT (all parameters and commands)	2 (position) only
SM.I1, SM.I	0 (torque) only

Parameter or Command	Active in Opmodes
SM.V1, SM.V2	1 (velocity) only
SM.VPM1, SM.VPM2	2 (position) only
VL (all parameters and commands)	1 (velocity) and 2 (position) only

Parameter or Command	Туре	Description
Analog Input (AIN)	Type	Description
Analog Input (AIN)		Sets the analog input low-pass filter cutoff
AIN.CUTOFF	NV	frequency.
AIN.DEADBAND	NV	Sets the analog input signal deadband.
AIN.DEADBANDMODE	NV	Sets the analog input deadband mode.
AIN.ISCALE	NV	Sets the analog current scale factor.
AIN.OFFSET	NV	Sets the analog input offset.
AIN.PSCALE	NV	Sets the analog position scale factor.
AIN.VALUE	R/O	Reads the value of the analog input signal.
AIN.VSCALE	NV	Sets analog velocity scale factor.
AIN.ZERO	Command	Zeroes the analog input signal.
Analog Input/Output (AIO)		
AIO.ISCALE	NV	Sets the analog current scale factor.
AIO.VSCALE	NV	Sets velocity scale factor.
AIO.PSCALE	NV	Sets position scale factor.
Analog Output (AOUT)		
AOUT.DEBUGADDR	NV	Sets the memory address to debug.
AOUT.DEBUGDATATYPE	NV	Sets the data type of the value to be debugged.
AOUT.DEBUGSCALE	NV	Sets the scale to be used for debug.
AOUT.ISCALE	NV	Sets the analog current scale factor.
AOUT.MODE	NV	Sets the analog output mode.
AOUT.OFFSET	NV	Sets the analog input offset.
AOUT.PSCALE	NV	Sets the analog position scale factor.
AOUT.VALUE	NV	Reads the analog output value.
AOUT.VALUEU	R/W	Sets the analog output value.
AOUT.VSCALE	NV	Sets velocity scale factor for analog output.
Bode plot (BODE)		
BODE.EXCITEGAP	R/W	Controls how often the excitation is updated.
BODE.FREQ	R/W	Sets the frequency of the sine excitation source.
BODE.IAMP	R/W	Sets current command value used during the Bode procedure.
		Sets the current fault duration limit in seconds for
BODE.IFLIMIT		the BODE.MODE 5 stability test.
BODE.IFTHRESH		Sets the current fault threshold for the BODE.MODE 5 stability test.
BODE.INJECTPOINT	R/W	Sets whether the excitation uses current or velocity excitation type.
BODE.MODE	R/W	Sets the mode of the excitation.
BODE.MODETIMER	R/W	Sets the watchdog timer of the excitation.
BODE.PRBDEPTH	R/W	Sets the length of the PRB signal before it repeats.
BODE.VAMP	R/W	Sets the amplitude of the excitation when in velocity mode.

Parameter or Command	Type	Description
BODE.VFLIMIT		Sets the velocity fault duration limit (seconds) for
BODE. V FLIIVII I		the BODE.MODE 5 stability test
BODE.VETHRESH		Sets the current fault threshold for the
		BODE.MODE 5 stability test.
Capture (CAP)		
CAP0.EDGE, CAP1.EDGE	R/W	Selects the capture edge.
CAP0.EN, CAP1.EN	R/W	Enables or disables the related capture engine.
CAP0.EVENT, CAP1.EVENT		Controls the precondition logic.
CAP0.FILTER, CAP1.FILTER	R/W	Controls the precondition logic.
CAP0.MODE, CAP1.MODE	NV	Selects the captured value.
CAP0.PLFB, CAP1.PLFB	R/O	Reads captured position value.
CAP0.PREEDGE, CAP1.PREEDGE		Selects the capture precondition edge.
CAP0.PREFILTER, CAP1.P- REFILTER	R/W	Sets the filter for the precondition input source.
CAP0.PRESELECT, CAP1.PRE- SELECT	R/W	Sets the precondition trigger.
CAP0.STATE, CAP1.STATE	R/O	Indicates whether or not trigger source was captured.
CAP0.T, CAP1.T	R/O	Reads time capture (if time capture was configured).
CAP0.TRIGGER, CAP1.TRIGGER	R/W	Specifies the trigger source for the position capture.
Controlled Stop (CS)		
CS.DEC	NV	Sets the deceleration value for the controlled stop process.
CS.STATE	NV	Returns the internal status of the controlled stop process.
CS.TO	NV	Sets the time value for the drive velocity to be within CS.VTHRESH.
CS.VTHRESH	NV	Sets the velocity threshold for the controlled stop.
Digital Input (DIN)		
DIN.ROTARY	R/O	Reads the rotary knob value.
DIN.STATES	R/O	Reads the digital input states.
DIN1.FILTER TO DIN7.FILTER	R/W	Filter mode for digital inputs 1 to 7.
DIN1.INV TO DIN7.INV	R/W	Sets the indicated the polarity of a digital input mode.
DIN1.MODE TO DIN7.MODE	NV	Sets the digital input modes.
DIN1.PARAM TO DIN7.PARAM	R/W	Sets a value used as an extra parameter for digital inputs nodes.
DIN1.STATE TO DIN7.STATE	R/O	Reads a specific digital input state.
Digital Output (DOUT)		
DOUT.CTRL	NV	Sets the source of digital outputs (firmware or fieldbus).
DOUT.RELAYMODE	R/W	Indicates faults relay mode.
DOUT.STATES	R/O	Reads the state of the two digital outputs.
DOUT1.MODE AND DOUT2.MODE	NV	Sets the digital output mode.

Parameter or Command	Type	Description
DOUT1.PARAM AND DOUT2.PARAM	NV	Sets extra parameters for the digital outputs.
DOUT1.STATE AND DOUT2.STATE	R/O	Reads the digital output state.
DOUT1.STATEU AND DOUT2.STATEU	R/W	Sets the state of the digital output node.
Drive (DRV)		
DRV.ACC	NV	Describes the acceleration ramp for the velocity central loop.
DRV.ACTIVE	R/O	Reads the enable status of an axis.
DRV.BLINKDISPLAY	Command	Causes the display to blink for 10 seconds.
DRV.BURNINOFFT (Password Protected)	R/W	Sets the burn-in test mode off time.
DRV.CLRFAULTHIST	Command	Clears the fault history log in the NV.
DRV.CLRFAULTS	Command	Tries to clear all active faults in the drive.
DRV.CMDDELAY	R/W	Issues a delay before next command is executed.
DRV.CMDSOURCE	NV	Sets the command source (service, fieldbus, analog input, gearing, digital, or Bode).
DRV.CRASHDUMP	Command	Retrieves diagnostic information after the drive crashes.
DRV.DBILIMIT	NV	Sets the maximum amplitude of the current for dynamic braking.
DRV.DEC	NV	Sets the deceleration value for the velocity loop.
DRV.DIR	R/W	Changes drive direction.
DRV.DIS	Command	Disables the axis (software).
DRV.DISMODE	NV	Selects among disable immediately or stop and then disable options.
DRV.DISSOURCES	R/O	Returns the possible reason for a drive disable.
DRV.DISTO	R/W	Sets the emergency timeout
DRV.EMUEDIR	R/W	Sets the direction of the emulated encoder output (EEO) signal.
DRV.EMUEMODE	R/W	Sets the mode of the emulated encoder output (EEO) connector.
DRV.EMUEMTURN	R/W	Defines the location of the index pulse on the EEO (emulated encoder output) when DRV.EMU-EMODE=2.
DRV.EMUERES	R/W	Sets the resolution of the EEO (emulated encoder output).
DRV.EMUEZOFFSET	R/W	Sets the location of the EEO (emulated encoder output) index pulse (when DRV.EMU-EMODE=1).
DRV.EN	Command	,
DRV.ENDEFAULT	R/W	Sets the default state of the software enable.
DRV.FAULTHIST	R/O	Reads the last 10 faults from NV memory.
DRV.FAULTS	R/O	Reads the active faults.
DRV.FLASHREAD (Password Protected)	R/O	Reads a value from the serial flash memory.
DRV.HANDWHEEL	R/O	Reads the EEO input value.

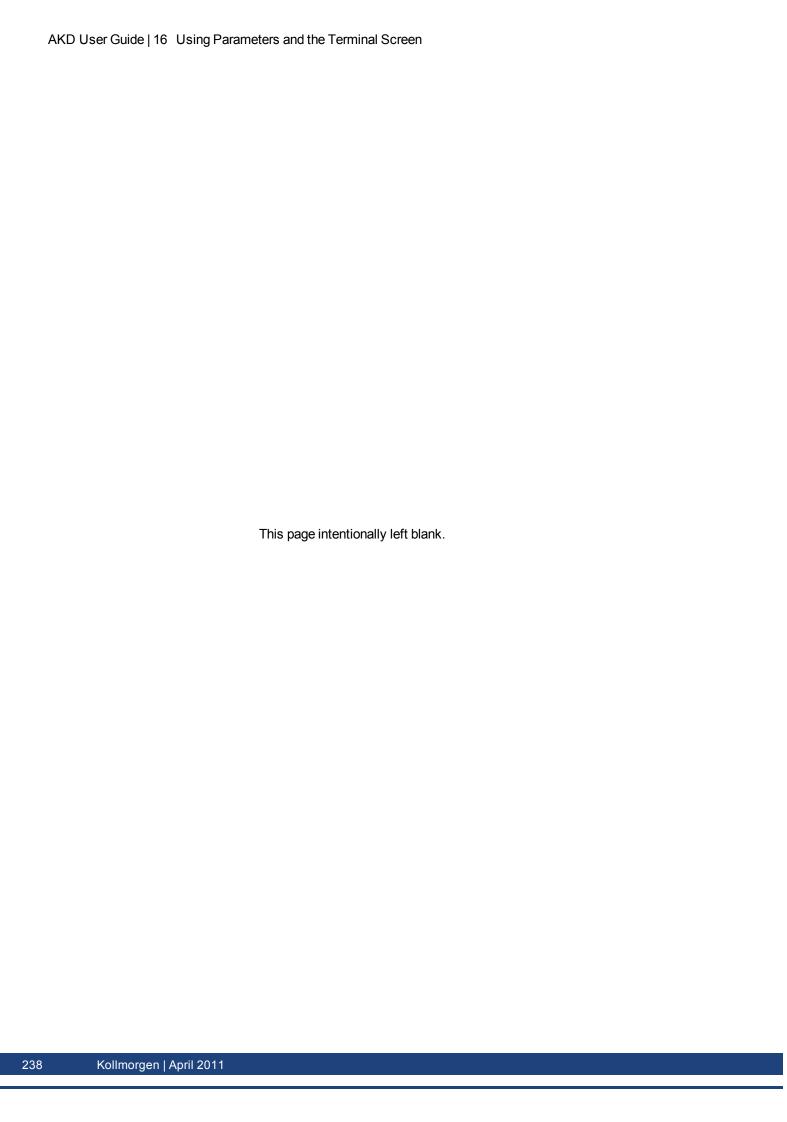
Parameter or Command	Type	Description
DRV.HELP	R/O	Reads the minimum, maximum, and default
DRV.HELP	R/O	values for a specific parameter or command.
		Retrieves the minimum, maximum, default, and
DRV.HELPALL	R/O	actual values for all available parameters and
		commands.
DRV.ICONT	R/O	Reads the continuous rated current value.
DRV.INFO	R/O	Reads general information about the drive.
DRV.IPEAK	R/O	Reads the peak rated current value.
DRV.IZERO	R/W	Sets the current that will be used during the DRV.ZERO procedure.
DRV.LIST	R/O	Reads the list of available parameters and commands.
DRV.LOGICVOLTS		Reads the logic voltages.
DRV.NAME	NV	Sets and reads the name of the drive.
DRV.NVLIST	R/O	Lists the NV parameters and values from the RAM.
DRV.NVLOAD	W/O	Loads all data from the NV memory of the drive into the RAM parameters.
DRV.NVSAVE	Command	Saves the drive parameters from the RAM to the NV memory.
DRV.ONTIME	R/O	Returns how long the drive has been running since last power up.
DRV.OPMODE	NV	Sets the drive operation mode (current, velocity,
		or position). Sets the value returned to either decimal or hex-
DRV.READFORMAT	R/W	adecimal.
DRV.RSTVAR	Command	Sets default values in the drive without re-booting the drive and without resetting the NV memory.
DRV.RUNTIME	R/O	Returns how long the drive has been running since first activated.
DRV.SETUPREQBITS	R/O	Reads the bitwise set status of parameters that must be set before the drive can be enabled
DRV.SETUPREQLIST	R/O	Reads the list of parameters that must be set before the drive can be enabled.
DRV.STOP	Command	This command stops all drive motion.
DRV.TEMPERATURES	R/O	Reads the temperature of drive components.
DRV.VER	R/O	Reads the drive version.
DRV.VERIMAGE	R/O	Returns the version data from each image.
DRV.TEMPERATURES	R/O	Reads the temperature of drive components.
DRV.WARNINGS	R/O	Reads the active warnings.
DRV.ZERO	R/W	Sets the zero mode. The procedure is activated when the drive is enabled.
Feedback 1 (FB1)		
FB1.ENCRES	NV	Sets the resolution of the motor encoder.
FB1.HALLSTATE	R/O	Reads the Hall switch values (encoder feedback
FB1.HALLSTATEU	R/O	Reads the state of Hall switch U.
ED4 HALLOTATEV	R/O	Reads the state of Hall switch V.
FB1.HALLSTATEV	100	r todae the etate of rian etritori v.

Parameter or Command	Type	Description	
FB1.IDENTIFIED	R/O	Reads the type of feedback device used by the drive/motor.	
FB1.INITSIGNED	NV	Sets initial feedback value as signed or unsigned.	
FB1.LDLL	R/O	Reads the motor line-to-line inductance from the FPGA.	
FB1.LQLL	R/O	Reads the motor line-to-line inductance in the back EMF axis (q axis) from the SFD memory from the FPGA.	
FB1.MECHPOS	R/O	Reads the mechanical position.	
FB1.MEMDUMP	W/O	Dumps the memory ID data values of a feedback with memory	
FB1.MEMVER	R/O	Returns the memory feedback version.	
FB1.OFFSET	NV	Sets position feedback offset.	
FB1.POLES	R/O	Reads the number of feedback poles.	
FB1.OFFSET	NV	Sets position feedback offset.	
FB1.POLES	R/O	Reads the number of feedback poles.	
FB1.SELECT	NV	Sets user entered type or identified type (–1).	
Feedback 2 (FB2)			
FB2.ENCRES	NV	Sets the secondary feedback (FB2) resolution.	
FB2.MODE	R/W	Sets the mode for the second feedback inputs, EEO connector (X9) and high speed opto inputs (pins 9 and 10 on X7).	
FB2.SOURCE	R/W	Sets the source for the second feedback input. Choices are the EEO connectors (X9) which are RS485 inputs, or the X7 connector's high speed opto inputs (pins 9 and 10).	
Fieldbus (FBUS)			
FBUS.PARAM1 TO FBUS.PARAM20	NV	Set fieldbus specific meanings.	
FBUS.PLLSTATE	R/O	Returns the status of the PLL	
FBUS.PLLTHRESH	NV	Sets number of successful synchronized cycles needed to lock the PLL.	
FBUS.SAMPLEPERIOD	NV	Sets fieldbus sample period.	
FBUS.SYNCACT	R/O	Reads actual distance from the desired sync distance.	
FBUS.SYNCDIST	NV	Sets time target for synchronization.	
FBUS.SYNCWND	NV	Sets symmetrically arranged window around the desired sync distance.	
FBUS.TYPE	R/O	Shows the active fieldbus type.	
Gearing (GEAR)			
GEAR.ACCMAX	R/W	Sets the maximum allowed acceleration value; active in opmode 2 (position) only.	
GEAR.DECMAX	R/W	Sets the maximum allowed deceleration value; active in opmode 2 (position) only.	
GEAR.IN	R/W	Sets the denominator of the electronic gearing ratio; active in opmode 2 (position) only.	
GEAR.MODE	R/W	Selects electronic gearing mode; active in opmode 2 (position) only.	

Parameter or Command	Туре	Description	
GEAR.MOVE	Command	Starts the electronic gearing; active in opmode 2 (position) only.	
GEAR.OUT	R/W	Sets the numerator of the electronic gearing ra active in opmode 2 (position) only.	
GEAR.VMAX	R/W	Reads the maximum allowed velocity value; active in opmode 2 (position) only.	
Homing (HOME)			
HOME.ACC	R/W	Sets homing acceleration; active in opmode 2 (position) only.	
HOME.AUTOMOVE	R/W	Sets homing auto move flag.	
HOME.DEC	R/W	Sets homing deceleration; active in opmode 2 (position) only.	
HOME.DIR	NV	Sets homing direction; active in opmode 2 (position) only.	
HOME.DIST	R/W	Sets homing distance; active in opmode 2 (position) only.	
HOME.FEEDRATE	R/W	Sets homing velocity factor; active in opmode 2 (position) only.	
HOME.IPEAKHOME.IPEAK	R/W	Sets the current limit during homing procedure to a mechanical stop; active in opmode 2 (position) only.	
HOME.MODEHOME.MODE	R/W	Selects the homing mode; active in opmode 2 (position) only.	
HOME.MOVEHOME.MOVE	Command	Starts a homing procedure; active in opmode 2 (position) only.	
HOME.PHOME.P	R/W	Sets home position; active in opmode 2 (position) only.	
HOME.PERRTHRESH HOME.PERRTHRESH	R/W	Sets the position lag threshold; active in opmode 2 (position) only.	
HOME.REQUIRE	NV	Defines if the axis must be homed before a motion task can be executed.	
HOME.SETHOME.SET	Command	Immediately sets the home position; active in opmode 2 (position) only.	
HOME.VHOME.V	R/W	Sets homing velocity; active in opmode 2 (position) only.	
Hardware Limit Switch (HWLS)			
HWLS.NEGSTATE	R/O	Reads the status of the negative hardware limit switch.	
HWLS.POSSTATE	R/O	Reads the status of the positive hardware limit switch.	
Current Loop (IL)			
IL.BUSFF	R/O	Displays the current feedforward value injected by the fieldbus.	
IL.CMD	R/O	Reads the value of the q-component current controller inside the FPGA.	
IL.CMDU	R/W	Sets the user current command.	
IL.DCMD (Password Protected)	R/O	Reads the value of the d-component current controller inside the FPGA.	
IL.DCMD (Password Protected)	R/O	Reads the value of the d-component current controller inside the FPGA.	
IL.DCMDU (Password Protected)	R/W	Sets user d-component current command.	

Parameter or Command	Type	Description	
IL.DEADBAND (Password Pro-		Reads the deadband of two IGBTs in series con-	
tected)	R/O	nection.	
II ED	D/O	Reads the actual value of the d-component cur-	
IL.FB	R/O	rent.	
II DEOLDD (December Districted)	D/O	Reads the motor foldback maximum time at	
IL.DFOLDD (Password Protected)	R/O	motor peak current.	
IL.DFOLDR (Password Protected)	R/O	Reads the motor foldback recovery time.	
II DEOLDT	D/O	Reads the motor foldback time constant of the	
IL.DFOLDT	R/O	exponential current drop (foldback).	
IL.DIFOLD	R/O	Reads the drive foldback current limit.	
II DUMITN	D/M	Sets the negative user (application-specific) d-	
IL.DLIMITN	R/W	component current limit.	
IL.DLIMITP	R/W	Sets the positive user (application-specific) d-	
IL.DLIMITP	FK/VV	component current limit.	
IL.FB	R/O	Reads the actual value of the d-component cur-	
IL.FB	R/O	rent.	
IL.FOLDFTHRESH	NV	Reads the foldback fault level.	
IL.FOLDWTHRESH	NV	Sets the foldback warning level.	
IL.IFOLD	R/O	Reads the overall foldback current limit.	
II INTENI (December 1 December 1)	ND /	Enables/disables the integrator part of the PI	
IL.INTEN (Password Protected)	NV	loop.	
IL.IUOFFSET (Password Pro-	D/M/	Sets the offset added to the sigma-delta meas-	
tected)	R/W	ured current value in the u-winding.	
II IIIED	R/O	Reads the sigma-delta measured current in the u-	
IL.IUFB	R/U	winding of the motor.	
IL.IVFB	R/W	Sets the sigma-delta measured current in the u-	
IL.IVFB	FK/VV	winding of the motor.	
IL.IVOFFSET (Password Pro-	R/W	Sets the offset added to the sigma-delta meas-	
tected)	FX/ V V	ured current value in the v-winding.	
IL.KP	NV	Sets the proportional gain of the q-component of	
IL.Kr	INV	the PI regulator.	
IL.KPDRATIO	NV	Sets the proportional gain of the d-component cur-	
IE.R. BIGATIO	14 V	rent PI-regulator as a percentage of IL.KP	
IL.KPLOOKUPINDEX	R/W	Sets the index into the Current Loop Gain Sched-	
TEM EGGNOT INDEX	1000	uling Table.	
IL.KPLOOKUPVALUE	R/W	Sets the value of the current loop gain scheduling	
		index.	
IL.KPLOOKUPVALUES	R/W	Gets the Current Loop Gain Scheduling Table.	
IL.KVFF	R/W	Current loop velocity feed-forward gain.	
IL.LIMITN	NV	Sets the negative user (application-specific) cur-	
12.21111111		rent limit.	
IL.LIMITP	NV	Sets the positive user (application-specific) cur-	
12.2111111		rent limit.	
IL.MFOLDD	NV	Sets the motor foldback maximum time at motor	
		peak current.	
IL.MFOLDR	R/O	Sets the motor foldback recovery time.	
IL.MFOLDT	NV	Sets the motor foldback time constant of the	
		exponential current drop (foldback).	
IL.MIFOLD	R/O	Sets the motor foldback current limit.	

Parameter or Command	Type	Description
IL.PWMFREQ (Password Pro-	NV	Reads and sets the PWM frequency of the
tected)	INV	IGBTs.
IL.VDCMD	R/O	Sets the output of the d-component PI-regulator.
IL.VCMD	R/O	Sets the output of the q-component PI regulator.
IL.VUFB	R/O	Reads the measured voltage on the u-winding of
IL. VOFB	NO.	the motor.
IL.VVFB	R/O	Reads the measured voltage on the v-winding of
IL.VVFB R/G		the motor.
IL.DLIMITN	R/W	Sets the negative user (application-specific) d-
IL.DEIWITTY	1777	component current limit.
IL.DLIMITP	R/W	Sets the positive user (application-specific) d-
IL.DEIWITT	10/00	component current limit.
IL.FB	R/O	Reads the actual value of the d-component cur-
12.1 0	100	rent.
LOAD.INERTIA	NV	Sets the load inertia.


Motor (MOTOR) Parameters			
MOTOR.AUTOSET	NV	Determines which drive parameters are cal-	
WOTOK:AUTOSET INV		culated automatically.	
MOTOR.BRAKE	NV	Sets the presence or absence of a motor brake.	
MOTOR.ICONT	NV	Sets the motor continuous current.	
MOTOR.INERTIA	NV	Sets the motor inertia.	
MOTOR.IPEAK	NV	Sets the motor peak current.	
MOTOR.KE		Sets the motor back EMF constant.	
MOTOR.KT	NV	Sets the torque constant of the motor.	
MOTOR.LQLL	NV	Sets the line-to-line motor Lq.	
MOTOR.VMAX	NV	Sets the maximum motor speed.	
MOTOR.NAME	NV	Sets the motor name.	
MOTOR.PHASE	NV	Sets the motor phase.	
MOTOR.PITCH	NV	Sets the motor pitch.	
MOTOR.POLES	NV	Sets the number of motor poles.	
MOTOR.R	NV	Sets the stator winding resistance phase-phase in ohms.	
MOTOR.TBRAKEAPP	NV	The delay time used for applying the motor brake.	
MOTOR.TBRAKERLS	NV	The delay time used for releasing the motor brake.	
MOTOR.TEMP	R/O	Reads the motor temperature represented as the resistance of the motor PTC.	
MOTOR.TEMPFAULT	NV	Sets the motor temperature fault level.	
MOTOR.TEMPWARN	NV	Sets the motor temperature warning level.	
MOTOR.TYPE	NV	Sets the motor type.	
MOTOR.VOLTMAX	NV	Sets the motor maximum voltage.	
Motion Task (MT)			
MT.ACC	R/W	Specifies motion task acceleration; active in opmode 2 (position) only.	
MT.CLEAR	Command	Clears motion tasks from the drive; active in opmode 2 (position) only.	

MT CNITI	D/M/	Sets motion task control word; active in opmode	
MT.CNTL	R/W	2 (position) only.	
MT.CONTINUE	Command	Continues a stopped motion task; active in opmode 2 (position) only.	
MT.DEC	R/W	Sets motion task deceleration; active in opmode 2 (position) only.	
MT.EMERGMT	R/W	Selects a motion task to be triggered after an emergency stop procedure; active in opmode 2 (position) only.	
MT.HOMEREQUIRE	NV	Defines if the axis is required to be homed before a motion task can be executed.	
MT.LIST	Command	Lists all initialized motion tasks in the drive; active in opmode 2 (position) only.	
MT.MTNEXT	R/W	Specifies following motion task number; active in opmode 2 (position) only.	
MT.TNEXT	R/W	Specifies following motion task time; active in opmode 2 (position) only.	
MT.LIST	Command	Lists all initialized motion tasks in the drive; active in opmode 2 (position) only.	
MT.LOAD	Command	Reads/loads a motion task number from the drive; active in opmode 2 (position) only.	
MT.MOVE	Command	Starts a motion task; active in opmode 2 (position) only.	
MT.NUM	R/W	Sets the motion task number; active in opmod (position) only.	
MT.PARAMS	Command	Shows a motion task; active in opmode 2 (position) only.	
MT.P	R/W	Sets the motion task position; active in opmode 2 (position) only.	
MT.SET	Command	Sets the motion task in the drive; active in opmode 2 (position) only.	
MT.TNUM	R/W	Motion task customer table number.	
MT.V	R/W	Sets the motion task velocity; active in opmode 2 (position) only.	
Position Loop (PL)			
PL.CMD	NV	Reads the position command directly from the entry to the position loop.	
PL.ERR	NV	Reads the position error present when the drive is controlling the position loop.	
PL.ERRFTHRESH	NV	Sets the maximum position error.	
PL.ERRWTHRESH	NV	Sets the position error warning level.	
PL.FB	R/O	Reads the position feedback value.	
PL.FBSOURCE	NV	Sets the feedback source for the position loop.	
PL.INTINMAX	NV	Limits the input of the position loop integrator by setting the input saturation.	
PL.INTOUTMAX	NV	Limits the output of the position loop integrator by setting the output saturation.	
PL.KI	NV	Sets the integral gain of the position loop.	
PL.KP	NV	Sets the proportional gain of the position regulator PID loop.	

Programmable Limit Switch			
(PLS)			
PLS.EN	R/W	Enables programmable limit switch (PLS).	
PLS.MODE	NV	Selects programmable limit switch mode.	
PLS.P1 TO PLS.P8	NV	Sets the trigger point for programmable limit switches.	
PLS.STATE	R/O	Reads the programmable limit switch state.	
Recorder (REC)			
REC.ACTIVE	R/O	Indicates if data recording is in progress (active).	
REC.CH1 to REC.CH6	R/W	Sets recording channels 1 to 6.	
REC.DONE	R/O	Checks whether or not the recorder has finished recording.	
REC.GAP	R/W	Specifies the gap between consecutive samples.	
REC.NUMPOINTS	R/W	Sets the number of points to record.	
REC.OFF	R/W	Turns the recorder OFF.	
REC.RETRIEVE	R/O	Transfers all the recorded data to the communication channel.	
REC.STOPTYPE	R/W	Sets the recorder stop type.	
REC.TRIG	Command	Triggers the recorder.	
REC.TRIGSLOPE	R/W	Sets the trigger slope.	
REC.TRIGTYPE	R/W	Sets the trigger type.	
REC.TRIGVAL	R/W	Sets the trigger value.	
Regen Resistor (REGEN)			
REGEN.POWER	R/O	READS REGEN RESISTOR'S CALCULATED POWER.	
REGEN.REXT	N/V	SETS THE EXTERNAL, USER-DEFINED REGEN RESISTOR RESISTANCE.	
REGEN.TEXT	R/W	Sets the external regen resistor thermal protection time constant.	
REGEN.TYPE	N/V	SETS THE REGEN RESISTOR TYPE.	
REGEN.WATTEXT	R/W	SETS THE REGEN RESISTOR'S POWER FAULT LEVEL FOR AN EXTERNAL REGEN RESISTOR.	
Service Motion (SM)			
SM.11	R/W	Sets service motion current 1; active in opmode 0 (torque) only.	
SM.12	R/W	Sets service motion current 2; active in opmode 0 (torque) only.	
SM.MODE	R/W	Sets the service motion mode.	
SM.MOVE	Command	Starts the service motion.	
SM.T1	R/W	Sets the service motion time 1.	
SM.T2	R/W	Sets the service motion time 2.	
SM.V1	R/W	Sets service motion velocity 1; active in opmode 1 (velocity) and 2 (position).	
SM.V2	R/W	Sets service motion velocity 2; active in opmode 1 (velocity) and 2 (position).	
Units (UNIT)			
UNIT.ACCLINEAR	NV	Sets the linear acceleration/deceleration units.	
UNIT.ACCROTARY	NV	Sets the rotary acceleration/deceleration units.	

UNIT.LABEL	NV	Sets user-defined name for user-defined positio units.	
UNIT.PIN	NV	Sets gear IN for the unit conversion.	
UNIT.PLINEAR	NV	Sets the linear position units.	
UNIT.POUT	NV	Sets gear out for the unit conversion.	
UNIT.PROTARY	NV	Sets the position units when the motor type (MOTOR.TYPE) is rotary.	
UNIT.VLINEAR	NV	Sets the linear velocity units.	
UNIT.VROTARY	NV	Sets the velocity units when the motor type (MOTOR.TYPE) is rotary.	
Bus voltage (VBUS)			
VBUS.OVFTHRESH	R/O	Reads the over voltage fault level.	
VBUS.OVWTHRESH	N/V	Sets voltage level for over voltage warning.	
VBUS.RMSLIMIT	R/O	Reads the limit for the bus capacitors load.	
VBUS.UVFTHRESH	R/O	Sets the under voltage fault level.	
VBUS.UVMODE		Indicates undervoltage (UV) mode.	
VBUS.UVWTHRESH	NV	Sets voltage level for undervoltage warning.	
VBUS.VALUE	R/O	Reads DC bus voltage.	
Velocity Loop (VL)			
VL.ARPF1 TO VL.ARPF4	R/W	Sets the natural frequency of the pole (denominator) of anti-resonance (AR) filters 1, 2, 3, and 4; active in opmodes 1 (velocity) and 2 (position) only.	
VL.ARPQ1 TO VL.ARPQ4	R/W	Sets the Q of the pole (denominator) of anti-resonance (AR) filter 1; active in opmodes 1 (velocity) and 2 (position) only.	
VL.ARTYPE1 TO VL.ARTYPE4	NV	Indicates the method used to calculate BiQuad coefficients; active in opmodes 1 (velocity) and (position) only.	
VL.ARZF1 TO VL.ARZF4	R/W	Sets the natural frequency of the zero (numerator) of anti-resonance (AR)filter 1; active in opmodes 1 (velocity) and 2 (position) only.	
VL.ARZQ1 TO VL.ARZQ4	R/W	Sets the Q of the zero (numerator) of anti-resonance filter #1; active in opmodes 1 (velocity) and 2 (position) only.	
VL.BUSFF	R/O	Displays the velocity loop feedforward value injected by the field-bus; active in opmodes 1 (velocity) and 2 (position) only.	
VL.CMD	R/O	Reads the actual velocity command; active in opmodes 1 (velocity) and 2 (position) only.	
VL.CMDU	R/W	Sets the user velocity command; active in opmodes 1 (velocity) and 2 (position) only.	
VL.ERR	R/O	Sets the velocity error; active in opmodes 1 (velocity) and 2 (position) only.	
VL.FB	R/O	Reads the velocity feedback; active in opmodes 1 (velocity) and 2 (position) only.	
VL.FBFILTER	R/O	Filters VL.FB value; active in opmodes 1 (velocity) and 2 (position) only.	
VL.FBSOURCE	NV	Sets feedback source for the velocity loop; active in opmodes 1 (velocity) and 2 (position) only.	
VL.FBUNFILTERED	R/O	Reads the velocity feedback.	

VL.FF	R/O	Displays the velocity loop overall feedforward value; active in opmodes 1 (velocity) and 2 (position) only.
VL.GENMODE	NV	Selects mode of velocity generation (Observer, d/dt); active in opmodes 1 (velocity) and 2 (position) only.
VL.KBUSFF	R/W	Sets the velocity loop acceleration feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.
VL.KI	NV	Sets the velocity loop integral gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.
VL.KP	NV	Sets velocity loop proportional gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.
VL.KVFF	R/W	Sets the velocity loop velocity feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.
VL.LIMITN	NV	Sets the velocity lower limit; active in opmodes 1 (velocity) and 2 (position) only.
VL.LIMITP	NV	Sets the velocity high limit; active in opmodes 1 (velocity) and 2 (position) only.
VL.LMJR	R/W	Sets the ratio of the estimated load moment of inertia relative to the motor moment of inertia; active in opmodes 1 (velocity) and 2 (position) only.
VL.THRESH	NV	Sets the over speed fault value; active in opmodes 1 (velocity) and 2 (position) only.
Wake and Shake (WS)		
WS.ARM	Command	Sets wake and shake to start at the next drive enable.
WS.DISTMIN	R/W	Sets the minimum movement required for wake and shake.
WS.IMAX	R/W	Sets maximum current used for wake and shake.
WS.MODE	R/W	Sets the method used for wake and shake.
WS.DISTMAX	R/W	Sets maximum movement allowed for wake and shake.
WS.NUMLOOPS	R/W	Sets the number of repetitions for wake and shake.
WS.STATE	R/O	Reads wake and shake status
WS.T	R/W	Sets wake and shake current-vector appliance time
WS.TDELAY1	NV	Delay for wake and shake timing
WS.TDELAY2	NV	Sets the delay for wake and shake timing.
WS.TDELAY3	NV	Sets the delay for wake and shake between loops in mode 0.
WS.VTHRESH	NV	Defines the maximum allowed velocity for Wake & Shake

17 Faults and Warnings

17.1	Fault and Warning Messages	240
	Clearing Faults	
	Parameter and Command Error Messages	
	CANopen Emergency Messages and Error Codes.	
17.5	Unknown Fault	256

17.1 Fault and Warning Messages

When a fault occurs, the drive fault relay is opened, the output stage is switched off (motor loses all torque), or the load is dynamically braked. The specific drive behavior depends on the type of fault. The LED display on the front panel of the drive shows the number of the fault that occurred. If a warning is issued prior to the fault, the warning is shown on the LED and has the same number as the associated fault. Warnings do not trip the power stage of the drive or fault relay output.

The left side of the LED displays F for a fault or n for a warning. The right side displays the fault or warning number as follows: 1-0-1-[break]. The highest priority fault is displayed on the LED. Multiple faults may be present when a fault condition is occurring. Check the AKDWorkBench Fault Screen or read the status of DRV.FAULTS through the controller or HMI for the entire list of faults.

NOTE

More information about fault messages and clearing faults can be found in the WorkBench online help. Procedures for clearing faults are described in the online help topic entitled "Faults and Warnings".

Fault	Message/Warning	Cause	Remedy				
F0		Reserved.	N/A				
F101	FPGA type mismatch.	Installed firmware is not compatible with the drive hardware.	Load compatible firmware into the drive.				
n101	The FPGA is a lab FPGA.	The FPGA is a lab version FPGA.	Load the released FPGA version that is compatible with the operational firmware.				
F102	Resident firmware failed.	Software failure detected.	Restart drive. If issue persists, contact technical support.				
n102	Operational FPGA is not a default FPGA.	The FPGA minor version is larger than the operational firmware default FPGA minor version	Load the released FPGA version that is compatible with the operational firmware.				
F103	Resident FPGA failed.	Software failure detected. Load resident FPGA failure occurred (several cases according to flowchart, including incompatible image to FPGA type and fieldbus type).	Restart drive. If issue persists, contact technical support.				
F104	Operational FPGA failed.	Software failure detected. Load operational FPGA failure occurred (several cases according to flowchart).	Restart drive. If issue persists, contact technical support.				
F105	NV memory stamp invalid.	NV memory stamp is corrupted or invalid.	Reset the drive to default memory values using Parameter Load in WorkBench.				
F106	NV memory data (might occur when downloVding firmware).	NV memory data is corrupted or invalid. When this fault occurs after a firmware download, it is not an indication of a problem (clear the fault and perform a "save" to the drive).	Reset the drive to default memory values using Parameter Load in WorkBench.				
F107 n107	Positive switch limit exceeded.	Positive software position limit is exceeded.	Move the load away from the limits.				
F108 n108	Negative switch limit exceeded.	Negative software position limit is exceeded.	Move the load away from the limits.				
F121	Homing error.	Drive did not finish homing sequence.	Check homing sensor.				

Fault	Message/Warning	Cause	Remedy
F123 n123	Invalid motion task.	Invalid motion task.	Check motion task settings and parameters to make sure that the values entered will produce a valid motion task.
F125 n125	Synchronization lost.	The fieldbus lost synchronization.	Check fieldbus connection (X5 and X6 if you are using Ether-CAT; X12 and X13 if you are using CANopen) or the settings of your EtherCAT or CANopen master.
F126 n126	Too much movement.	Too much movement was created during a Bode plot. Motor is unstable and is not following drive instructions.	Check that the system is closed loop stable. Refer to the system tuning guide.
F127	Incomplete emergency stop procedure.	Incomplete emergency stop procedure (problem with the emergency stop motion task).	Disconnect power from drive and check emergency stop procedure.
F128	MPOLES/FPOLES not an integer.	Ratio of motor poles to feedback poles must be a whole number.	Change to a compatible feedback device.
F129	Heartbeat lost.	Heartbeat lost.	Check CANopen cabling. Reduce bus load or increase the heartbeat update time.
F130	Secondary feedback supply over current.	Problem in secondary feedback detected.	Check X9 connection.
F131	Emulated encoder line break.	Problem in secondary feedback detected.	Check secondary feedback (X9 connection).
F132	Emulated encoder Z break.	Problem in secondary feedback detected.	Check secondary feedback (X9 connection).
F133	Fault number changed to to F138. See F138 for details.		
F134	Secondary feedback illegal state.	Problem in secondary feedback detected.	Check X9 connection.
F135 n135	Homing is needed.	Attempt to issue motion task before the axis is homed. Axis must be homed before motion task can start.	Change opmode or home axis.
F136	FPGA version mismatch. Firmware and FPGA versions are not compatible	The FPGA version does not match the firmware FPGA version constants.	Load the FPGA version that is compatible with the firmware.
n137	Homing and feedback mis- match	The configured homing mode is not supported by the motor feedback type used.	Change homing mode.
F138	Instability during autotune	Drive current (IL.CMD) or velocity feed-back (VL.FB) exceeds allowable limit (BODE.IFLIMIT or BODE.VFLIMIT). This fault only occurs in BODE.MODE 5. This fault often occurs when complex mechanics, belts, and compliant loads are present.	Change BODE.MODE if appropriate. If BODE.MODE 5 is appropriate and the fault occurs at the end of an Autotuning, then the motor is not robustly stable. You can manually adjust Autotuner settings. Manual tuning may be required to make the motor stable.

Fault	Message/Warning	Cause	Remedy
n151	Not enough distance to move; motion exception.	For trapezoidal and customer table motion tasks: The target velocity specified in the motion task cannot be reached via using the selected acceleration and deceleration since the distance to travel is not sufficient. For a 1:1 profile: The selected acceleration and deceleration will be extended since there is too much distance to travel and the motion task would exceed its maximum allowed velocity.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning. Check motion task settings and parameters to make sure that the values entered will produce a valid motion task.
n152	Not enough distance to move; following motion exception.	A new motion task activated, when one motion task is already active and the target position specified in the motion task parameters cannot be reached with specified target velocity, acceleration and deceleration parameters. The motion task will directly decelerate to into the target position or ramps down to velocity 0 and start another move to reach target position of the next motion task.	make sure that the values entered will produce a valid
n153	Velocity limit violation, exceeding max limit.	A new target velocity calculated inter- nally due to an exception, and is being limited due to user velocity limit.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning. Check motion task target velocity settings and parameters to make sure that the values entered will not exceed the VL.LIMITP and VL.LIMITN setting.
n154	Following motion failed; check motion parameters.	Activation of the following motion task failed due to incompatible parameters, or motion task does not exist.	clear the warning. Check following motion task settings and parameters to make sure that the values entered will produce a valid motion task.
n156	Target position crossed due to stop command.	The motion task crosses the target position after triggering a DRV.STOP command. This situation can happen when processing a change-on-the-fly motion task and triggering a DRV.STOP command close to the target position of the currently running motion task.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.
n157	Homing index pulse not found.	A homing mode with index detection is activated, and index pulse is not detected while moving across the range determined by the hardware limit switches.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.

Fault	Message/Warning	Cause	Remedy
n158	Homing reference switch not found.	A homing mode with reference switch detection is activated and the reference switch is not detected while moving across the range determined by the hardware limit switches.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.
n159	Failed to set motion task parameters	Invalid motion task parameters assignment. This warning can appear upon an MT.SET command.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning. Check motion task settings and parameters.
n160	Motion task activation failed.	Activation of the motion task failed due to incompatible parameters, or motion task does not exist. This warning can appear upon an MT.MOVE command.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning. Check motion task settings and parameters to make sure that the values entered will produce a valid motion task.
n161	Homing procedure failed.	Homing error observed during the operation of homing procedure.	Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.
n163	MT.NUM exceeds limit.	This warning appears with n160. This warning is triggered when you try to trigger a motion task > 128 (such as MT.MOVE 130).	Trigger only motion tasks between 0 and 128. Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.
n164	Motion task is not initialized.	This warning appears with n160. This warning is triggered when you try to trigger a non-initialized motion task.	Initialize the motion task first before starting the task. Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.
n165	Motion task target position is out.	This warning appears with n160. This warning is triggered when you try to trigger a motion task with an absolute target position outside of the selected modulo range (see also MT.CNTL).	_
n168	Invalid bit combination in the motion task control word.	This warning appears with n160. This warning is triggered when you try to trigger a motion task with an invalid bit combination in the motion task control word (see also MT.CNTL).	Correct the MT.CNTL setting for the specific motion task. Acti- vation of any new motion or using of DRV.CLRFAULTS will clear the warning.
n169	1:1 profile cannot be trig- gered on the fly.	This warning appears with n160. This warning is triggered when you try to trigger a 1:1 profile table motion task while another motion task is currently run ning.	1:1 profile table motion tasks should be started from velocity 0. Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.

Fault	Message/Warning	Cause	Remedy
	Customer profile table is not initialized.	This warning appears with n160. This warning is triggered when you try to trigger a motion task that uses a customer profile table for generating the velocity profile and when the selected profile table is empty (see MT.CNTL and MT.TNUM.	Change the MT.TNUM parameter for this specific motion task in order to use an initialized profile table. Activation of any new motion or using of DRV.CLRFAULTS will clear the warning.
F201	Internal RAM failed.	Hardware failure detected.	Restart drive. If issue persists, contact technical support.
F202	External RAM failed.	Hardware failure detected.	Restart drive. If issue persists, contact technical support.
F203	Code integrity failed.	Software failure detected. FPGA register access failure occurred.	Restart drive. If issue persists, contact technical support.
F204 to F232	EEPROM failure detected	EEPROM failure detected	Restart drive. If issue persists, exchange drive.
F234- F237 n234- n237	Temperature sensor high.	High temperature limit reached.	Check cabinet ventilation system.
F240- F243 n240- n243	Temperature sensor low.	Low temperature limit reached.	Check cabinet ventilation system.
F245	External fault.	This fault is user generated and is caused by user settings.	Users can configure a digital input to trigger this fault (DINx.MODE = 10). The fault occurs according to this input setting. Clear the input to clear the fault.
	Bus voltage exceed allowed thresholds.	Hardware problem in bus measurement.	Troubleshoot and repair hard- ware problem.
F301 n301	Motor overheated.	Motor overheated.	Check ambient temperature. Check motor mounting heat sink capability
F302	Over speed.	Motor exceeded VL.THRESH value.	Look for overshoot or lower requested speed.
F303	Runaway.	Motor did not follow command values.	Gains are too low; motor is being over driven.
F304 n304	Motor foldback.	Maximum motor power has been exceeded; the power has been limited to protect the motor	Motion is requiring too much power. Change move profile to reduce load on motor. Check for load jamming or sticking. Check that current limits are set cor- rectly.
F305	Brake open circuit.	Motor brake open circuit.	Check cabling and general functionality.
F306	Brake short circuit.	Motor brake short circuit.	Check cabling and general functionality.

Fault	Message/Warning	Cause	Remedy
F307	Brake closed during enable state.	Motor brake closed unexpectedly.	Check cabling and general functionality.
F308	Voltage exceeds motor rat-	Drive bus voltage exceeds the motor's	Make sure that the motor fits the
	ing.	defined voltage rating.	driving rating.
F401	Failed to set feedback type.	Feedback is not connected or wrong feedback type selected	Check primary feedback (X10 connection).
F402	Analog signal amplitude	Analog signal amplitude is too low.	Check primary feedback (X10
	fault.	Analog fault (resolver signal amplitude or	connection), resolver and
		sin/cos amplitude)	sine/cos encoder only.
F403	EnDat communication fault.	General communication problem with feedback.	Check primary feedback (X10 connection), EnDat only
F404	Hall error.	Hall sensor returns invalid Hall state	Check the feedback wiring;
		(111, 000); either all Hall sensors are on	check all feedback connectors
		or off. Legal Hall states are 001, 011,	to ensure all pins are positioned
		010, 110, 100, and 101. This fault can be	correctly.
		caused by a broken connection in any	
		one of the Hall signals.	
F405	BiSS watchdog fault.	Bad communication with the feedback	Check primary feedback (X10
F406	BiSS multicycle fault.	device.	connection), Biss only.
F407	BiSS sensor fault.		
F408-	SFD feedback fault.	Bad communication with the SFD	Check primary feedback (X10
F416		device.	connection).If fault persists,
			internal feedback failure. Return
			to manufacturer for repair.
F417	Broken wire in primary feed-	In primary feedback, a broken wire was	Check feedback cable con-
	back.	detected (incremental encoder signal	tinuity.
E440	Drive en efe e elle e el en evene	amplitude).	Ohaali miinaan faadhaali (V10
F418	Primary feedback power supply.	Power supply fault for primary feedback.	Check primary feedback (X10 connection).
F419	Encoder init procedure failed	Phase find procedure did not complete	Check encoder wiring,
		successfully.	reduce/balance motor load prior
			to phase finding.
F424	Resolver amplitude low.	Resolver signal amplitude is below mini-	Check primary feedback (X10
		mum level.	connection).
F425	Resolver amplitude high.	Resolver signal amplitude is above maximum level.	Check primary feedback (X10 connection).
F426	Resolver error.	Resolver excitation fault.	Check primary feedback (X10
			connection).
F427	Analog low.	Analog signal amplitude low.	Check primary feedback (X10 connection).
F428	Analog high.	Analog signal amplitude high.	Check primary feedback (X10
			connection).
F429	Incremental low.	Incremental encoder signal amplitude is	Check primary feedback (X10
		below minimum level.	connection).
F430	Incremental high.	Incremental encoder signal amplitude is	Check primary feedback (X10
		above maximum level.	connection).
F431	Secondary feedback Hall	Secondary feedback illegal Hall state	Check X9 connection.
	error.	(000,111).	

Fault	Message/Warning	Cause	Remedy
F432	Communication fault.	General communication problem with secondary feedback.	Check secondary feedback (X10 connection).
F437	Close to limit.	Drive or motor over current or over speed warning.	Check for increased load, jamming or sticking. Is position error set too low?
F438 n439	Following error (numeric)	Motor did not follow command values. Motor exceeded maximum allowed position following error (numeric).	Check for increased load, jamming or sticking. Is position error set too low?
F439 n439	Following error (user).	Motor did not follow command values. Motor exceeded maximum allowed position following error (user).	Check feedback commutation setup and tuning parameters.
F450	Following error (presentation).	Motor did not follow command values. Motor exceeded maximum allowed position following error (presentation).	Check feedback commutation setup and tuning parameters.
F473	Wake and Shake. Insuf- ficient movement	There was less movement than defined by WS.DISTMIN.	Increase WS.IMAX and/or WS.T
F475	Wake and Shake. Excess movement.	WS.DISTMAX has been exceeded.	Increase WS.DISTMAX value or reduce WS.IMAX or WS.T.
F476	Wake and Shake. Fine- coarse delta too large.	The angle difference between the coarse and fine calculation was larger than 72 deg.	Modify WS.IMAX or WS.T and try again.
F478 n478	Wake and Shake. Overspeed.	WS.VTHRESH was exceeded.	Increase WS.VTHRESH value or reduce WS.IMAX or WS.T.
F479 n479	Wake and Shake. Loop angle delta too large.	The angle between complete loops was larger than 72 deg.	Modify WS.IMAX or WS.T and try again.
F480	Fieldbus command velocity too high.	Fieldbus command velocity exceeds VL.LIMITP.	Lower fieldbus command tra- jectory, or increase the value of VL.LIMITP.
F481	Fieldbus command velocity too low.	Fieldbus command velocity exceeds VL.LIMITN.	Increase fieldbus command tra- jectory, or decrease the value of VL.LIMITN.
F482	Commutation not initialized.	The motor requires the commutation initialization (there are no encoder commutation tracks, Hall sensors, etc.) and no successful Wake and Shake sequence has been performed	Clear any faults, activate the Wake and Shake procedure (WS.ARM) and enable the drive.
F483	Motor U phase missing.	No current was detected in the motor's U phase during initialization (Mode 0 only).	Check the motor connections and WS.IMAX (very low current may produce this error).
F484	Motor V phase missing.	No current was detected in the motor's V phase during initialization (Mode 0 only).	Check the motor connections and WS.IMAX (very low current may produce this error).
F485	Motor W phase missing.	No current was detected in the motor's W phase during initialization (Mode 0 only).	Check the motor connections and WS.IMAX (very low current may produce this error).
F501 n501	Bus over voltage.	Bus voltage too high. Usually, this problem is load related.	Reduce load or change motion profile. Check system regen capacity; add capacity if needed. Check mains voltage.

Fault	Message/Warning	Cause	Remedy	
F502	Bus under voltage.	Bus voltage below threshold value.	Check mains voltage.	
	Warning issued prior to fault.			
F503	Bus capacitor overload.	Single phase AC input on a drive only	Check mains voltage.	
n503		rated for three-phase input or excessive		
		single-phase power load.		
F504-	Internal supply voltage fault	Internal supply voltage fault detected	Check wiring for elec-	
F518			tromagnetic compatibility	
			(EMC). If issue persists exchange drive.	
F519	Regen short circuit.	Regen resistor short circuit.	Regen IGBT short circuit. Con-	
1 313	regen short circuit.	regerresistor short circuit.	tact technical support.	
F520	Regen overload.	Regen resistor overload.	Motor is being overhauled or	
		3	motor is being stopped too	
			quickly.	
F521	Regen over power.	Too much power stored in regen	Either get larger regen resistor or	
n521		resistor.	use DC bus sharing to dissipate	
			power.	
F523	Bus over voltage FPGA	Bus over voltage hard fault.	Check mains voltage and check	
	D : ()		system brake capacity.	
F524 n524	Drive foldback.	Maximum drive power has been	Motion requires too much power.	
11324		exceeded. The power has been limited to protect the drive.	Change profile to reduce load.	
F525	Output over current.	Current exceeds drive peak.	Check for short or feedback	
1 323	Output over current.	Current exceeds drive peak.	faults.	
F526	Current sensor short circuit.	Current sensor short circuit.	Restart drive. If issue persists,	
. 525			contact technical support.	
F527	lu current AD converter	Hardware failure detected.	Restart drive. If issue persists,	
	stuck.		contact technical support.	
F528	Iv current AD converter	Hardware failure detected.	Restart drive. If issue persists,	
	stuck.		contact technical support.	
F529	lu current offset limit	Hardware failure detected.	Restart drive. If issue persists,	
	exceeded.		contact technical support.	
F530	Iv current offset limit	Hardware failure detected.	Restart drive. If issue persists,	
	exceeded.		contact technical support.	
F531	Power stage fault.	Hardware failure detected.	Restart drive. If issue persists,	
			replace drive.	

Fault	Message/Warning	Cause	Remedy
F532	Drive motor parameters setup incomplete.	Before a motor can be enabled, you must configure a minimum set of parameters. These parameters have not been configured.	Issue the command DRV.S-ETUPREQLIST to display the list of the parameters that you must configure. Configure these parameters either manually or automatically. You can manually configure these parameters in three ways: (1) set each parameter individually; (2) use the setup wizard to select the motor; or (3) select the motor type from the motor data base in the Motor window (MOTOR.AUTOSET must be set to 0 (FALSE)). If you use the Motor window, you must first select the feedback type. If the motor has Biss Analog, Endat, or SFD feedback (feedback with memory), then these parameters are set automatically when MOTOR.A-UTOSET is set to 1 (TRUE).
F534	Failed to read motor parameters from feedback device.	Motor either does not have motor feed- back memory, or the motor feedback memory is not programmed properly so the parameters cannot be read.	Try to read parameters again by clicking the Disable and Clear Faults button, or by issuing the DRV.CLRFAULTS command. If this attempt is not successful, then set MOTOR.AUTOSET to 0 (false) and program the parameters using the setup wizard or manually set up the parameters. If the motor has motor memory (Biss Analog, Endat, and SFD motors have motor to have the memory programmed.
F602	Safe torque off.	Safe torque off function has been triggered.	Reapply supply voltage to STO if safe to do so.
F701	Fieldbus runtime.	Runtime communication fault.	Check fieldbus connections (X11), settings, and control unit.
F702 n702	Fieldbus communication lost.	All fieldbus communication was lost.	Check fieldbus connections (X11), settings, and control unit.
F703	Emergency timeout occurred while axis should disable	Motor did not stop in the timeout defined.	Change timeout value, change stop parameters, improve tuning.

17.2 Clearing Faults

You can clear drive faults in four ways: 1. using the WorkBench toolbar; 2. using the WorkBench terminal screen, 3.using the CANopen interface; or 4.using an external digital signal. In the first three methods, clearing the fault automatically disables the drive (by issuing the DRV.DIS command). After the fault is cleared, you must then enable the drive again (by issuing the DRV.EN command). In the fourth method, clearing the fault does not automatically disable the drive. Once the fault is cleared, the drive will immediately become enabled again when no fault conditions exist.

The external digital signal method is useful when the application does not require a field bus, therefore the controller cannot issue fieldbus commands (for example, DRV.EN). The fault clearing function is simpler in this case. The controller can clear a fault condition with a single output and no fieldbus command is required. The hardware enable input is still utilized for safety. Many machines are set to disable when a fault occurs, therefore, the enable circuit is connected only after the fault clear circuit is toggled.

1. Using the WorkBench toolbar. Click the **Clear Fault** button to clear the fault, then click the **Enable** button to enable the drive again.

- 2. Using an ASCII command. In WorkBench terminal screen, enter DRV.CLRFAULTS, then enter DRV.EN to enable the drive.
- 3. Using the CANopen interface (Object 6040h: Controlword DS402). The ASCII control commands are built up from the logical combination of the bits in the control word and external signals (enable output stage). You can configure the **Reset Fault** bits in the control word to clear the fault. See Object 6040h: Control word (DS402) in the CANopen manual for details on clearing faults using this method. After the fault is cleared, you must enable the drive.
- 4. Using an external digital signal. First, provide a disable command to the drive, since this command is not automatically issued when the fault is cleared using an external digital signal. You must provide this disable command after the drive has disabled itself and before the clear fault command is issued in order for the clear fault command to be accepted.

Digital input mode 1 clears a fault condition. In the WorkBench terminal screen, enter DINx.MODE 1, with x set to the corresponding digital input number. See the Installation Manual (10.3 Digital Inputs (X7/X8) for digital input numbers and corresponding pin connections.

Example:

DIN2.MODE 1 sets digital input 2 (pin 9 on connector X7) to perform the clear fault function. Any free digital input shown in Table x can be set to mode 1 (Reset faults).

17.3 Parameter and Command Error Messages

Error Message	Meaning	Remedy	Occurrence
Error: Parameter or command was not found.	Parameter or command string was not recognized as a known command.	Check the entered string for accuracy. Consult the reference guide or enter DRV.LIST in the Work-Bench terminal screen to find valid parameters and commands.	General.
Error: Not a trigger parameter.	Parameter cannot be used for triggering the scope.	Use a different parameter as a trigger value.	Recorder parameters.
Error: Parameter not recordable.	Parameter cannot be scoped.	Do not scope this parameter.	Recorder parameters.
Error: Wrong argument for parameter or command.	Argument was not accepted.	Check the entered argument for accuracy. Consult the reference guide or enter DRV.LIST in the WorkBench terminal screen to find valid parameter and command arguments.	General.
Error: No arguments allowed for parameter or command.	Parameter or command supports no arguments.	Enter parameter or command again with no arguments.	Commands and read- only parameters
Error: Too many arguments for parameter or command.	Too many arguments provided for this parameter or command.	Enter again with fewer arguments.	All parameters and commands with no or one argument.
Error: No float allowed.	Float number was entered, but only integer numbers are allowed.	Enter integer value instead.	All parameters and commands with integer arguments.
Error: Parameter or command is read-only.	Argument was not accepted because the parameter or command is read-only.	Enter again with no arguments.	Commands and all read-only parameters.
Error: Parameter is temporarily write protected.	Argument was not accepted because the parameter is currently read-only.	Check reference guide or Work- Bench help to determine if the parameter is read-only, read- write, or nonvolatile.	Some parameters that come from the Smart Feedback Device (SFD).
Error: Argument greater than maximum value.	Entered argument was beyond maximum value.	Enter a value that is within the allowable range. See reference guide or WorkBench help for ranges.	Commands and read- write parameters.
Error: Too many characters in parameter or command.	Parameter or command string was too long.	Shorten string and enter again.	General.
Error: Argument less than minimum value.	Entered argument was too small.	Enter value that is within the limits.	Commands and read- write parameters.
Error: Argument is out of data range.	Entered argument was not withing the data range limits.	Enter value that is within the limits.	Commands and read- write parameters.
Error: Parameter or command is password protected.	Use of this parameter or command requires a password.	Contact technical support to obtain password. Enter valid password.	Password protected parameters and commands.

Error Message	Meaning	Remedy	Occurrence
Error: Wrong operation mode for parameter or command.	Requested parameter or command cannot be performed in this operation mode.	Change to valid operation mode.	
Error: Drive enabled. Disable drive and continue.	Action can only be per- formed if drive is dis- abled.	Disable drive and repeat action.	
Error: Drive disabled. Enable drive and continue.	Action can only be per- formed if drive is ena- bled.	Enable drive and repeat action.	
Error: Data value is invalid.	Entered data was not valid.	Provide valid data.	
Error: Argument must be an even number.	Argument is not an even number.	Enter a value divisible by two without remainder.	
Error: Argument must be an odd number.	Argument must be an odd number.	Enter a value not divisible by two with remainder.	
Error: Axis is not homed.	Axis is not homed.	Home axis and repeat action.	
Error: All recorder channels empty.	No data is specified to record.	Specify the data to be recorded and start again.	Recorder com- mands.
Error: Process already active.	Required action is already running.	Wait until action is finished and start again if needed.	
Error: Motor is currently in motion.	Action can only be performed if motor is not moving.	Stop motion and repeat action.	Motion tasks, service motion, and others.
Error: EEPROM is bad or does not exist.	EEPROM is damaged.	Restart drive. If fault persists, replace the drive and consult technical support.	
Error: Unknown board.			
Error: Fault exists.Co- rrect fault condition and then clear faults.	A fault is present in the system.	Clear the fault, disable the drive, and then enable the drive again.	
Error: Cannot clear faults. Issue software or hardware disable first.		Clear hardware or software enable and repeat action.	
Error: EEPROM is busy.			
Error: Invalid motor/feedback poles ratio.			
Error: Unknown Fault.	Situation should not happen.	Clear fault. If fault recurs, consult technical support.	Unknown.
Error: Invalid motor/feedback poles ratio.			
Error: Invalid motion task parameter.			
Error: Invalid motion task number.			

Error Message	Meaning	Remedy	Occurrence
Error: Invalid motion			
task velocity.			
Error: Invalid motion			
task acceleration or			
deceleration.			
Error: Invalid motion			
task customer profile			
table number.			
Error: Invalid motion			
task following number.			
Error: Function not			
available for the active			
command source.			
Error: Invalid Bode plot			
mode for this function.			
Error: Invalid sine-			
sweep Bode plot mode.			
Error: Bode plot start			
frequency greater than			
or equal to end			
frequency.			
Error: Function not			
available while a con-			
trolled stop is in proc-			
ess.			
Error: Not enough mem-			
ory available.			
Error: Function not			
available while a Bode-			
plot measurement is			
active.			
Error: lu/lv offset cal-			
culation not finished.			
Error: Buffer overflow.			
Error: Cannot save to			
EEPROM while inrush			
relay is closed.			
Error: Test mode is off.			
Error: Cannot change			
digital input mode.			
Issue software or hard-			
ware disable first.			
Error: Internal drive pro-			
cedure active: con-			
trolled stop, burn-in,			
phase find, or zero.			
Error: General motion			
fault.			

17.4 CANopen Emergency Messages and Error Codes

Emergency messages are triggered by internal equipment errors. They have a high ID-priority to ensure quick access to the bus. An emergency message contains an error field with pre-defined error/fault numbers (2 bytes), an error register (1byte), the error category (1 byte), and additional information.

Error numbers from 0000h to 7FFFh are defined in the communication or drive profile. Error numbers from FF00h to FFFFh have manufacturer-specific definitions. The following table describes the various error codes:

Error Code	Fault/Warning Code	Description
0x0000	0	Emergency error free
0x3110	523	Bus over voltage
0x3120	-	Bus under voltage
0x3130	503	Phase failure
0x3180	503	Warning: Supply missing phase
0x3210	501	DC link over-voltage
0x3220	502	DC link under-voltage
0x4210	234	Excess temperature, device (control board)
0x4310	235	Excess temperature, drive (heat sink)
0x5113	512	Supply low voltage, U3 = supply +5 V
0x5114	505	Supply low voltage, manufacturer specific: supply 1V2
0x5115	507	Supply low voltage, manufacturer specific: supply 2V5
0x5116	509	Supply low voltage, manufacturer specific: supply 3V3
0x5117	514	Supply low voltage, manufacturer specific: supply 12 V
0x5118	516	Supply low voltage, manufacturer specific: supply -12V
0x5119	518	Supply low voltage, manufacturer specific:supply 3V3 analogue
0x5180	504	Supply overvoltage, manufacturer specific:supply 1V2
0x5181	506	Supply overvoltage, manufacturer specific:supply 2V5
0x5182	508	Supply overvoltage, manufacturer specific:supply 3V3
0x5183	510	Supply overvoltage, manufacturer specific:supply 5V0
0x5184	513	Supply overvoltage, manufacturer specific:supply 12 V
0x5185	104	Supply overvoltage, manufacturer specific:supply -12V
0x5186	517	Supply overvoltage, manufacturer specific:supply 3V3 analogue
0x5510	201	Hardware memory, RAM
0x5530	105	Hardware memory, EEPROM
0x5580	106	Hardware memory, non-volatile memory data
0x5581	202	Hardware memory, external Ram for resident firmware failed
0x5582	203	Hardware memory, code integrity failed for resident firmware
0x5583	102	Hardware memory, resident firmware failed
0x5584	103	Hardware memory, resident FPGA failed
0x5585	104	Hardware memory, operational FPGA failed
0x7180	301	Motor overheat
0x7182	305	Motor open circuit
0x7183	306	Motor short circuit
0x7184	307	Motor brake applied
0x7303	426	Resolver 1 fault
0x7305	417	Incremental sensor 1 fault
0x7380	402	Feedback 1, analogue fault
0x7381	403	Feedback 1, EnDat communication fault
0x7382	404	Feedback 1, illegal hall
0x7383	405	Feedback 1, BiSS watchdog

Error Code	Fault/Warning Code	Description
0x7384	406	Feedback 1, BiSS multi cycle
0x7385	407	Feedback 1, BiSS sensor
0x7386	408	Feedback 1. SFD configuration
0x7387	409	Feedback 1, SFD UART overrun
0x7388	410	Feedback 1, SFD UART frame
0x7389	412	Feedback 1, SFD UART parity
0x738A	413	Feedback 1. SFD transfer timeout
0x738C	415	Feedback 1, SFD mult. corrupt position
0x738D	416	Feedback 1, SFD Transfer incomplete
0x738E	418	Feedback 1, power supply fault
0x738F	401	Feedback 1, failed to set feedback
0x73A0	424	Feedback 2, resolver amplitude low
0x73A1	425	Feedback 2, resolver amplitude high
0x73A2	425	Feedback 2, resolver fault
0x73A3	427	Feedback 2, analogue low
0x73A4	428	Feedback 2, analogue high
0x73A5	429	Feedback 2, incremental low
0x73A6	430	Feedback 2, incremental high
0x73A7	431	Feedback 2, halls
0x73A8	432	Feedback 2, communication
0x73A9	-	Reserved
0x73AA	-	Reserved
0x8130	129	Life Guard Error or Heartbeat Error
0x8311	304	Excess torque
0x8331	524	Torque fault
0x8480	302	Velocity overspeed
0x8580	107	Software limit switch, positive
0x8581	108	Software limit switch, negative
0x8611	439	Following error
0x8686	151	Not enough distance to move; Motion Exception
0x8687	152	Not enough distance to move; Following Motion Exception
0x8688	153	Velocity Limit Violation, Exceeding Max Limit
0x8689	154	Following Motion Failed; Check Motion Parameters
0x868A	156	Target Position crossed due to Stop command
0x86A0	157	Homing Index pulse not found
0x86A1	158	Homing Reference Switch not found
0x86A2	159	Failed to set motion task parameters
0x86A3	160	Motion Task Activation Failed
0x86A4	161	Homing Procedure Failed
0x8780	125	Fieldbus synchronization lost
0x8AF0	137	Homing and Feedback mismatch
0xFF00	701	Fieldbus runtime fault
0xFF01	702	Fieldbus communication lost
0xFF02	529	lu offset limit exceeded
0xFF03	530	Iv offset limit exceeded
0xFF04	521	Stored energy reached critical point
0xFF05	527	lu detection stuck
0xFF06	528	Iv detection stuck

Error Code	Fault/Warning	Description
	Code	
0xFF07	525	Control output over current
0xFF08	526	Current sensor short circuit
0xFF09	128	Axis dpoles
0xFF0A	531	Power stage fault
0xFF0B	602	Safe torque off
0xFF10	414	Warning: SFD single corrupted position.
0x8380	524	Warning: Drive foldback
0x8387	304	Warning: Motor foldback
0xFF13	438	Warning: Control position deviation
0x8582	107	Warning: Positive software position limit is exceeded.
0x8583	108	Warning: Negative software position limit is exceeded.
0x8684	123	Warning: Motion global warning
0x7786	301	Warning: Motor overheated.
0x4380	234	Warning: Control temperature sensor 1 high
0x4387	235	Warning: Power temperature sensor 1 high.
0x4382	236	Warning: Power temperature sensor 2 high.
0x4393	237	Warning: Power temperature sensor 3 high.
0x4394	240	Warning: Control temperature sensor 1 low.
0x4385	241	Warning: Control temperature sensor 1 low.
0x4396	242	Warning: Power temperature sensor 2 low.
0x4392	243	Warning: Power temperature sensor 3 low.
0x3280	502	Warning: Bus under voltage.
0x3780	503	Warning: Input phase loss.
0x3287	521	Warning: Dynamic Braking I ² T.
0x8787	125	Warning: Fieldbus PLL unlocked.

17.5 Unknown Fault

This fault message occurs when an undefined fault condition is encountered.

17.5.0.1 Remedies

1. Click Clear Fault.

18 Troubleshooting the AKD

Drive problems occur for a variety of reasons, depending on the conditions in your installation. The causes of faults in multi-axis systems can be especially complex. If you cannot resolve a fault or other issue using the troubleshooting guidance presented below, customer support can give you further assistance.

Problem	Possible Causes	Remedy
HMI message:	— wrong cable used	— plug cable into the correct sockets on the drive
Communication fault	— cable plugged into wrong position	and PC
	on drive or PC	— select correct interface
	— wrong PC interface selected	
Motor does not rotate	— drive not enabled	— apply ENABLE signal
	— software enable not set	— set software enable
	— break in setpoint cable	— check setpoint cable
	— motor phases swapped	— correct motor phase sequence
	— brake not released	— check brake control
	— drive is mechanically blocked	— check mechanism
	- motor pole no. set incorrectly	— set motor pole no.
	— feedback set up incorrectly	— set up feedback correctly
Motor oscillates	— gain is too high (speed controller)	reduce VL.KP (speed controller)
	— feedback cable shielding broken	— replace feedback cable
	— AGND not wired up	— join AGND to CNC-GND
Drive reports	— Irms or Ipeak set too low	—verify motor/drive sizing
following error	—current or velocity limits apply	—verify that IL.LIMITN, IL.LIMITP, VL.LIMITN, or
	— accel/decel ramp is too long	VL.LIMITP is not limiting the drive
		—reduce DRV.ACC/DRV.DEC
Motor overheating	— motor operating above its rating	—verify motor/drive sizing
		—verify motor continuous and peak current values
		are set correctly
Drive too soft	—Kp (speed controller) too low	—increase VL.KP (speed controller)
	—Ki (speed controller) too low	—increase VL.KI (speed controller)
	—filters set too high	—refer to documentation regarding reducing fil-
		tering (VL.AR*)
Drive runs roughly	—Kp (speed controller) too high	—reduce VL.KP (speed controller)
	—Ki (speed controller) too high	—reduce VL.KI (speed controller)
	— filters set too low	—refer to documentation regarding increasing fil-
		tering (VL.AR*)
During the instal-	—MSI installer issue.	—Cancel the installation.
lation, a dialog box		Make a superthat seed have a provide dial and a seed
saying "Please wait		—Make sure that you have enough disk space on
while the installer fin-		your hard disk (~500MB to allow Windows .NET
ishes determining		update if necessary), if not make some space.
your disk space		—Relaunch the installer (you may need to try sev-
requirements"		eral times, the problem is random).
appears and never dis-		, , , , , , , , , , , , , , , , , , , ,
appears.		

19 Firmware and Firmware Updates

19.1	Downloading Firmware	259
19.2	Firmware Compatibility	259
19.3	Invalid Firmware	259
19.4	Forcing the drive into firmware download mode	260
19.5	Forced download of AKD firmware.	260

19.1 Downloading Firmware

To download firmware, click More on the AKD Overview screen (see 6.2 AKD Overview). The information displayed includes the current firmware version. Click **Download** to display the **Download Firmware** view and update the firmware.

When you download the firmware, you may see a Save dialog box; see 13.4 Save On Firmware Download for more information about saving your drive configuration prior to a firmware download.

During the download, you cannot perform any actions with the drive.

CAUTION While WorkBench is downloading firmware to your drive, do not remove the 24 V logic power. If you remove the 24 V logic power during a firmware download, a severe drive crash can occur. If a crash occurs, the drive will restart in a special mode and WorkBench will prompt you to reload the firmware.

During the firmware download, the Download Firmware view displays a progress bar and the following messages as the download proceeds:

- Reading the firmware file. This step duration depends on where the file is physically stored.
- 2. Resetting the drive. This step takes about 10 seconds.
- 3. **Erasing the old firmware**. This step takes about 20 seconds.
- 4. **Downloading the new firmware to the drive.** The drive downloads the new firmware and then programs the new firmware into the nonvolatile memory of the drive. This step takes about 20 seconds.
- 5. **Resetting the drive**. This step takes about 10 seconds.

During the download process, the drive LED displays [dL]. Additional codes may appear during the download; see 3.2 Display Codes for a description of display codes related to a firmware download.

19.2 Firmware Compatibility

WorkBench is compatible with all previous drive firmware versions. Any new WorkBench versions issued are compatible with older firmware versions. WorkBench forward compatibility, however, cannot be ensured. When a behavior in the firmware changes, an older WorkBench version may not function correctly with the new firmware. Kollmorgen recommends that you update WorkBench when you install new firmware.

The table below describes compatibility between WorkBench and firmware versions:

		Firmware version M_01-02-00-zzz	Firmware version M_01-03-00-zzz
WorkBench Version 1.1.x.x	V	х	Х
WorkBench Version 1.2.x.x	V	$\sqrt{}$	Х
WorkBench Version 1.3.x.x	√	√	V

Any new firmware not listed here may have compatibility issues with WorkBench. Please check for latest version of WorkBench on the Kollmorgen website:

http://www.kollmorgen.com/akd software

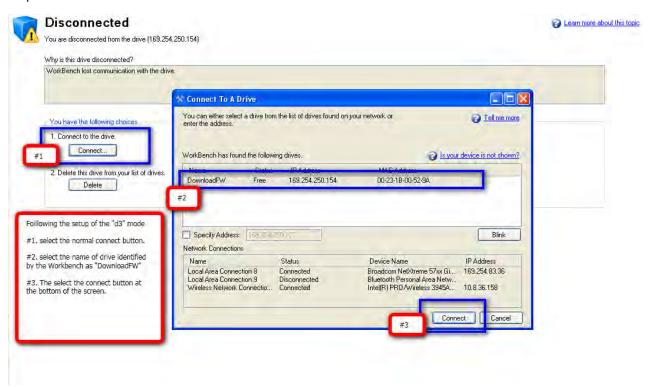
19.3 Invalid Firmware

When WorkBench connects to a drive, it checks to make sure that the drive is executing a compatible version of the drive firmware. If the drive is executing invalid firmware, then WorkBench cannot operate correctly and shows this window.

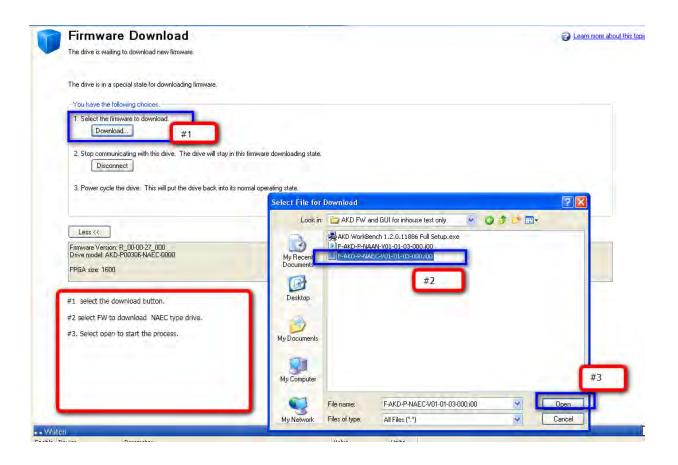
Button	Description
Download	This command allows you to select a different version of the firmware and download it to the drive.

Button	Description
Disconnect	This command stops all communications with the drive and return to the disconnected state.

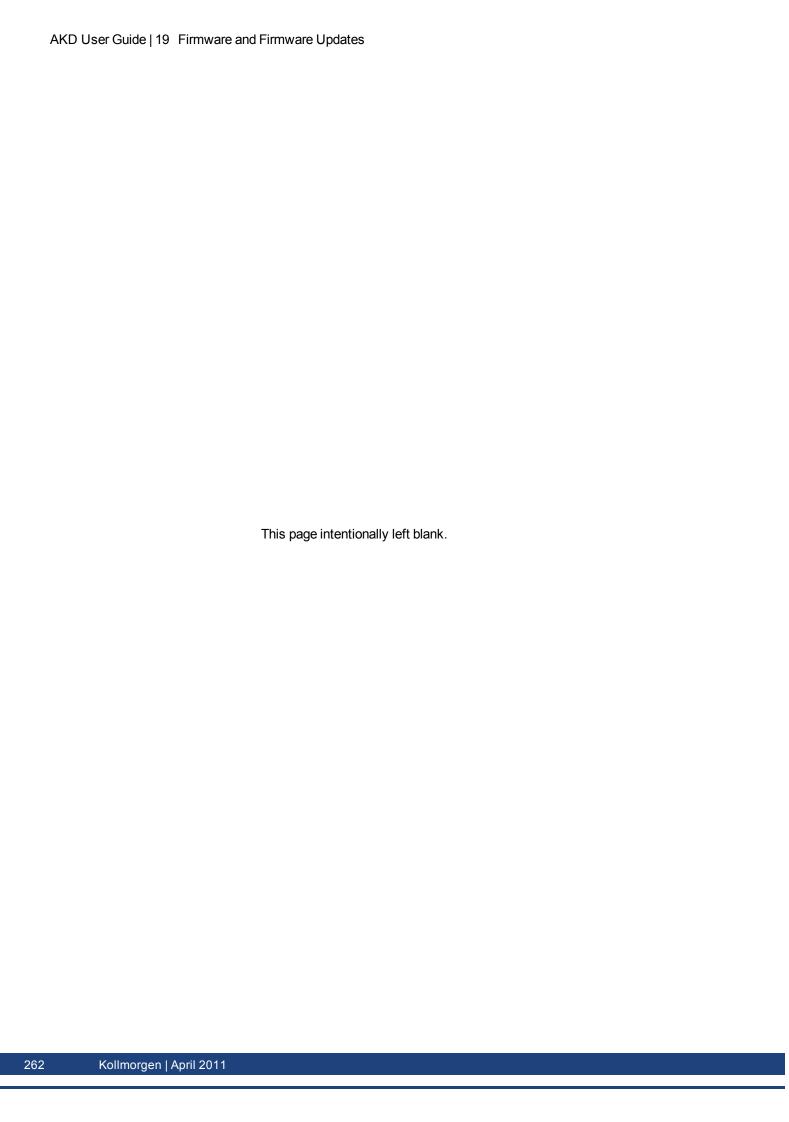
19.4 Forcing the drive into firmware download mode


19.5 Forced download of AKD firmware.

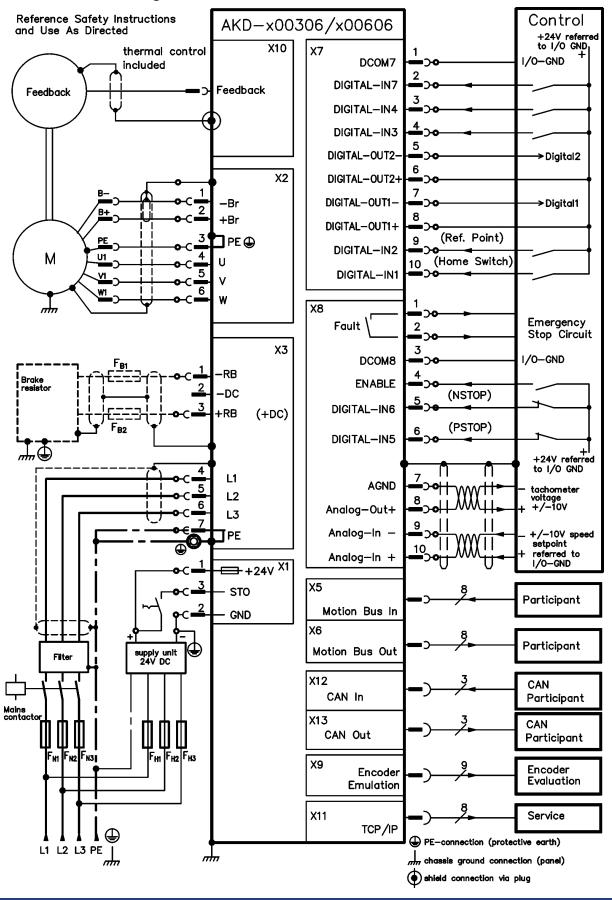
In most cases, you can download firmware using the WorkBench without setting the hardware into a specific download state. If you are unable to connect to WorkBench for some reason, the following "forced firmware download" procedure is needed.

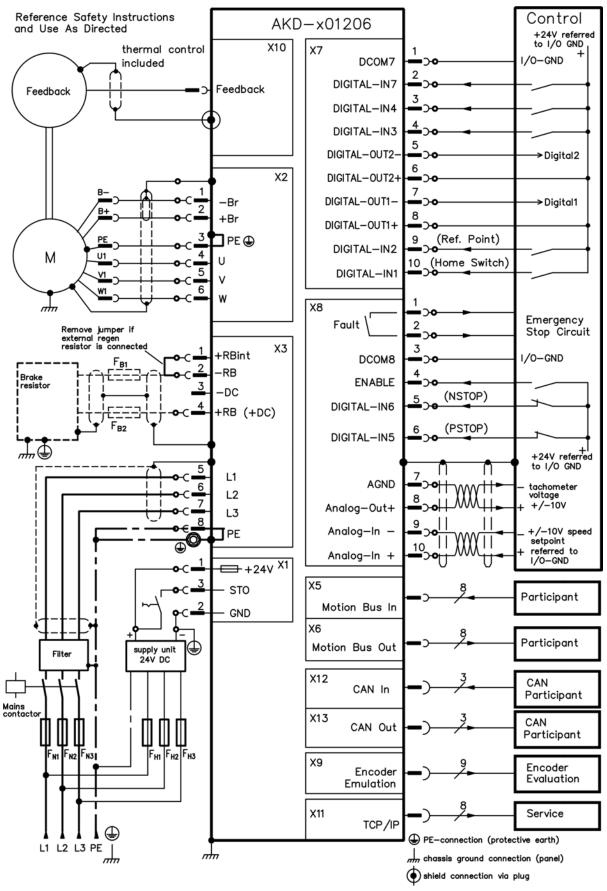

Power the AKD unit down then:

- 1. Depress the B1 button (display of IP Address Button) while powering up the drive. Continue to depress the button until the drive display shows "d3" (5-10 sec).
- 2. Once the display on the drive shows "d3", have the EtherNet cable connected to the drive Point to Point.
- 3. The drive can now be connected to WorkBench in download mode.
- 4. Select the firmware to be downloaded; click **Open** to start the process.


WorkBench will display the **Disconnected** view. See the screenshots below for the download connection sequence.

The **Firmware Download** view appears next. See the screenshot below for the firmware selection and download sequence.


- 3.Next, the **Downloading Firmware** view appears and the progress bar displays the firmware download progress.
- 4. Once the download is complete, open the **AKD Overview** screen. The **Firmware Version** box displays the new firmware version, which confirms your successful download.


Connection Diagrams

19.6 Co	nnection Diagram, AKD-x00306 to x00606.	264
19.7 Co	nnection Diagram, AKD-x01206	265
19.8 Co	nnection Diagram, AKD-x02406 and AKD-xzzz07.	266
19.9 24	V Auxiliary Supply (X1)	267
19.10 M	otor Connection.	268
19.11 E	xternal Regen Resistor (X3).	269
19.12 D	C Bus Link (X3)	270
19.13 M	ains Supply Connection (X3, X4).	271
19.14 I/	O Connection	273
19.15 A	nalog Output (X8).	274
19.16 A	nalog Input (X8).	275
19.17 C	ommand encoder signal connection	276
19.18 P	ulse / Direction signal connection	278
19.19 U	p / Down signal connection	278
19.20 F	eedback Connector (X10)	279

19.6 Connection Diagram, AKD-x00306 to x00606

19.7 Connection Diagram, AKD-x01206

19.8 Connection Diagram, AKD-x02406 and AKD-xzzz07 Reference Safety Instructions Control AKD-x02406/AKD-xxxx07 and Use As Directed +24V referred to I/O GND + X10 X7 thermal control /O-GND DCOM7 included DIGITAL-IN7 Feedback Feedback DIGITAL-IN4 DIGITAL-IN3 DIGITAL-OUT2->Digital2 X2 DIGITAL-OUT2+ DIGITAL-OUT1--Br →Digital1 B+ 8 +Br DIGITAL-OUT1+ (Ref. Point) 🗖 PE 🕀 DIGITAL-IN2 М U1 (Home Switch) 10 DIGITAL-IN1 <u>V1</u> 6 X8 **Emergency** Fault 2 Remove jumper if external regen resistor is connected Stop Circuit Х3 3 +RBint /O-GND DCOM8 -RB **ENABLE** -DC (NSTOP) DIGITAL-IN6 +RB (+DC) (PSTOP) DIGITAL-IN5 ,,<u>,,</u> +24V referred to I/O GND X4 L1 **AGND** tachometer L2 voltage +/-10V Analog-Out+ L3 9 Analog-In -+/-10V speed setpoint referred to Analog-In + ₩+24V X1 Х5 STO **Participant** Motion Bus In GND Х6 Participant Motion Bus Out supply unit 24V DC Filter X12 CAN CAN In **Participant**

X13

Х9

X11

CAN Out

Encoder

TCP/IP

Emulation

CAN

Participant

Encoder

Service

PE-connection (protective earth)

shield connection via plug

chassis ground connection (panel)

Evaluation

L1 L2 L3 PE

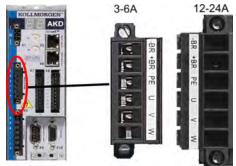
 $F_{H1}|F_{H2}|F_{H3}$

19.9 24 V Auxiliary Supply (X1)

The following diagram describes external 24 Vdc power supply, electrically isolated, for example, via an isolating transformer. The required current rating depends on the use of motor brake and option card (see page 1 or following).

Pin	Signal	Description
1	+24	+24 Vdc Auxiliary voltage
2	GND	24V Supply GND
3	STO	STO enable (Safe Torque Off)

19.10 Motor Connection


Together with the motor supply cable and motor winding, the power output of the drive forms an oscillating circuit. Characteristics such as cable capacity, cable length, motor inductance, and frequency ("Electrical Data - xzzz06" (=> p. 1) or "Electrical Data -xzzz07" (=> p. 1)) determine the maximum voltage in the system.

NOTICE

The dynamic voltage rise can lead to a reduction in the motor operating life and, on unsuitable motors, to flashovers in the motor winding.

- Only install motors with insulation class F (acc. to IEC60085) or above.
- Only install cables that meet the requirements "Wiring" (=> p. 1).

Connector X2 AKD-xzzz06

Pin	Signal	Description
1	-BR	Motor holding brake, negative
2	+BR	Motor holding brake, positive
3	PE	Protective earth (motor housing)
4	U	Motor phase U
5	V	Motor phase V
6	W	Motor phase W

Connector X2 AKD-xzzz07

Pin	Signal	Description
1	-BR	Motor holding brake, negative
2	+BR	Motor holding brake, positive
3	PE	Protective earth (motor housing)
4	U	Motor phase U
5	V	Motor phase V
6	W	Motor phase W

19.11 External Regen Resistor (X3)

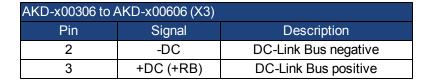
For technical data on the brake circuit "Dynamic Braking" (=> p. 1). Fusing (such as fusible cut-outs) to be provided by the user see page 1.

AKD-x00306 to AKD-x00606 (X3)				
Pin	Signal	Description		
1	-RB	External Regen Resistor negative		
3 +RB External Regen Resistor positive				

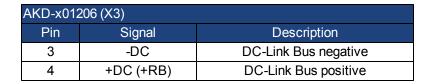
AKD-x01206 (X3)				
Pin	Signal	Description		
1	+Rbint	Internal RegenResistor positive		
2	-RB	External RegenResistor negative		
4	+RB	External RegenResistor positive		

AKD-x02406 & AKD-xzzz07 (X3)				
Pin	Signal	Description		
2	-RB	External RegenResistor negative		
4 +RB External RegenResistor positive				

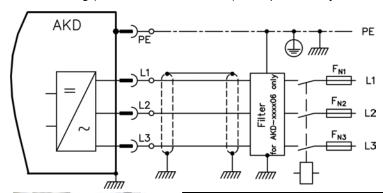
19.12 DC Bus Link (X3)


The DC bus link can be connected in parallel so that the regen power is divided between all the drives that are connected to the same DC bus link circuit.


Every drive must have it's own power connection to mains voltage, even if the DC bus link is used.


NOTICE

The drive can be destroyed if DC bus link voltages are different. Only drives with mains supply from the same mains (identical mains supply voltage) may be connected by the DC bus link. Use unshielded single cores (cross section see page 1) with a maximum length of 200 mm. Use shielded cables for longer lengths.



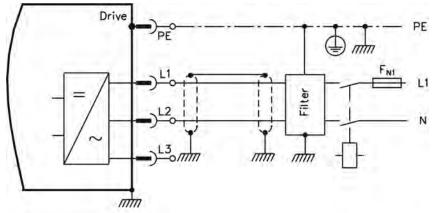
AKD-x02406 & AKD-xzzz07 (X3)					
Pin	Signal	Description			
3	-DC	DC-Link Bus negative			
4	+DC (+RB)	DC-Link Bus positive			

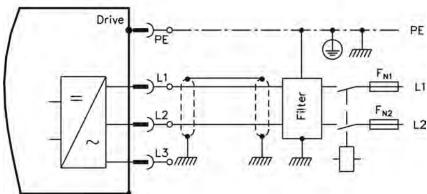
19.13 Mains Supply Connection (X3, X4)

19.13.1 Three Phase connection (all AKD types)

- Directly to 3-phase supply network, supply networks see page 1
- Filtering for AKD-xzzz06 to be provided by the user.
- Fusing (such as fusible cut-outs) to be provided by the user see page 1.

AKD-x00306 to AKD-x00606 (X3)					
Pin	Signal	Description			
4	L1	Line 1			
5	L2	Line 2			
6	L3	Line 3			
7	PE	Protective Earth			


AKD-x01206 (X3)					
Pin	Signal	Description			
5	L1	Line 1			
6	L2	Line 2			
7	L3	Line 3			
8	PE	Protective Earth			

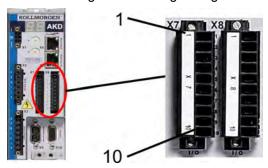


AKD-x02406 & AKD-xzzz07 (X4)						
Pin	Signal	Description				
1	L1	Line 1				
2	L2	Line 2				
3	L3	Line 3				
4	PE	Protective Earth				

19.13.2 Single phase connection (AKD-xzzz06 only)

- Directly to single-phase supply network (120 V_{-10%} to 240 V^{+10%}) with neutral line or Directly to two-phase supply network (120 V_{-10%} to 240 V^{+10%}) without neutral line
- Supply networks see page 1
- Leave L3 open circuit
- Filtering to be provided by the user.
- Fusing (such as fusible cut-outs) to be provided by the user see page 1.

mm


AKD-x00306 to AKD-x00606 (X3)					
Pin	Signal	Description			
4	L1	Line 1			
5	L2 (N)	Neutral or Line 2			
7	PE	Protective Earth			

AKD-x01206 (X3)				
Pin	Signal	Description		
5	L1	Line 1		
6	L2 (N)	Neutral or Line 2		
8	PE	Protective Earth		

19.14 I/O Connection

All standard digital and analog I/O signals are connected to X7 and X8.

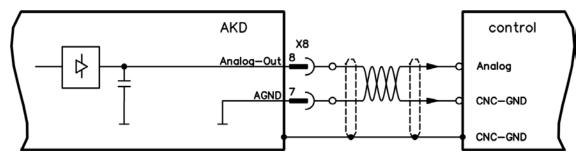
19.14.1 I/O Connectors (X7 and X8)

Conn.	Pin	Signal	Abbreviation	Function	Specials
X7	1	Digital Common X7	DCOM7	Common line for X7 pins 2, 3, 4, 9, 10	-
X7	2	Digital Input 7	DIGITAL-IN 7	Programmable	-
X7	3	Digital Input 4	DIGITAL-IN 4	Programmable	-
X7	4	Digital Input 3	DIGITAL-IN 3	Programmable	-
X7	5	Digital Output 2-	DIGITAL-OUT2-	Programmable	-
X7	6	Digital Output 2+	DIGITAL-OUT2+	Programmable	-
X7	7	Digital Output 1-	DIGITAL-OUT1-	Programmable	-
X7	8	Digital Output 1+	DIGITAL-OUT1+	Programmable	-
X7	9	Digital Input 2	DIGITAL-IN 2	Programmable	high speed
X7	10	Digital Input 1 DIGITAL-II		Programmable	high speed
X8	1	Fault Relay Output	Fault Relay Output	Fault Relay Output	-
X8	2	Fault Relay Output	Fault Relay Output	Fault Relay Output	-
X8	3	Digital Common X8	DCOM8	Common line for X8 pins 4, 5, 6	-
X8	4	Digital Input 8	DIGITAL-IN 8	Output stage enable	not programmable
X8	5	Digital Input 6	DIGITAL-IN 6	Programmable	-
X8	6	Digital Input 5	DIGITAL-IN 5	Programmable	-
X8	7	Analog Ground	AGND	Analog GND	-
X8	8	Analog Output +	Analog-Out	Actual velocity voltage	-
X8	9	Analog Input -	Analog-In-	Velocity set point	-
X8	10	Analog Input +	Analog-In+	velocity set pollit	-

 $\label{thm:prop} \mbox{Digital common lines for X7 and X8 are not common to each other.}$

The DCOMx line should be connected to the 0V of the I/O supply when using sensors of type "Source" with digital inputs.

The DCOMx line should be connected to the 24V of the I/O supply when using sensors of type "Sink" with digital inputs.


19.15 Analog Output (X8)

Terminals X8/7-8 can be used to output converted analog values of digital measurements recorded in the drive. A list of the pre-programmed functions is included in the WorkBench setup software.

Technical characteristics

- Output voltage range referring to AGND: ±10 V
- Resolution: 16 Bit and fully monotonic
- Unadjusted offset: < 50 mV
- Offset drift typ: 250 μV/°C
- Gain or slope tolerance: +/- 3%
- Nonlinearity: < 0.1% of full scale or 10 mV
- Output impedance: 110 ohms
- Specification complies with IEC 61131-2 Table 11
- -3 dB Bandwidth: >8 kHz
- Maximum output current: 20 mA
- Capacitive load: any value but response speed limited by max lout and by Rout
- Protected for short circuit to AGND

Analog Output Wiring Diagram

19.16 Analog Input (X8)

The drive is fitted with one differential input for analog torque, velocity, or position control.

Technical characteristics

- Differential input voltage range: ± 12.5 V
- Maximum input voltage referring to I/O Return: -12.5, +16.0 V
- Resolution: 16 Bit and fully monotonic
- Unadjusted offset: < 50 mV
- Offset drift typ: 250 V / ° C
- Gain or slope tolerance: +/- 3%
- Nonlinearity: < 0.1% of full scale or 12.5 mV
- Common Mode Rejection Ratio: > 30 dB at 60 Hz
- Input impedance: > 13k Ohms
- Signal to noise ratio referred to full scale:
 - AIN.CUTOFF = 3000 Hz: 14 bit
 - AIN.CUTOFF = 800 Hz: 16 bit

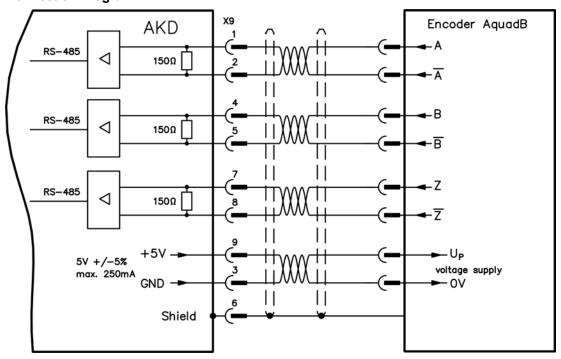
Analog Input Wiring Diagram

Application examples for set point input Analog-In:

- adjustable external current limit
- reduced-sensitivity input for setting-up/jog operation
- pre-control/override

Defining the direction of rotation

Standard setting: clockwise rotation of the motor shaft (looking at the shaft end) affected by positive voltage between terminal X8/10 (+) and terminal X8/9 (-)


To reverse the direction of rotation, swap the connections to terminals X8/9-10, or change the DRV.DIR parameter in the "Feedback" screen page.

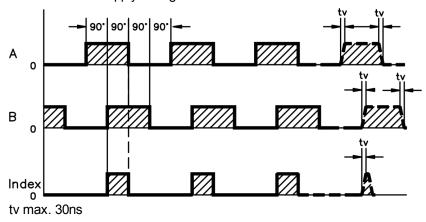
19.17 Command encoder signal connection

19.17.1 Incremental encoder input 5 V (X9)

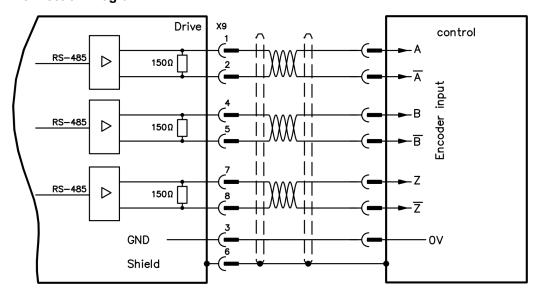
A 5 V A quad B encoder, or the encoder emulation output of another drive can be connected to this input and used as a commander encoder, dual loop feedback, gearing or camming input. Don't use for primary motor feedback connection!

Connection Diagram

19.17.2 Incremental encoder input 24 V (X7)

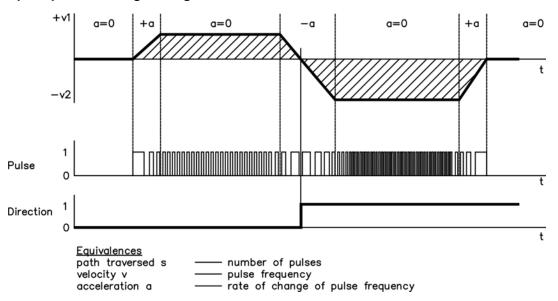

A 24 V A quad B encoder can be connected to the digital inputs 1 and 2 and used as a commander encoder, dual loop feedback, gearing or camming input. Don't use for primary motor feedback connection!

Connection Diagram

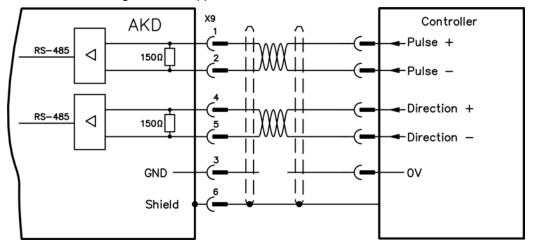

19.17.3 Emulated Encoder Output (EEO) - A quad B (X9)

The drive calculates the motor shaft position from the cyclic- absolute signals of the primary feedback, generating incremental-encoder compatible pulses from this information. Pulse outputs on the SubD connector X9 are 3 signals, A, B and Index, with 90° phase difference (i.e. in quadrature, hence the alternative term "A quad B" output), with a zero pulse.

The resolution (before multiplication) can be set by the DRV.EMUERES parameter. Use the DRV.EMU-EZOFFSET parameter to adjust + save the zero pulse position within one mechanical turn. The drivers operate from an internal supply voltage.


Connection Diagram

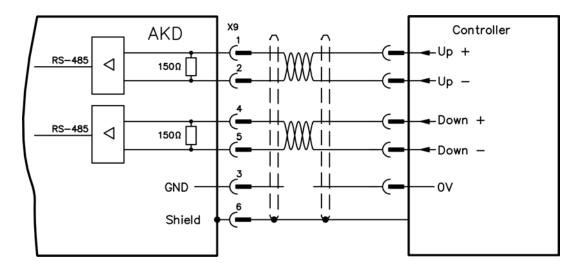
19.18 Pulse / Direction signal connection


The drive can be connected to a stepper-motor controller. Set parameters for the drive with WorkBench. The number of pulses can be adjusted, so that the drive can be adapted to match any stepper controller.

Speed profile and signal diagram

19.18.1 Pulse / Direction input 5 V (X9)

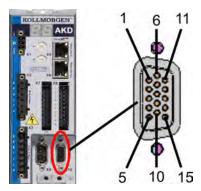
Connection to 5 V signal level stepper-motor controllers.


19.18.2 Pulse / Direction input 24 V (X7)

Connection to 24 V signal level stepper-motor controllers.

19.19 Up / Down signal connection

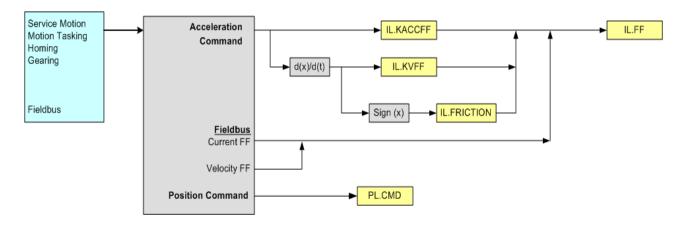
19.19.1 Up / Down input 5 V (X9)

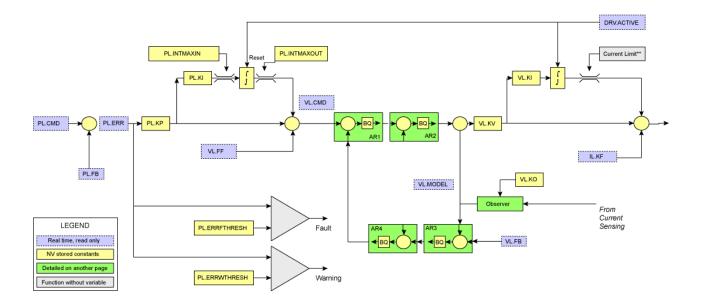

The drive can be connected to a third-party controller which delivers 5 V up-down signals

19.19.2 Up / Down input 24 V (X7)

The drive can be connected to a third-party controller which delivers 24 V up-down signals.

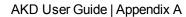
19.20 Feedback Connector (X10)


Pin	SFD	Resolver	BiSS	EnDAT	EnDAT	Hiper-		Incremental Encoder
			(analog)	2.1	2.2	face	+Hall	+Hall
1	-	-	-	-	-	-	Hall U	Hall U
2	-	-	CLOCK+	CLOCK+	CLOCK+	-	Hall V	Hall V
3	-	-	CLOCK-	CLOCK-	CLOCK-	-	Hall W	Hall W
4	SENSE+	-	SENSE+	SENSE+	SENSE+	SENSE+	SENSE+	SENSE+
5	SENSE-	-	SENSE-	SENSE-	SENSE-	SENSE-	SENSE-	SENSE-
6	COM+	R1 Ref+	DATA+	DATA+	DATA+	DATA+	Zero+	Zero+
7	COM-	R2 Ref-	DATA-	DATA-	DATA-	DATA-	Zero-	Zero-
8	-				Thermal	control (P	TC)	
9	-			Т	hermal co	ntrol (PTC,	GND)	
10	+5 V	-	+5 V	+5 V	+5 V	+8 to +9 V	+5 V	+5 V
11	0 V	-	0 V	0 V	0 V	0 V	0 V	0 V
12	-	S1 SIN+	A+	A+	-	SIN+	A+	A+
13	-	S3 SIN-	A-	A-	-	SIN-	A-	A-
14	-	S2 COS+	B+	B+	-	COS+	B+	B+
15	-	S4 COS-	B-	B-	-	COS-	B-	B-


Block Diagrams

19.21	Block Diagram for Current Loop.	282
19.22	Block Diagram for Position/Velocity Loop	282

19.21 Block Diagram for Current Loop


19.22 Block Diagram for Position/Velocity Loop

Appendix A

Fieldbus Manuals

- AKD CANopen Manual
- AKD EtherCAT Manual
- AKD Modbus Manual

This page intentionally left blank.

20 Modbus

20.1 Overview

Modbus is a simple communication protocol often used for reporting data from an industrial device to an HMI or PLC. Modbus TCP extends the protocol to TCP/IP networks by embedding the same Protocol Data Unit within TCP/IP packets.

The AKD supports a Modbus TCP service channel for up to 3 simultaneous client connections, alongside the Workbench configuration software.

Most drive parameters are supported over Modbus TCP, with the exception of commands which use character strings. For information about the Modbus protocol, please see http://www.Modbus.org/specs.php.

20.2 Installation and Setup

Modbus TCP is provided over the service port on the top of the drive (X11 connector), the same as for Workbench. Connect the drive and a client device such as an HMI to a working Ethernet network. For ease of testing and configuration, connect a PC running Workbench to the same network.

After booting, the drive will flash its Ethernet IP address on the front display – the drive can be accessed at this address for Modbus on port 502. Workbench uses the same address, but a different port number.

Once the devices are connected, the client device can open a connection to the AKD using these settings:

- IP Address: read from drive display or Workbench connect screen
- Port: 502
- Add Modbus CRC code: No

20.3 Overview of Messaging

All parameters with an internal data width of 32-bit and lower are mapped to Modbus as 32-bit (2 register) values. The contents of both registers must be read or written in the same message, by setting the Starting Address to the lowest index of the parameter and the Quantity of Registers to two.

All parameters with an internal data width of 64-bit are mapped to Modbus as 64-bit (4 register) values. The contents of all four registers must be read or written in the same message, by setting the Starting Address to the lowest index of the parameter and the Quantity of Registers to four.

Parameters are scaled as in the Terminal window of Workbench. But note that floating point values are scaled by an additional factor of 1000 to retain precision.

Drive commands which do not accept or return a value (such as DRV.EN) are executed by writing to the parameter. The data value is ignored. Read attempts will result in an error response.

20.4 Supported Functions

Two Modbus functions are currently supported:

- Read Holding Registers. Function code = 0x03 (3)
- Write Multiple Registers. Function code = 0x10 (16)

To allow only 32bit and 64bit access, the quantity of registers is limited to 2 registers for 32bit variables and 4 registers for 64bit variables. Other quantities shall return an exception response.

20.5 Read Holding Registers (0x03)

This function code is used to read all registers of one drive parameter.

Request

Function Code	1 Byte	0x03
Starting Address	2 Bytes	0x0000-0xFFFF (see Modbus Parameter Table)
Quantity of Registers	2 Bytes	2 (32-bit values) or 4 (64-bit values)

Normal Response

Function Code	1 Byte	0x03
Byte Count	1 Byte	2 x N*
Register Value	N* x 2 Bytes	Data

^{*}N = Quantity of Registers

Error Response

Function Code	1 Byte	0x83
Exception Code	1 Byte	See exception codes

Following is an example of reading the position loop feedback PL.FB at index 588 (0x024C), with an actual value of 0x1 2A05 F200.

Request

Function	
Starting Address Hi	02
Starting Address Lo	
Quantity of Registers Hi	
Quantity of Registers Lo	04

Response

Function	03
Byte Count	08
Register 588 Hi	00
Register 588 Lo	00
Register 589 Hi	00
Register 589 Lo	01
Register 590 Hi	2Α
Register 590 Lo	05
Register 591 Hi	F2
Register 591 Lo	00

20.6 Write Multiple Registers (0x10)

This function code is used to write all registers of one drive parameter.

Request

Function Code	1 Byte	0x10
Starting Address	2 Bytes	0x0000-0xFFFF (see Modbus index in parameter lists)
Quantity of Registers	2 Bytes	2 (32-bit values) or 4 (64-bit values)
Byte Count	1 Byte	2 x N*
Register Value	N* x 2 Bytes	Data

^{*}N = Quantity of Registers

Normal Response

Function Code	1 Byte	0x10
Starting Address	2 Bytes	0x0000-0xFFFF
Quantity of Registers	2 Bytes	2 or 4

Error Response

Function Code			
Exception Code	1	Byte	See exception codes

Following is an example of setting the mode of digital input 1 (DIN1.MODE) at index 122 (0x007A) to a value of 3. Request

Function	10
Starting Address Hi	00
Starting Address Lo	7A
Quantity of Registers Hi	00
Quantity of Registers Lo	02
Byte Count	04
Register 122 Hi	00
Register 122 Lo	00
Register 123 Hi	00
Register 123 Lo	03

Response

Function	
Starting Address Hi	00
Starting Address Lo	7A
Quantity of Registers Hi	00
Quantity of Registers Lo	02

20.7 Exception Response Codes

Standard Codes

Description	Exception Code
Illegal Function	1
Illegal data address	2
Illegal Data Value	3
Slave Device Failure	4
Acknowledge	5
Slave Device Busy	6
Memory Parity Error	8
Gateway Path Unavailable	10
Gateway Target Device Failed To Respond	11

Manufacturer Codes

Description	Exception Code
Illegal Block Size (must be 2 registers for 32-bit and 4 registers for 64-bit parameters)	32
Unknown Parameter (bad address)	33
Error Processing Command (eg. Data value is greater than maximum)	34
Byte Count field is invalid in request	35

20.8 Modbus

20.8.1 Overview

Modbus is a simple communication protocol often used for reporting data from an industrial device to an HMI or PLC. Modbus TCP extends the protocol to TCP/IP networks by embedding the same Protocol Data Unit within TCP/IP packets. The AKD supports a Modbus TCP service channel for connections with up to three masters.

Most drive parameters are supported over Modbus TCP (see 20.10 Modbus Parameter Table, with the exception of commands which output character strings. For information about the Modbus protocol, please see: http://www.Modbus.org/specs.php.

20.8.2 Modbus Installation and Setup

Modbus TCP is provided over the service port on the top of the drive (X11 connector, the connector used for WorkBench). Connect the drive and a device such as an HMI to a working Ethernet network. For ease of testing and configuration, connect a PC running WorkBench to the same network.

After booting, the drive will flash its Ethernet IP address on the front display. The drive can be accessed at this address for Modbus on port 502. WorkBench uses the same address, but a different port number.

Once the devices are connected, the connected device can open a connection to the AKD using these settings:

- IP Address: read from drive display or Workbench connect screen
- Port: 502
- Add Modbus CRC code: No

20.8.3 Overview of Messaging

All parameters with an internal data width of 32-bit and lower are mapped to Modbus as 32-bit (2 register) values. The contents of both registers must be read or written in the same message, by setting the Starting Address to the lowest index of the parameter and the Quantity of Registers to two.

All parameters with an internal data width of 64-bit are mapped to Modbus as 64-bit (4 register) values. The contents of all four registers must be read or written in the same message by setting the Starting Address to the lowest index of the parameter and the Quantity of Registers to four.

Parameters are scaled as in the Terminal window of WorkBench, but note that floating point values are scaled by an additional factor of 1,000 to retain precision. Drive commands which do not accept or return a value (such as DRV.EN) are executed by writing to the parameter. The data value is ignored and read attempts will result in a value of zero.

20.8.4 Supported Functions

Two Modbus functions are currently supported:

- Read Holding Registers. Function code = 0x03 (3).
- Write Multiple Registers. Function code = 0x10 (16).

To allow only 32-bit and 64-bit access, the quantity of registers is limited to two registers for 32-bit variables and four registers for 64-bit variables. You can also read/write to a single register for certain parameters. Other quantities return an exception response.

20.8.5 Read Holding Registers (0x03)

This function code is used to read all registers of one drive parameter.

6

Request

Function Code	1 Byte	0x03
Starting Address	2 Bytes	0x0000-0xFFFF (see 20.10 Modbus Parameter Table)
Quantity of Registers	2 Bytes	Two 32-bit values or four 64-bit values

Normal Response

Function Code	1 Byte	0x03
Byte Count	1 Byte	2 x N*
Register Value	N* x 2 Bytes	Data

^{*}N = Quantity of Registers

Error Response

Function Code	1 Byte	0x83
Exception	1 Byte	See Exception Response
Code	ТБую	Codes

Following is an example of reading the position loop feedback PL.FB at index 588 (0x024C), with an actual value of 0x1 2A05 F200.

Request

Function	03
Starting Address	02 4C
Quantity of Registers	00 04

Response

Function	03
Byte Count	08
Register 588	00 00
Register 589	00 01
Register 590	2A 05
Register 591	F2 00

20.8.6 Write Multiple Registers (0x10)

This function code is used to write all registers of one drive parameter.

Request

Function Code	1 Byte	0x10
Starting Address	2 Bytes	0x0000-0xFFFF (see Modbus index in parameter lists)
Quantity of Reg- isters	2 Bytes	2 (32-bit values) or 4 (64-bit values)
Byte Count	1 Byte	2 x N*
Register Value	N* x 2 Bytes	Data

^{*}N = Quantity of Registers

Normal Response

Function Code	1 Byte	0x10
Starting Address	2 Bytes	0x0000- 0xFFFF
Quantity of Reg- isters	2 Bytes	2 or 4

Error Response

Function Code	1 Byte	0x90
Exception	1 Byte	See Exception Response
Code	т Буге	Codes

Following is an example of setting the mode of digital input 1 (DIN1.MODE) at index 122 (0x007A) to a value of 3.

Request

Function	10
Starting Address	00 7A
Quantity of Registers	00 02
Byte Count	04
Register 122	00 00
Register 123	00 03

Response

Function	10
Starting Address	00 7A
Quantity of Registers	00 02

20.8.7 Exception Response Codes

Standard Codes

Description	Exception Code
Illegal Function	1

Description	Exception Code
Illegal data address	2
Illegal Data Value	3
Slave Device Failure	4
Acknowledge	5
Slave Device Busy	6
Memory Parity Error	8
Gateway Path Unavailable	10
Gateway Target Device Failed To Respond	11

Manufacturer Codes

Description	Exception Code
Illegal Block Size (must be two registers for 32-bit and four registers for 64-bit parameters)	32
Unknown Parameter (bad address)	33
Error Processing Command (such as "Data value is greater than maximum")	34
Byte Count field is invalid in request	35

20.9 Modbus Dynamic Mapping

Modbus dynamic mapping allows you to map any of the fixed register addresses to a new register address. By re-ordering the sequence block, read/write access of the re-mapped parameters becomes possible.

In general, all parameters are mapped as 32-bit values and occupy at least two Modbus registers. Parameters with a 64-bit data width occupy four Modbus registers. All 64-bit parameters are also mapped as 32-bit value (two registers) starting at register address 2000 (see 20.11 Modbus 64-bit Parameters to 32-bit Mapping).

20.9.1 Configuring Dynamic Mapping

The start address for dynamically mapped registers is 8192 (0x2000).

Mapping works as follows:

- 1. Enable dynamic mapping by writing a 1 (one) to register address 4096 (0x1000). Writing a 1 enables the configuration mode of dynamic mapping. Writing a zero puts it into "run" mode, in which you can use the mapped parameter.
- 2. The mapping is now register oriented. Next, write the valid fixed register address of the parameter you would like to map to an address starting at 8192. To map a 32-bit parameter, you must map the corresponding two registers.

Example

AOUT.VSCALE

Write 36 (hi-word) to address 8192 and 37 (lo-word) to address 8193.

The register oriented mapping allows you to optimize the data width for block transfers. To map a parameter with a data width of 16-bit, only the lo-word register needs to be mapped.

3. Example

MODBUS.DIO

Write 941 to address 8194

MODBUS.DIO fixed addresses are 940 (hi-word) and 941 (lo-word). Only the lo-word is of interest (16-bit value), because only the lo-word contains the actual value.

4. Disable dynamic mapping by writing a 0 (zero) to register address 4096 (0x1000). Disabling dynamic mapping puts it in a mode where you can now access the value of the mapped parameter and use the mapped register.

The fixed mapping starting at address 0 is still valid.

An example of the entire mapping process is included below:

Example

To re-map MODBUS.DIO (16-bit), MODBUS.DRVSTAT (16-bit), and DRV.MOTIONSTAT (32-bit):

- 1. Enable dynamic mapping.
- 2. Block write transfer to address 0x2000 (8192).

Values: 941, 945, 268, 269

3. Modbus telegram:

Function: 0x10; Address: 0x20, 0x00; Number of Registers: 0x00, 0x04; Data Length in Byte: 0x08; Data: 0x03, 0xAD, 0x03, 0xB1, 0x01, 0x0C, 0x01, 0x0d

- 4. Disable dynamic mapping.
- 5. Execute DRV.NVSAVE to store the mapping table non-volatile.
- 6. The re-mapped addresses are:

0x2000: MODBUS.DIO

0x2001: MODBUS.DRVSTAT

 $0x2002: DRV.MOTIONSTAT \ (hi\hbox{-word})$

0x2003: DRV.MOTIONSTAT (lo-word)

20.9.2 Saving and Resetting Dynamic Mapping

Use the following parameters to save and reset dynamic mapping:

- DRV.NVSAVE. Save parameters AND the dynamic mapping table non-volatile.
- DRV.RSTVAR. Set parameters to default value AND clear the dynamic mapping table.

20.9.3 Scaling parameters

You can scale parameters accessed through Modbus. This scaling is independent from the units of UNIT.PIN and UNIT.POUT. Instead, the user units are defined by MODBUS parameters:

- MODBUS.PIN (default = 1)
- MODBUS.POUT (default = 1)
- MODBUS.PSCALE (default = 20)

With the default settings shown above, the units are as follows:

- Position [counts (PSCALE bit per rev)]
- Velocity [counts/sec]
- Acceleration / Deceleration [counts/sec2]
- Current (Torque) [mA]

20.9.4 Modbus specific registers (Parameters)

The following parameters provide a shortcut to digital I/O, status information, and commands.

Parameter	Bit
MODBUS.DIO	Bit 0 to 6: DIN.STATES
	Bit 16 and 17: DOUT.STATES
MODBUS.DRVSTAT	Parameters collected:
	Bit 0: DRV.ACTIVE (drive active)
	Bit 1: STO.STATUS (STO status)
	Bit 2: HWLS.POSSTATE (positive HW limit)
	Bit 3: HWLS.NEGSTATE (negative HW limit)
	Bit 4: SWLS.STATE (positive SW limit)
	Bit 5: SWLS.STATE (negative SW limit)
MODBUS.DRV	Bit 0: DRV.STOP (write 1 to execute)
	Bit 1: DRV.EN (write 1 to enable drive) and DRV.DIS
	(write 0 to disable drive)
MODBUS.HOME	Bit 0: HOME.MOVE (write 1 to execute)
	Bit 1: HOME.SET (write 1 to execute)
MODBUS.MOTOR	Bit 0: MOTOR.BRAKE
	Bit 1: MOTOR.BRAKERLS
MODBUS.MT	Bit 0: MT.CLEAR number from MT.NUM
	Bit 1: MT.CONTINUE
	Bit 2: MT.LOAD number from MT.NUM
	Bit 3: MT.SET
	Bit 4: MT.MOVE (number from MT.NUM)
	Note: when both bit 2 and 4 are set then MT.SET is
	executed first and MT.MOVE second to start the motion
110000110 011	task.
MODBUS.SM	Bit 0: One direction (sets SM.MODE to either 0 or 1)
	Bit 1: Start move
	Edge-triggered:
	 0 → 1 : Start motion (execution of SM.MOVE) 1 → 0 : Stop motion (execution of DRV.STOP)

20.9.5 32-bit versus 16-bit Values

Modbus mirrors all parameters either as 32-bit or 64-bit values. The minimum data width of 32-bit supports backward compatibility, which means that if the internal data width changes, this change has no effect on the register address of consecutive parameters. Dynamic mapping allows you to map only the registers that are relevant to the application and thus reduces communication overhead.

20.9.6 Mapping of 64-bit Parameters to 32-bit Parameters

All 64-bit parameters are mapped as 32-bit parameters starting at register address 2000. Only the 32-bit lo-word is mapped with the same scaling as the 64-bit parameter. Chapter 7 contains the general mapping table (chapter 7.2) and the 64-bit to 32-bit mapping table (chapter 7.3).

20.9.7 Fault Registers

Fault registers MODBUS.FAULT1 (register address 954) to MODBUS.FAULT10 (register address 972) contain the fault state of the drive.

You can obtain the current fault state as follows:

- 1. Read MODBUS.FAULT1.
- 2. If MODBUS.FAULT1 is zero, then the drive is fault free.
- 3. A nonzero value of MODBUS.FAULT1 is a fault number.
- 4. If MODBUS.FAULT1 is nonzero, the following fault registers (MODBUS.FAULT2 to MODBUS.FAULT10) contain possible further fault numbers.
- 5. A value of zero indicates no further faults

20.9.8 Mapping Table

The tables below show Modbus addresses and attributes. The attributes are described as follows:

Attribute	Description
64-bit Parameter	Parameter is internally a 64-bit parameter.
8-bit, 16-bit, 32-bit	Internal data size, mapped as 32-bit (2 registers).
64-bit	Internal data size, mapped as 64-bit (4 registers).
Low 32 bit word	Internally a 64-bit value, only the low 32-bit word is mapped (2 registers).
Signed	Sign bit is significant (negative/positive values are accepted).
Command	Executes a command.
Command, data width	Executes a command with numerical argument (for example, MT.NUM).

0

20.10 Modbus Parameter Table

Parameter	Modbus Register Address	64-bit	Attribute
AIN.CUTOFF	0		32-bit
AIN.DEADBAND	2		16-bit
AIN.ISCALE	4		32-bit
AIN.OFFSET	6		16-bit, signed
AIN.PSCALE	8	64-bit	64-bit
AIN.VALUE	12		16-bit
AIN.VSCALE	14		32-bit
AIN.ZERO	16		Command
AOUT.ISCALE	18		32-bit
AOUT.MODE	20		16-bit
AOUT.OFFSET	22		16-bit, signed
AOUT.PSCALE	24	64-bit	64-bit
AOUT.VALUE	28	64-bit	64-bit, signed
AOUT.VALUEU	32	64-bit	64-bit, signed
AOUT.VSCALE	36		32-bit
BODE.EXCITEGAP	38		8-bit
BODE.FREQ	40		32-bit
BODE.IAMP	42		16-bit, signed
BODE.INJECTPOINT	44		8-bit
BODE.MODE	46		8-bit
BODE.MODETIMER	48		32-bit
BODE.PRBDEPTH	50		8-bit
BODE.VAMP	52	64-bit	low 32-bit, signed
CAP0.EDGE	54		8-bit
CAP0.EN	56		8-bit
CAP0.EVENT	58		8-bit
CAP0.FILTER	60		8-bit
CAP0.MODE	62		8-bit
CAP0.PLFB	64	64-bit	64-bit, signed
CAP0.PREEDGE	68		8-bit
CAP0.PREFILTER	70		8-bit
CAP0.PRESELECT	72		8-bit
CAP0.STATE	74		8-bit
CAP0.T	76		32-bit
CAP0.TRIGGER	78		8-bit
CAP1.EDGE	80		8-bit
CAP1.EN	82		8-bit
CAP1.EVENT	84		8-bit

Parameter	Modbus Register	64-bit	Attribute
r drameter	Address	O I DIC	7 ttti i bato
CAP1.FILTER	86		8-bit
CAP1.MODE	88		8-bit
CAP1.PLFB	90	64-bit	64-bit, signed
CAP1.PREEDGE	94		8-bit
CAP1.PREFILTER	96		8-bit
CAP1.PRESELECT	98		8-bit
CAP1.STATE	100		8-bit
CAP1.T	102		32-bit
CAP1.TRIGGER	104		8-bit
CS.DEC	106	64-bit	64bit
CS.STATE	110		8-bit
CS.TO	112		32-bit
CS.VTHRESH	114	64-bit	low 32-bit word
DIN.ROTARY	116		8-bit
DIN.STATES	118		8-bit
DIN1.INV	120		8-bit
DIN1.MODE	122		16-bit
DIN1.PARAM	124	64-bit	64-bit, signed
DIN1.STATE	128		8-bit
DIN2.INV	130		8-bit
DIN2.MODE	132		16-bit
DIN2.PARAM	134	64-bit	64-bit, signed
DIN2.STATE	138		8-bit
DIN3.INV	140		8-bit
DIN3.MODE	142		16-bit
DIN3.PARAM	144	64-bit	64-bit, signed
DIN3.STATE	148		8-bit
DIN4.INV	150		8-bit
DIN4.MODE	152		16-bit
DIN4.PARAM	154	64-bit	64-bit, signed
DIN4.STATE	158		8-bit
DIN5.INV	160		8-bit
DIN5.MODE	162		16-bit
DIN5.PARAM	164	64-bit	64-bit, signed
DIN5.STATE	168		8-bit
DIN6.INV	170		8-bit
DIN6.MODE	172		16-bit
DIN6.PARAM	174	64-bit	64-bit, signed
DIN6.STATE	178		8-bit
DIN7.INV	180		8-bit
DIN7.MODE	182		16-bit

Parameter	Modbus Register	64-bit	Attribute
	Address		
DIN7.PARAM	184	64-bit	64-bit, signed
DIN7.STATE	188		8-bit
DOUT.CTRL	190		8-bit
DOUT.RELAYMODE	192		8-bit
DOUT.STATES	194		8-bit
DOUT1.MODE	196		8-bit
DOUT1.PARAM	198	64-bit	64-bit, signed
DOUT1.STATE	202		8-bit
DOUT1.STATEU	204		8-bit
DOUT2.MODE	206		8-bit
DOUT2.PARAM	208	64-bit	64-bit, signed
DOUT2.STATE	212		8-bit
DOUT2.STATEU	214		8-bit
DRV.ACC	216	64-bit	64-bit
DRV.ACTIVE	220		8-bit
DRV.CLRFAULTHIST	222		Command
DRV.CLRFAULTS	224		Command
DRV.CMDSOURCE	226		8-bit
DRV.DBILIMIT	228		16-bit
DRV.DEC	230	64-bit	64-bit
DRV.DIR	234		8-bit
DRV.DIS	236		Command
DRV.DISMODE	238		8-bit
DRV.DISSOURCES	240		16-bit
DRV.DISTO	242		32-bit
DRV.EMUEDIR	244		8-bit
DRV.EMUEMODE	246		16-bit
DRV.EMUEMTURN	248		32-bit
DRV.EMUERES	250		32-bit
DRV.EMUEZOFFSET	252		16-bit
DRV.EN	254		Command
DRV.ENDEFAULT	256		8-bit
DRV.HANDWHEEL	258		32-bit
DRV.HWENMODE	260		8-bit
DRV.ICONT	262		16-bit Signed,
DRV.IPEAK	264		16-bit Signed,
DRV.IZERO	266		16-bit
DRV.MOTIONSTAT	268		32-bit
DRV.OPMODE	270		8-bit
DRV.RSTVAR	272		Command
DRV.STOP	274		Command

Parameter	Modbus	64 bit	Attribute
Parameter	Address	0 4 -bit	Allindule
DRV.TYPE	276		8-bit
DRV.ZERO	278		8-bit
FB1.BISSBITS	280		8-bit
FB1.ENCRES	282		32-bit
FB1.IDENTIFIED	284		8-bit
FB1.INITSIGNED	286		8-bit, signed
FB1.MECHPOS	288		32-bit
FB1.OFFSET	290	64-bit	64-bit, signed
FB1.ORIGIN	294	64-bit	64-bit
FB1.PFIND	298		8-bit
FB1.PFINDCMDU	300		16-bit
FB1.POLES	302		16-bit
FB1.PSCALE	304		8-bit
FB1.RESKTR	306		16-bit
FB1.RESREFPHASE	308		32-bit, signed
FB1.SELECT	310		8-bit, signed
FB1.TRACKINGCAL	312		8-bit
FBUS.PARAM01	314		32-bit
FBUS.PARAM02	316		32-bit
FBUS.PARAM03	318		32-bit
FBUS.PARAM04	320		32-bit
FBUS.PARAM05	322		32-bit
FBUS.PARAM06	324		32-bit
FBUS.PARAM07	326		32-bit
FBUS.PARAM08	328		32-bit
FBUS.PARAM09	330		32-bit
FBUS.PARAM10	332		32-bit
FBUS.PARAM11	334		32-bit
FBUS.PARAM12	336		32-bit
FBUS.PARAM13	338		32-bit
FBUS.PARAM14	340		32-bit
FBUS.PARAM15	342		32-bit
FBUS.PARAM16	344		32-bit
FBUS.PARAM17	346		32-bit
FBUS.PARAM18	348		32-bit
FBUS.PARAM19	350		32-bit
FBUS.PARAM20	352		32-bit
FBUS.PLLTHRESH	354		16-bit
FBUS.SAMPLEPERIOD	356		8-bit
FBUS.SYNCACT	358		32-bit
FBUS.SYNCDIST	360		32-bit

Parameter	Modbus Register	64-bit	Attribute
	Address		
FBUS.SYNCWND	362		32-bit
FBUS.TYPE	364		8-bit
GEAR.ACCMAX	366	64-bit	64-bit
GEAR.DECMAX	370	64-bit	64-bit
GEAR.IN	374		16-bit
GEAR.MODE	376		16-bit
GEAR.MOVE	378		Command
GEAR.OUT	380		16-bit, signed
GEAR.VMAX	382	64-bit	low 32bit word,
HOME.ACC	384	64-bit	64-bit
HOME.AUTOMOVE	388		8-bit
HOME.DEC	390	64-bit	64-bit
HOME.DIR	394		16-bit
HOME.DIST	396	64-bit	64-bit, signed
HOME.FEEDRATE	400		16-bit
HOME.IPEAK	402	64-bit	64-bit, signed
HOME.MODE	406		16-bit
HOME.MOVE	408		Command
HOME.P	410	64-bit	64-bit, signed
HOME.PERRTHRESH	414	64-bit	64-bit, signed
HOME.SET	418		Command
HOME.V	420	64-bit	Low 32-bit word
HWLS.NEGSTATE	422		8-bit
HWLS.POSSTATE	424		8-bit
IL.BUSFF	426		16-bit, signed
IL.CMD	428		16-bit, signed
IL.CMDU	430		16-bit, signed
IL.FB	432		16-bit, signed
IL.FF	434		16-bit
IL.FOLDFTHRESH	436		16-bit
IL.FOLDFTHRESHU	438		32-bit, signed
IL.FOLDWTHRESH	440		32-bit, signed
IL.FRICTION	442		32-bit
IL.IFOLD	444		32-bit
IL.IUFB	446		16-bit, signed
IL.IVFB	448		16-bit, signed
IL.KACCFF	450		32-bit, signed
IL.KBUSFF	452		32-bit
IL.KP	454		16-bit
IL.KPDRATIO	456		32-bit
IL.KVFF	458		32-bit, signed

D 1	Modbus	0411	A () 1
Parameter	Register Address	64-bit	Attribute
IL.LIMITN	460		16-bit, signed
IL.LIMITP	462		16-bit, signed
IL.MFOLDD	464		32-bit
IL.MFOLDR	466		32-bit
IL.MFOLDT	468		32-bit
IL.MIFOLD	470		32-bit
IL.OFFSET	472		32-bit, signed
IL.VCMD	474		16-bit, signed
IL.VUFB	476		16-bit, signed
IL.VVFB	478		16-bit, signed
MOTOR.AUTOSET	480		8-bit
MOTOR.BRAKE	482		8-bit
MOTOR.BRAKERLS	484		8-bit
MOTOR.CTF0	486		32-bit
MOTOR.ICONT	488		32-bit
MOTOR.IDDATAVALID	490		8-bit
MOTOR.INERTIA	492		32-bit
MOTOR.IPEAK	494		32-bit
MOTOR.KT	496		32-bit
MOTOR.LQLL	498		32-bit
MOTOR.PHASE	500		16-bit
MOTOR.PITCH	502		32-bit
MOTOR.POLES	504		16-bit
MOTOR.R	506		32-bit
MOTOR.RTYPE	508		8-bit
MOTOR.TBRAKEAPP	510		16-bit
MOTOR.TBRAKERLS	512		16-bit
MOTOR.TBRAKETO	990		16-bit
MOTOR.TEMP	514		32-bit
MOTOR.TEMPFAULT	516		32-bit
MOTOR.TEMPWARN	518		32-bit
MOTOR.TYPE	520		8-bit
MOTOR.VMAX	522		16-bit
MOTOR.VOLTMAX	524		16-bit
MOTOR.VOLTMIN	998		16.bit
MOTOR.VOLTRATED	992		16-bit
MOTOR.VRATED	994	Yes	64-bit, signed
MT.ACC	526	64-bit	64-bit
MT.CLEAR	530		16-bit, signed
MT.CNTL	532		32-bit
MT.CONTINUE	534		Command

Parameter	Address		Attribute
MT.DEC	536	64-bit	64-bit
MT.EMERGMT	540		16-bit, signed
MT.LOAD	542		Command
MT.MOVE	544		Command 16-bit
MT.MTNEXT	546		8-bit
MT.NUM	548		8-bit
MT.P	550	64-bit	64-bit, signed
MT.SET	554		Command 8-bit
MT.TNEXT	556		16-bit
MT.TNUM	558		8-bit
MT.TPOSWND	560	64-bit	64-bit, signed
MT.TVELWND	564		32-bit
MT.V	566	64-bit	low 32-bit word
MT.VCMD	568	64-bit	low 32-bit word, signed
PL.CMD	570	64-bit	64-bit
PL.ERR	574	64-bit	64-bit
PL.ERRMODE	578		8-bit
PL.ERRFTHRESH	580	64-bit	64-bit
PL.ERRWTHRESH	584	64-bit	64-bit
PL.FB	588	64-bit	64-bit, signed
PL.FBSOURCE	592		8-bit
PL.INTINMAX	594	64-bit	64-bit
PL.INTOUTMAX	598	64-bit	64-bit
PL.KI	602		32-bit
PL.KP	604		32-bit
PL.MODP1	606	64-bit	64-bit, signed
PL.MODP2	610	64-bit	64-bit, signed
PL.MODPDIR	614		8-bit
PL.MODPEN	616		8-bit
PLS.EN	618		16-bit
PLS.MODE	620		16-bit
PLS.P1	622	64-bit	64-bit, signed
PLS.P2	626	64-bit	64-bit, signed
PLS.P3	630	64-bit	64-bit, signed
PLS.P4	634	64-bit	64-bit, signed
PLS.P5	638	64-bit	64-bit, signed
PLS.P6	642	64-bit	64-bit, signed
PLS.P7	646	64-bit	64-bit, signed
PLS.P8	650	64-bit	64-bit, signed
PLS.RESET	654		16-bit

Parameter	Modbus	64 bit	Attribute
Parameter	Address	04-DIL	Allribute
PLS.STATE	656		16-bit
PLS.T1	658		16-bit
PLS.T2	660		16-bit
PLS.T3	662		16-bit
PLS.T4	664		16-bit
PLS.T5	666		16-bit
PLS.T6	668		16-bit
PLS.T7	670		16-bit
PLS.T8	672		16-bit
PLS.UNITS	674		8-bit
PLS.WIDTH1	676	64-bit	64-bit, signed
PLS.WIDTH2	680	64-bit	64-bit, signed
PLS.WIDTH3	684	64-bit	64-bit, signed
PLS.WIDTH4	688	64-bit	64-bit, signed
PLS.WIDTH5	692	64-bit	64-bit, signed
PLS.WIDTH6	696	64-bit	64-bit, signed
PLS.WIDTH7	700	64-bit	64-bit, signed
PLS.WIDTH8	704	64-bit	64-bit, signed
REC.ACTIVE	708		8-bit
REC.DONE	710		8-bit
REC.GAP	712		16-bit
REC.NUMPOINTS	714		16-bit
REC.OFF	716		Command
REC.STOPTYPE	718		8-bit
REC.TRIG	720		Command
REC.TRIGPOS	722		8-bit
REC.TRIGSLOPE	726		
REC.TRIGTYPE	728		8-bit
REC.TRIGVAL	730	64-bit	8-bit
REGEN.POWER	734	64-bit	64-bitSigned,
REGEN.REXT	738		64-bit
REGEN.TEXT	740		8-bit
REGEN.TYPE	742		32-bit
REGEN.WATTEXT	744		8-bitSigned,
SM.I1	746		16-bit
SM.12	748		16-bitSigned,
SM.MODE	750		16-bitSigned,
SM.MOVE	752		16-bit
SM.T1	754		Command
SM.T2	756		16-bit
SM.V1	758	64-bit	16-bit

	Modbus	0411	A () 1
Parameter	Register Address	64-bit	Attribute
			low 32-bit word,
SM.V2	760	64-bit	signed
			low 32-bit word,
STO.STATE	762		signed
SWLS.EN	764		8-bit
SWLS.LIMIT0	766	64-bit	16-bit
SWLS.LIMIT1	770	64-bit	64-bitSigned,
SWLS.STATE	774		64-bitSigned,
UNIT.ACCLINEAR	776		16-bit
UNIT.ACCROTARY	778		8-bit
UNIT.PIN	780		8-bit
UNIT.PLINEAR	782		32-bit
UNIT.POUT	784		8-bit
UNIT.PROTARY	786		32-bit
UNIT.VLINEAR	788		8-bit
UNIT.VROTARY	790		8-bit
VBUS.CALGAIN	792		8-bit
VBUS.OVFTHRESH	794		32-bit
VBUS.OVWTHRESH	796		16-bit
VBUS.RMSLIMIT	798		16-bit
VBUS.UVFTHRESH	800		8-bit
VBUS.UVMODE	802		16-bit
VBUS.UVWTHRESH	804		8-bit
VBUS.VALUE	806		16-bit
VL.ARPF1	808		32-bit
VL.ARPF2	810		32-bit
VL.ARPF3	812		32-bit
VL.ARPF4	814		32-bit
VL.ARPQ1	816		32-bit
VL.ARPQ2	818		32-bit
VL.ARPQ3	820		32-bit
VL.ARPQ4	822		32-bit
VL.ARTYPE1	824		8-bit
VL.ARTYPE2	826		8-bit
VL.ARTYPE3	828		8-bit
VL.ARTYPE4	830		8-bit
VL.ARZF1	832		32-bit
VL.ARZF2	834		32-bit
VL.ARZF3	836		32-bit
VL.ARZF4	838		32-bit
VL.ARZQ1	840		32-bit

Parameter	Modbus Register Address	64-bit	Attribute
VL.ARZQ2	842		32-bit
VL.ARZQ3	844		32-bit
VL.ARZQ4	846		32-bit
VL.BUSFF	848		32-bit, signed
VL.CMD	850	64-bit	low 32-bit word, signed
VL.CMDU	852	64-bit	low 32-bit word, signed
VL.ERR	854		32-bit, signed
VL.FB	856	64-bit	low 32-bit word, signed
VL.FBFILTER	858	64-bit	low 32-bit word, signed
VL.FBSOURCE	860		8-bit
VL.FF	862		32-bit, signed
VL.GENMODE	864		16-bit
VL.KBUSFF	866		32-bit
VL.KI	868		32-bit
VL.KO	870		32-bit
VL.KP	872		32-bit
VL.KVFF	874		32-bit
VL.LIMITN	876	64-bit	low 32-bit word, signed
VL.LIMITP	878	64-bit	low 32-bit word
VL.LMJR	880		32-bit
VL.MODEL	882		32-bit, signed
VL.OBSBW	884		32-bit
VL.OBSMODE	886		32-bit
VL.THRESH	888	64-bit	low 32-bit word, signed
WS.ARM	890		Command
WS.DISTMIN	892	64-bit	64-bit, signed
WS.DISTMIN	896	64-bit	64-bit, signed
WS.IMAX	900		16-bit, signed
WS.MODE	902		8-bit
WS.NUMLOOPS	904		8-bit
WS.STATE	906		8-bit
WS.T	908		16-bit
WS.TDELAY1	910		16-bit
WS.TDELAY2	912		16-bit
WS.TDELAY3	914		16-bit
WS.VTHRESH	916	64-bit	low 32-bit word, signed

	Modbus		
Parameter	Register	64-bit	Attribute
	Address		
DIN1.FILTER	918		16-bit
DIN2.FILTER	920		16-bit
DIN3.FILTER	922		16-bit
DIN4.FILTER	924		16-bit
DIN5.FILTER	926		16-bit
DIN6.FILTER	928		16-bit
DIN7.FILTER	930		16-bit
FB1.HALLSTATEU	932		
FB1.HALLSTATEV	934		
FB1.HALLSTATEW	936		
DRV.NVSAVE	938		Command
MODBUS.DIO	940		32-bit
MODBUS.DRV	942		32-bit
MODBUS.DRVSTAT	944		32-bit
MODBUS.HOME	946		32-bit
MODBUS.MOTOR	948		32-bit
MODBUS.MT	950		32-bit
MODBUS.SM	952		32-bit
MODBUS.FAULT1	954		16-bit
MODBUS.FAULT2	956		16-bit
MODBUS.FAULT3	958		16-bit
MODBUS.FAULT4	960		16-bit
MODBUS.FAULT5	962		16-bit
MODBUS.FAULT6	964		16-bit
MODBUS.FAULT7	966		16-bit
MODBUS.FAULT8	968		16-bit
MODBUS.FAULT9	970		16-bit
MODBUS.FAULT10	972		16-bit
MODBUS.PIN	974		32-bit
MODBUS.POUT	976		32-bit
MODBUS.PSCALE	978		16-bit
MODBUS.UNITLABEL	980		
MOTOR.HFPHASEREAD	982		16-bit
FB2.ENCRES	984		32-bit
FB2.MODE	986		16-bit
"FB2.SOURCE" (=> p.	000		16-bit
440)	988		וט-טונ

20.11 Modbus 64-bit Parameters to 32-bit Mapping

Parameter	Address	64-bit	Attributes
AIN.PSCALE_32	2000	Yes	low 32-bit word
AOUT.PSCALE_32	2002	Yes	low 32-bit word
AOUT.VALUE_32	2004	Yes	low 32-bit word, signed
AOUT.VALUEU_32	2006	Yes	low 32-bit word, signed
CAP0.PLFB_32	2008	Yes	low 32-bit word, signed
CAP1.PLFB_32	2010	Yes	low 32-bit word, signed
CS.DEC_32	2012	Yes	low 32-bit word
DIN1.PARAM_32	2014	Yes	low 32-bit word, signed
DIN2.PARAM_32	2016	Yes	low 32-bit word, signed
DIN3.PARAM_32	2018	Yes	low 32-bit word, signed
DIN4.PARAM_32	2020	Yes	low 32-bit word, signed
DIN5.PARAM_32	2022	Yes	low 32-bit word, signed
DIN6.PARAM_32	2024	Yes	low 32-bit word, signed
DIN7.PARAM_32	2026	Yes	low 32-bit word, signed
DOUT1.PARAM_32	2028	Yes	low 32-bit word, signed
DOUT2.PARAM_32	2030	Yes	low 32-bit word, signed
DRV.ACC_32	2032	Yes	low 32-bit word
DRV.DEC_32	2034	Yes	low 32-bit word
FB1.OFFSET_32	2036	Yes	low 32-bit word, signed
FB1.ORIGIN_32	2038	Yes	low 32-bit word
GEAR.ACCMAX_32	2040	Yes	low 32-bit word
GEAR.DECMAX_32	2042	Yes	low 32-bit word
HOME.ACC_32	2044	Yes	low 32-bit word
HOME.DEC_32	2046	Yes	low 32-bit word
HOME.DIST_32	2048	Yes	low 32-bit word, signed
HOME.IPEAK_32	2050	Yes	low 32-bit word, signed
HOME.P_32	2052	Yes	low 32-bit word, signed
HOME.PERRTHRESH_32	2054	Yes	low 32-bit word, signed
MOTOR.VRATED_32	2126	Yes	low 32-bit word, signed
MT.ACC_32	2056	Yes	low 32-bit word
MT.DEC_32	2058	Yes	low 32-bit word
MT.P_32	2060	Yes	low 32-bit word, signed
MT.TPOSWND_32	2062	Yes	low 32-bit word, signed
PL.CMD_32	2064	Yes	low 32-bit word
PL.ERR_32	2066	Yes	low 32-bit word
PL.ERRFTHRESH_32	2068	Yes	low 32-bit word
PL.ERRWTHRESH_32	2070	Yes	low 32-bit word
PL.FB_32	2072	Yes	low 32-bit word, signed
PL.INTINMAX_32	2074	Yes	low 32-bit word
PL.INTOUTMAX_32	2076	Yes	low 32-bit word
PL.MODP1_32	2078	Yes	low 32-bit word, signed
PL.MODP2_32	2080	Yes	low 32-bit word, signed
PLS.P1_32	2082	Yes	low 32-bit word, signed

Parameter	Address	64-bit	Attributes
PLS.P2_32	2084	Yes	low 32-bit word, signed
PLS.P3_32	2086	Yes	low 32-bit word, signed
PLS.P4_32	2088	Yes	low 32-bit word, signed
PLS.P5_32	2090	Yes	low 32-bit word, signed
PLS.P6_32	2092	Yes	low 32-bit word, signed
PLS.P7_32	2094	Yes	low 32-bit word, signed
PLS.P8_32	2096	Yes	low 32-bit word, signed
PLS.WIDTH1_32	2098	Yes	low 32-bit word, signed
PLS.WIDTH2_32	2100	Yes	low 32-bit word, signed
PLS.WIDTH3_32	2102	Yes	low 32-bit word, signed
PLS.WIDTH4_32	2104	Yes	low 32-bit word, signed
PLS.WIDTH5_32	2106	Yes	low 32-bit word, signed
PLS.WIDTH6_32	2108	Yes	low 32-bit word, signed
PLS.WIDTH7_32	2110	Yes	low 32-bit word, signed
PLS.WIDTH8_32	2112	Yes	low 32-bit word, signed
REC.TRIGVAL_32	2114	Yes	low 32-bit word, signed
REGEN.POWER_32	2116	Yes	low 32-bit word
SWLS.LIMIT0_32	2118	Yes	low 32-bit word, signed
SWLS.LIMIT1_32	2120	Yes	low 32-bit word, signed
WS.DISTMAX_32	2122	Yes	low 32-bit word, signed
WS.DISTMIN_32	2124	Yes	low 32-bit word, signed
MOTOR.VRATED_32	2126	Yes	low 32-bit word, signed

This page intentionally left blank.

21 Ethercat Manual

AKDTM

EtherCAT Communication

Edition: Revision C, April 2011 Valid for Hardware Revision C Part Number 903-200005-00 Original Documentation

Keep all manuals as a product component during the life span of the product. Pass all manuals to future users and owners of the product.

KOLLMORGEN

Record of Document Revisions:

Revision	Remarks
-, 11/2009	Beta launch version
-, 12/2009	Minor formatting changes
A, 07/2010	FBUS.PARAM04 added, part number added, page format, release information
B, 10/2010	Setup for KAS added
C, 01/2011	HW Rev. C
D, 04/2011	WoE, corrections

Hardware Revision (HR)

Hardware Revision	Firmware	WorkBench	Remarks
Α	M_01-03-zz-zzz	1.3.0.zzzzz	Start revision
С	≥ M_01-03-00-011	≥ 1.3.0.zzzzz	STO certified

Ethernet/IP is a registered trademark of ODVA, Inc.

Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation

EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH"

HIPERFACE is a registered trademark of Max Stegmann GmbH

WINDOWS is a registered trademark of Microsoft Corporation

AKD is a registered trademark of Kollmorgen Corporation

Current patents:

US Patent 5,646,496 (used in control card R/D and 1 Vp-p feedback interface)

US Patent 5,162,798 (used in control card R/D)

US Patent 6,118,241 (used in control card simple dynamic braking)

Technical changes which improve the performance of the device may be made without prior notice!

Printed in the United States of America

This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of Kollmorgen.

Table of Contents

1 About this User Guide.	29
1.1 About this User Guide	29
1.2 Abbreviations	29
2 AKD Models	31
2.1 CC Drive Models	31
3 Basic Drive Setup.	33
3.1 Basic Drive Setup.	34
3.2 Display Codes	34
3.3 AKD Setup Wizard	
4 Connecting the Drive	37
4.1 Connected and Disconnected States.	38
4.2 Disconnected	38
4.3 Device Not Shown	38
4.4 Find and Enter IP Address.	39
4.5 Check Communications.	40
4.6 Connect To Another Drive.	40
5 Communicating with the Drive	41
5.0.1 Overview	42
5.0.2 Identifying the Drive IP Address	42
5.0.2.1 Automatic (Dynamic) IP Addressing.	42
5.0.2.2 Static IP Addressing.	42
5.1 Check Communications.	43
5.2 Troubleshooting Connection and Communication Problems	45
5.2.1 No Drives are Shown	46
5.2.2 Device Not Shown	46
5.2.3 Find and Enter IP Address.	46
5.3 TCP/IP Communication Protocols.	48
5.4 IP Address.	48
5.4.1 Port Number	48
5.4.2 MAC Address.	48
6 Using WorkBench	
6.1 Welcome Screen	
6.1.1 Online	49
6.1.2 Offline	50
6.2 AKD Overview.	
6.3 Online and Offline.	
6.3.1 Online Drive.	
6.3.2 Offline Drive	
6.3.3 Switching Between Online and Offline.	
6.4 Watch	
6.5 Settings.	
6.5.1 Navigation Tree	52

6.5.2 Settings View.	52
7 Configuring Drive Power	55
7.1 Power	56
7.1.1 Drive Setup for Power and Bus.	56
7.1.2 Direct DC Mains Operation.	56
7.2 Regeneration.	
7.2.1 Overview	
7.2.2 Regen Resistor Options.	
7.2.3 Calculating Motor Peak Energy and Regen Resistor Size	
7.2.4 Selecting a Compatible Regen Resistor.	
7.2.5 Configuring Regen Parameter Values.	
7.2.6 Related Parameters.	
8 Configuring Motor Settings.	
8.1 Motor.	
8.1.1 Overview.	
8.1.2 Motor Setup. 8.1.3 Using the Motor View.	
8.1.4 Selecting a Motor.	
8.1.4.1 Configuring Custom Motors.	
8.1.4.2 Validating Motor Parameters.	
8.2 Feedback 1.	
8.2.1 Overview.	
8.3 Using Feedback Options.	
8.3.1 Auto	
8.3.2 Incremental Encoder.	67
8.3.3 Sine Encoder.	67
8.3.4 Endat 2.1, Endat 2.2	67
8.3.5 BiSS	67
8.3.6 Hiperface	67
8.3.7 Resolver.	68
8.3.8 SFD.	
8.3.9 Using Wake and Shake (WS).	68
8.3.9.1 Overview.	
8.3.9.2 Configuring WS	68
Wake and Shake, More View.	69
Special Cases for WS.	70
Operation with Motor Brake	70
End of Travel Limits.	
Large Load Inertia or High Friction System	70
8.3.9.3 Using WS: Advanced	70
Maximizing WS Reliability	71
8.3.9.4 Troubleshooting WS.	72

8.3.9.5 Related Parameters.	73
8.3.10 Commutation Alignment.	73
8.4 Feedback 2	73
8.4.1 Encoder Emulation.	74
8.4.1.1 Overview.	74
8.4.1.2 Using Encoder Emulation.	74
8.4.1.3 Function Settings.	74
Mode 0: Disable X9.	74
Output Modes 1 and 2	74
Input Modes 3, 4, and 5.	75
8.4.1.4 Resolution	76
8.4.1.5 Related Parameters and Commands	76
8.5 Non-Plug and Play Feedback Devices.	76
8.6 Parameters	76
8.7 Calculations	76
8.7.1 Current Loop.	77
8.7.2 Velocity Loop.	77
8.7.3 Position Loop.	77
8.7.4 Slider Tuning	77
8.7.4.1 Input - Motor Data	77
8.7.4.2 Constants.	77
8.7.4.3 Output - Control Loop Gains.	
8.8 Foldback	
8.8.1 Drive Foldback	
8.8.2 Setting up motor foldback	
8.8.3 Setting Fault and Warning Levels.	
8.8.4 Motor Peak Current Time.	
8.8.5 Motor Foldback Ramp.	
8.8.6 Motor Recovery.	
8.9 Overall Foldback	
8.10 Brake.	
8.11 Using Position Capture.	
8.11.1 Overview	
8.11.2 Configuring Position Capture. 8.11.2.1 Setting the Capture Source (CAP0.TRIGGER).	
,	
8.11.2.2 Setting the Capture Mode (CAP0.MODE)	
8.11.2.4 Setting the Capture Edge (CAP0.EDGE).	
8.11.2.5 Setting the Pre-Condition Event: (CAP0.EVENT).	
8.11.2.6 Setting up a Pre-Condition for complex capture.	
- · · · · · · · · · · · · · · · · · · ·	
Setting the Precondition Edge: (Terminal Command: CAP0.PREEDGE)	
Setting the Pre-Condition Select: (Terminal Command: CAP0.PRESELECT)	82
8.11.3 Related Parameters	82

9 Selecting Units for Your	Application	83
9.1 Selecting and Saving Ui	nits	84
9.2 Units Example		84
9.2.1 Related Parameters	s	86
10 Configuring General Dri	ive Settings	87
10.1 Digital Inputs and Outp	outs	88
10.1.1 Overview		88
10.1.2 Using Digital I/O		88
10.1.3 Digital Inputs		88
10.1.4 Digital Outputs		94
10.2 Command Buffer		96
10.2.1 Overview		96
10.2.2 Editing the Commi	and Buffers.	97
10.2.3 Behavior of the Co	ommand Buffer	98
•	ffer	
10.3 Digital Inputs (X7/X8).		99
10.3.1 Digital Inputs 1 and	nd 2	102
10.3.2 Digital Inputs 3 to	7	102
10.3.3 Digital Input 8 (EN	IABLE)	. 102
10.4 Analog Input		. 103
10.4.1 Analog Input		. 103
10.4.2 Related Paramete	ers and Commands.	. 103
10.5 Analog Output		. 103
10.6 I/O Connection		. 104
10.6.1 I/O Connectors (X	(7 and X8)	. 105
10.7 Electronic Gearing		. 106
10.7.1 Overview		106
10.7.2 Limits		106
10.7.3 Determining Maxir	mum Cable Length	. 107
10.7.4 Related Paramete	ers:	. 108
10.7.5 Limits		109
10.8 Programmable Limit Sv	witch	. 109
10.8.1 Overview		109
10.8.2 Using Programma	able Limit Switches.	109
10.8.3 Single Shot Mode.		. 111
10.8.4 Related Paramete	ers and Commands.	111
10.9 Enable/Disable		. 111
10.9.1 Enable Modes		. 111
10.9.1.1 Hardware Ena	able Mode	. 111
10.9.1.2 Software Enal	ble Default	112
10.9.2 Disable Modes		. 112
10.9.3 Drive Status		. 112
10.9.4 Controlled Stop		. 113
10.9.5 More/Less Button.		. 113
10.10 Controlled Stop		. 115

10.10.0.1 Related Parameters and Commands.	116
10.10.1 Related topics:	117
10.11 Dynamic Braking	117
10.11.1 Drive Regeneration.	
10.11.1.1 AKD-x00306 to AKD-x00606.	
10.11.1.2 AKD-x01206 to AKD-x02406 and AKD-xzzz07	
10.12 Emergency Stop.	
10.13 Safe Torque Off (STO).	
10.14 Under Voltage Fault Behavior	
11 Using Command Source and Operating Modes	
11.1 Overview	
11.2 Using Command Source and Operation Modes.	
11.2.1 Command Source	
11.2.1.1 Service	
11.2.1.2 Fieldbus	
11.2.1.3 Electronic Gearing.	
11.2.1.4 Analog	
11.2.1.5 Operation Mode.	
11.2.2 Related Parameters.	
11.3 Current Loop.	
11.3.1 Overview.	
11.3.2 Current Loop Gain	
11.3.3 Current Loop Gain Scheduling.	
11.3.3.1 Using the Gain Scheduling View in WorkBench	
11.4 Velocity Loop.	
11.4.1 Overview.	
11.4.2 Tabs in the Velocity Loop View.	
11.4.3 Velocity Loop Default Settings and Changes.	
11.4.3.1 Velocity Loop Changes Based on Slider Tuning.	
11.4.3.2 Velocity Loop Changes Based on PST.	
11.5 Position Loop	
11.5.1 Overview.	
11.5.2 Tabs in the Position Loop View.	
11.5.3 Position Loop Default Behavior and Changes.	
11.5.3.1 Position Loop Changes Based on Slider Tuning.	
11.5.3.2 Position Loop Changes Based on PST.	
11.5.4 Modulo Position.	
11.5.4.1 Setting up the modulo axis in WorkBench.	
11.5.4.2 Setting up the modulo axis from the Terminal.	
11.5.4.3 Parameters affected by the modulo axis.	
11.5.4.4 Drive functions affected by modulo axis.	
Software limit switch	
Programmable limit switch	
Digital output Modes 5 and 6.	
Digital output Modes o and 0	129

Motion tasking to absolute target positions.	129
11.5.4.5 Using the modulo position feature with multiturn encoders. 12 Creating Motion. 12.1 Homing.	133
12.1.1 Overview.	
12.1.2 Using Homing.	134
12.1.2.1 Home Default Window.	134
Mode Selection:	135
Settings:	135
Controls:	136
12.1.2.2 Selecting and Using Homing Modes.	136
Homing Mode 0: Home Using Current Position.	136
Homing Mode 1: Find Limit Input	136
Homing Mode 2: Find Input Limit then Find Zero Angle.	137
Homing Mode 3: Find Input Limit then Find Index.	138
Homing Mode 4: Find Home Input	139
Homing Mode 5: Find Home Input then Find Zero Angle.	139
Homing Mode 6: Find Home Input then Find Index	140
Homing Mode 7: Find Zero Angle	141
Homing mode 8: Move Until Position Error Exceeded.	141
Homing Mode 9: Move Until Position Error Exceeded then Find Zero Angle.	141
12.1.2.3 Homing Mode 10: Move Until Position Error Exceeded then Find Index	142
Homing Mode 11: Find Index Signal.	143
12.1.3 Using Homing: Advanced	144
12.1.3.1 Related Parameters and Commands.	
12.1.3.2 Related Topics	
12.2 Motion Tasks.	
12.2.1 Overview	
12.2.3 Using Motion Tasks.	
12.2.3.1 Motion Profiles	
12.2.3.2 Motion Types.	
Absolute motion task	148
Motion task relative to command position (PL.CMD).	148
Motion task relative to previous target position.	148
12.2.4 Using Motion Tasks: Advanced	148
12.2.4.1 Joining multiple tasks	148
12.2.4.2 Start Conditions	149

12.2.4.3 Blending.	149
12.3 Registration Moves (Motion Task Blending).	149
12.3.1 Configuring Registration Moves in WorkBench.	150
12.3.2 Configuring Registration Moves from the Terminal View	
12.4 Service Motion	
12.5 Jog Move.	
12.6 Drive Motion Status.	
13 Saving Your Drive Configuration	
13.1 Save Options. 13.2 Save On Exit	
13.3 Save On Disconnect	
13.4 Save On Firmware Download	
14 Tuning Your System.	
14.1 Slider Tuning	
14.1.0.1 Gentle, Medium, and Stiff.	
14.1.0.2 The Slider	
14.1.0.3 Inertia Ratio.	
14.2 Load Inertia	160
14.3 Using the Performance Servo Tuner.	160
14.3.1 Overview.	160
14.3.2 Using the PST	
14.3.2.1 Saving and Emailing Bode Plots.	
14.3.2.2 Importing a Frequency Response.	
14.3.3 Measurement Options.	
14.3.3.1 Using Manual Excitation Levels.	
14.3.3.2 Taking a Bode Measurement without the PST	
14.3.4.1 Typical Cases for Advanced PST Use.	
**	
Tuning Systems with Low-Frequency Resonances.	
Tuning Systems with High-Frequency Resonances.	
Tuning systems with noisy frequency responses.	
14.3.4.2 PST Options.	169
Enable BiQuad 1 Tuner.	170
Enable BiQuad 2 Tuner.	170
Biquad Type.	170
Tune Acceleration FF.	170
Enable Stability Motion	170
Phase and Gain Margins.	170
Tune Velocity Integral	170
Enable Low Pass Search	170
14.3.4.3 Measurement Options.	170

Current Amplitude	171
Velocity Amplitude	171
Smooth %	171
Measurement	174
Injection Point	174
Excitation Type	
FFT Points.	
Excite Gap.	
Number Points.	
Velocity Max	
14.3.4.4 Plot Options.	
Coherence.	
14.3.4.5 Cursors	
•	
Reading and Understanding the Bode Plot	
Using the Performance Servo Tuner to Manually Tune Systems	
Using the Tuning Simulation.	
Using the Performance Servo Tuner Manual Tuning Interface.	184
Simulating Modified Loop Gains with the Performance Servo Tuner	185
Simulating Filters with the Performance Servo Tuner.	188
Using Filters to Reduce Noise	189
14.4 Tuning Guide	189
14.4.1 Overview	
14.4.2 Determining Tuning Criteria	
14.4.3 Before You Tune.	
14.4.4 Closed Loop Tuning Methods. 14.4.4.1 Tuning the Velocity Loop.	
14.4.4.2 Tuning the Position Loop.	
14.4.5 Torque Feedforward Tuning Methods.	
14.4.5.1 Shape Based Feedforward Tuning.	
14.4.6 Using Anti-Resonance Filters.	194
14.4.6.1 Biquad Calculations	202
14.4.6.2 Common Uses Of Anti Resonance Filters.	
15 Scope	205
15.1 Overview.	205
15.2 Using the Scope.	
	205 205

15.2.1.2 Color Column	206
15.2.1.3 Hide Column	206
15.2.1.4 Y-Axis Column	206
15.2.1.5 Filter and Filter Frequency Column	206
15.2.2 Scope Time-base and Trigger Tab.	206
15.2.2.1 Scope Time-base and Trigger, More View.	207
15.2.2.2 Trigger Type.	208
15.2.2.3 Trigger Position.	208
15.2.2.4 Trigger Value.	209
15.2.2.5 Effects of Recorder Gap.	210
15.2.2.6 Trigger Slope.	211
15.3 Scope Settings.	211
15.3.1 Load a setting (preset) to Scope screen.	212
15.3.2 Create a new preset	212
15.3.3 Save or delete preset	212
15.3.4 Import preset.	212
15.3.5 Export preset.	213
15.3.6 Scope axis scaling and zooming	214
15.3.7 Manual range per axis.	215
15.3.8 Unit display on Y axis.	215
16 Using Parameters and the Terminal Screen	217
16.1 Terminal	218
16.1.1 Overview.	218
16.1.2 Using the Terminal	
16.1.3 Macros	
16.1.3.1 Creating a Macro from Terminal commands	219
16.1.3.2 Macro Editor.	
16.2 Viewing Parameters.	221
16.3 Parameter List	221
16.4 Parameter Load/Save.	221
16.5 Parameter Comparer.	221
16.5.1 Reference Parameter Selection.	222
16.5.2 Target Parameter Selection.	222
16.5.3 Display the comparison.	223
16.5.4 Motion Task Comparison.	224
Summary of Parameters and Commands.	225
17 Faults and Warnings	239
17.1 Fault and Warning Messages.	240
17.2 Clearing Faults.	249
17.3 Parameter and Command Error Messages.	
17.4 CANopen Emergency Messages and Error Codes.	253
17.5 Unknown Fault	256
17.5.0.1 Remedies.	256
18 Troubleshooting the AKD.	257
19 Firmware and Firmware Updates	258

259
259
. 259
. 260
. 260
. 263
264
. 265
. 266
. 267
. 268
. 269
270
. 271
271
. 272
. 273
. 273
274
275
. 276
. 276
276
277
. 278
278
. 278
278
278
. 279
279
281
282
282
1
3
3
3
3
3
3
4
5
6
6

20.8.2 Modbus Installation and Setup.	6
20.8.3 Overview of Messaging.	6
20.8.4 Supported Functions.	6
20.8.5 Read Holding Registers (0x03).	6
20.8.6 Write Multiple Registers (0x10).	8
20.8.7 Exception Response Codes.	8
20.9 Modbus Dynamic Mapping.	9
20.9.1 Configuring Dynamic Mapping.	9
20.9.2 Saving and Resetting Dynamic Mapping	10
20.9.3 Scaling parameters.	10
20.9.4 Modbus specific registers (Parameters).	11
20.9.5 32-bit versus 16-bit Values.	11
20.9.6 Mapping of 64-bit Parameters to 32-bit Parameters.	11
20.9.7 Fault Registers.	12
20.9.8 Mapping Table	12
20.10 Modbus Parameter Table.	13
20.11 Modbus 64-bit Parameters to 32-bit Mapping.	23
21 Ethercat Manual	27
21.1 General	58
21.1.1 About this Manual	59
21.1.2 Target Group.	59
21.1.3 Abbreviations Used	60
21.2 Safety.	61
21.2.1 Safety Instructions	62
21.2.2 Use as directed.	62
21.2.3 Prohibited use.	62
21.3 Installation and Setup.	63
21.3.1 Safety Instructions.	64
21.3.2 EtherCAT Onboard.	65
21.3.2.1 LED functions.	65
21.3.2.2 Connection technology.	65
21.3.2.3 Network Connection Example.	65
21.3.3 Guide to Setup.	66
21.3.4 Setup via TwinCAT NC/PTP System Manager	66
21.3.4.1 Scan devices.	67
21.3.4.2 Select the device.	67
21.3.4.3 Scan for boxes.	
21.3.4.4 Add Slaves to NC tasks.	68
21.3.4.5 Enable the network configuration.	69
21.3.4.6 Enable the axis and move the axis.	
21.3.5 Setup WorkBench over TwinCAT.	
21.3.5.1 TwinCAT and WorkBenchconfiguration.	
21.3.5.2 Connecting to a drive using WorkBench.	73
21.3.5.3 Configuring and enabling a drive.	
21.3.6 Setup via KAS IDE.	77

21.4 EtherCAT Profile	78
21.4.1 Slave Register	79
21.4.2 AL Event (Interrupt Event) and Interrupt Enable	80
21.4.2.1 Interrupt Enable Register (Address 0x0204:0x0205).	80
21.4.2.2 AL Event Request (Address 0x0220:0x0221)	81
21.4.3 Phase Run-Up.	82
21.4.3.1 AL Control (Address 0x0120:0x0121).	82
21.4.3.2 AL Status (Address 0x0130:0x0131)	82
21.4.3.3 AL Status Code (Address 0x0134:0x0135)	83
21.4.3.4 EtherCAT communication phases.	83
21.4.4 CANopen over EtherCAT (CoE) Status Machine.	84
21.4.4.1 Status Description.	84
21.4.4.2 Commands in the Control Word	85
21.4.4.3 Status Machine Bits (status word)	86
21.4.5 Fixed PDO Mappings.	87
21.4.6 Supported Cyclical Setpoint and Actual Values	88
21.4.7 Supported Operation Modes.	88
21.4.8 Adjusting EtherCAT Cycle Time.	89
21.4.9 Maximum Cycle Times depending on operation mode	89
21.4.10 Synchronization.	90
21.4.10.1 Synchronization behavior with distributed clocks (DC) enabled	90
21.4.10.2 Synchronization behavior with distributed clocks (DC) disabled	90
21.4.11 Latch Control Word and Latch Status Word	91
21.4.12 Mailbox Handling	92
21.4.12.1 Mailbox Output	93
21.4.12.2 Mailbox Input	94
21.4.12.3 Example: Mailbox Access.	95
21.4.13 Fieldbus Parameters.	96
21.5 Index	98
22 CANopen Manual	104
22.1 General	135
22.1.1 About this Manual.	136
22.1.2 Target Group.	136
22.1.3 Abbreviations used	137
22.2 Safety	138
22.2.1 Safety Instructions.	139
22.2.2 Use As Directed	139
22.2.3 Prohibited Use.	139
22.3 Installation and Setup.	140
22.3.1 Safety Instructions.	141
22.3.2 Guide to Setup.	142
22.4 CANopen Basics.	142
22.4.1 Basic Features implemented by CANopen.	
22.4.1.1 Setup and general functions:	143
22.4.1.2 Positioning functions:	143

143 144 144 144 145 146
144 144 144 145
144 144 145
144 145
145
146
147
147
147
148
148
149
149
149
149
150 150
150
151
151
151
152
152
154
154
154
154
154
155
156
156
157
158
159
160163
163
163

	Object 1001h: Error register (DS301).	164
	Object 1002h: Manufacturer Status Register (DS301).	165
	Object 1003h: Predefined Error Field (DS301).	166
	Object 1005h: COB-ID of the SYNC Message (DS301).	167
	Object 1006h: Communication Cycle Period (DS301).	167
	Object 1008h: Manufacturer Device Name (DS301).	168
	Object 1009h: Manufacturer Hardware Version.	168
	Object 100Ah: Manufacturer Software Version (DS301)	168
	Object 100Ch: Guard Time (DS301)Response monitoring.	169
	Object 100Dh: Lifetime Factor (DS301).	169
	Object 1010h: Store Parameters (DS301).	170
	Object 1014h: COB-ID for Emergency Message (DS301).	171
	Object 1016h: Consumer Heartbeat Time.	171
	Object 1017h: Producer Heartbeat Time.	172
	Object 1018h: Identity Object (DS301).	172
	Object 1026h: OS Prompt.	174
22	2.6.2.2 Manufacturer specific objects.	175
	Object 2014-2017h: 1st-4th Mask 1 to 4 for Transmit-PDO.	175
	Object 2018h: Firmware Version.	176
	Object 2026h: ASCII Channel.	177
	Object 20A0h: Latch position 1, positive edge.	178
	Object 20A1h: Latch position 1, negative edge.	178
	Object 20A2h: Latch position 2, positive edge.	178
	Object 20A3h: Latch position 2, negative edge.	179
	Object 20A4h: Latch Control Register.	179
	Object 20A5h: Latch Status Register.	180
	Object 20A6h: Latch position 1, positive or negative edge.	180
	Object 20B8h: Reset of changed input information.	181
22	2.6.2.3 Profile specific objects.	182
	Object 60FDh: Digital inputs (DS402).	182
	Object 60FEh: Digital outputs (DS402).	182
	Object 6502h: Supported drive modes (DS402).	183
	.3 PDO Configuration.	
22	2.6.3.1 Receive PDOs (RXPDO)	185

Objects 1400-1403h: 1st - 4th RXPDO communication parameter (DS301)	185
Objects 1600-1603h: 1st - 4th RXPDO mapping parameter (DS301).	186
Default RXPDO definition.	187
22.6.3.2 Transmit PDOs (TXPDO).	188
Objects 1800-1803h: 1st - 4th TXPDO communication parameter (DS301).	188
Objects 1A00-1A03h: 1st - 4th TXPDO mapping parameter (DS301).	190
Default TXPDO definition	191
22.6.4 Device Control (dc). 22.6.4.1 Status Machine (DS402).	
States of the Status Machine.	193
Transitions of the status machine.	194
22.6.4.2 Object Description.	195
Object 6040h: Control word (DS402).	195
Object 6041h: Status word (DS402).	196
Object 6060h: Modes of Operation (DS402).	198
Object 6061h: Modes of Operation Display (DS402).	199
22.6.5 Factor Groups (fg) (DS402). 22.6.5.1 General Information.	
Factors	199
Relationship between Physical and Internal Units.	199
22.6.5.2 Objects for velocity scaling.	200
Object 204Ch: pv scaling factor.	200
22.6.5.3 Objects for position calculation.	201
Object 608Fh: Position encoder resolution (DS402).	201
Object 6092h: Feed constant (DS402).	202
22.6.6 Profile Velocity Mode (pv) (DS402). 22.6.6.1 General Information.	
Objects that are defined in this section.	203
Objects that are defined in other sections.	203
22.6.6.2 Object description.	203
Object 606Ch: velocity actual value (DS402)	203
Object 60FFh: target velocity (DS402).	204
22.6.7 Profile Torque Mode (tq) (DS402). 22.6.7.1 General Information.	
Objects that are defined in this section	205

Objects that are defined in other sections.	205
22.6.7.2 Object description.	205
Object 6071h: Target torque (DS402).	205
Object 6073h: Max current (DS402).	205
Object 6077h: Torque actual value (DS402).	206
22.6.8 Position Control Function (pc) (DS402). 22.6.8.1 General Information.	
Objects that are defined in this section.	207
Objects that are defined in other sections.	207
22.6.8.2 Object Description	207
Object 6063h: position actual value* (DS402).	207
Object 6064h: position actual value (DS402).	208
Object 6065h: Following error window	208
Object 60F4h: Following error actual value (DS402).	208
22.6.9 Interpolated Position Mode (ip) (DS402). 22.6.9.1 General information.	
Objects defined in this section.	209
Objects defined in other sections.	209
22.6.9.2 Object description	209
Object 60C0h: Interpolation sub mode select	209
Object 60C1h: Interpolation data record.	210
Object 60C2h: Interpolation time period.	211
Object 60C4h: Interpolation data configuration	212
22.6.10 Homing Mode (hm) (DS402). 22.6.10.1 General information.	
Objects that are defined in this section.	214
Objects that are defined in other sections.	214
22.6.10.2 Object Description	214
Object 607Ch: homing offset (DS402).	214
Object 6098h: homing method (DS402).	214
Object 6099h: homing speeds (DS402)	216
Object 609Ah: homing acceleration (DS402).	216
Homing Mode Sequence.	217
22.6.11 Profile Position Mode (pp).	218
22.6.11.1 General Information	218

Objects that are defined in this section.	218
Objects that are defined in other sections.	218
22.6.11.2 Object Description.	219
Object 607Ah: target position (DS402).	219
Object 607Dh: Software position limit (DS402).	219
Object 6081h: profile velocity (DS402).	
Object 6083h: profile acceleration (DS402)	
Object 6084h: profile deceleration (DS402)	
Functional Description	
22.7 Appendix	
22.7.1 Object Dictionary	
22.7.1.1 Float Scaling	
22.7.1.2 Communication SDOs.	223
22.7.1.3 Manufacturer specific SDOs.	
22.7.1.4 Profile specific SDOs.	
22.7.2 Examples cetur	
22.7.2.1 Examples, setup. Basic testing of the connection to the AKD controls	
-	
Example: Operating the Status Machine.	
Example: Jog Mode via SDO.	
Example: Torque Mode via SDO.	
Example: Jog Mode via PDO.	239
Example: Torque Mode via PDO	241
Example: Homing via SDO.	242
Example: Using the Profile Position Mode.	244
Example: ASCII Communication.	247
Test for SYNC telegrams.	248
22.7.2.2 Examples, special applications.	249
Example: External Trajectory with Interpolated Position Mode	249
22.8 Index	255
Appendix B.	
	262
About the Parameter and Command Reference Guide.	
Parameter and Command Naming Conventions.	
Summary of Parameters and Commands. AIN Parameters.	
AIN.CUTOFF.	
AIN.DEADBAND	

AIN.DEADBANDMODE	283
AIN.ISCALE	285
AIN.OFFSET	286
AIN.PSCALE.	287
AIN.VALUE.	288
AIN.VSCALE.	289
AIN.ZERO	290
AIO Parameters	291
AIO.ISCALE	291
AIO.PSCALE.	292
AIO.VSCALE.	293
AOUT Parameters	295
AOUT.DEBUGADDR	295
AOUT.DEBUGSCALE	296
AOUT.ISCALE	297
AOUT.MODE.	298
AOUT.OFFSET	299
AOUT.PSCALE	300
AOUT.VALUE	302
AOUT.VALUEU	303
AOUT.VSCALE	304
BODE Parameters	305
BODE.EXCITEGAP	305
BODE.FREQ	306
BODE.IAMP	307
BODE.IFLIMIT	308
BODE.IFTHRESH	309
BODE.INJECTPOINT	310
BODE.MODE	311
BODE.MODETIMER	314
BODE.PRBDEPTH	316
BODE.VAMP	317
BODE.VFLIMIT	318
BODE.VFTHRESH	319
CAP Parameters	320
CAP0.EDGE, CAP1.EDGE.	320
CAP0.EN, CAP1.EN	321
CAP0.EVENT, CAP1.EVENT.	322
CAP0.FILTER, CAP1.FILTER	325
CAP0.MODE, CAP1.MODE	326
CAP0.PLFB, CAP1.PLFB.	327
CAP0.PREEDGE, CAP1.PREEDGE.	328
CAP0.PREFILTER, CAP1.PREFILTER	329
CAP0.PRESELECT, CAP1.PRESELECT.	330
CAP0.STATE, CAP1.STATE	331

CAP0.T, CAP1.T	332
CAP0.TRIGGER, CAP1.TRIGGER	333
CS Parameters	334
CS.DEC.	334
CS.STATE	336
CS.TO.	337
CS.VTHRESH.	337
DIN Parameters	339
DIN.HCMD1 TO DIN.HCMD4.	340
DIN.LCMD1 to DIN.LCMD4.	341
DIN.ROTARY	341
DIN.STATES.	343
DIN1.FILTER TO DIN7.FILTER	344
DIN1.INV TO DIN7.INV.	345
DIN1.MODE TO DIN7.MODE.	346
DIN1.PARAM TO DIN7.PARAM	348
DIN1.STATE TO DIN7.STATE	349
DOUT Parameters	351
DOUT.CTRL	351
DOUT.RELAYMODE	352
DOUT.STATES.	353
DOUT1.MODE AND DOUT2.MODE.	354
DOUT1.PARAM AND DOUT2.PARAM.	355
DOUT1.STATE AND DOUT2.STATE.	356
DOUT1.STATEU AND DOUT2.STATEU.	357
DRV Parameters and Commands.	359
DRV.ACC.	359
DRV.ACTIVE.	361
DRV.BLINKDISPLAY	362
DRV.CLRFAULTHIST.	363
DRV.CLRFAULTS.	364
DRV.CMDDELAY	365
DRV.CMDSOURCE	366
DRV.CRASHDUMP.	367
DRV.DBILIMIT	
DRV.DEC.	
DRV.DIR.	370
DRV.DIS.	
DRV.DISMODE.	
DRV.DISSOURCES	374
DRV.DISTO.	
DRV.EMUEDIR	
DRV.EMUEMODE	
DRV.EMUEMTURN	
DRV.EMUERES	379

	DRV.EMUEZOFFSET	380
	DRV.EN.	381
	DRV.ENDEFAULT.	382
	DRV.FAULTHIST.	383
	DRV.FAULTS.	. 384
	DRV.HANDWHEEL	385
	DRV.HELP.	386
	DRV.HELPALL	387
	DRV.HWENMODE	388
	DRV.ICONT	389
	DRV.INFO	390
	DRV.IPEAK	391
	DRV.IZERO	. 392
	DRV.LIST.	393
	DRV.LOGICVOLTS.	394
	DRV.MEMADDR	395
	DRV.MEMDATA	396
	DRV.MOTIONSTAT	397
	DRV.NAME	398
	DRV.NVLIST	399
	DRV.NVLOAD.	400
	DRV.NVSAVE.	401
	DRV.ONTIME.	402
	DRV.OPMODE.	403
	DRV.READFORMAT.	
	DRV.RSTVAR	405
	DRV.RUNTIME.	406
	DRV.SETUPREQBITS.	407
	DRV.SETUPREQLIST.	408
	DRV.STOP.	. 409
	DRV.TEMPERATURES.	
	DRV.TYPE.	411
	DRV.VER	412
	DRV.VERIMAGE_	413
	DRV.WARNINGS.	414
	DRV.ZERO.	415
F	B1 Parameters	
	FB1.BISSBITS.	416
	FB1.ENCRES.	
	FB1.HALLSTATE	
	FB1.HALLSTATEU	
	FB1.HALLSTATEV.	
	FB1.HALLSTATEW.	
	FB1.IDENTIFIED.	
	FB1.INITSIGNED.	423

FB1.MECHPOS.	424
FB1.MEMVER	425
FB1.OFFSET.	426
FB1.ORIGIN	427
FB1.PFIND.	429
FB1.PFINDCMDU	430
FB1.POLES	431
FB1.PSCALE.	432
FB1.RESKTR	433
FB1.RESREFPHASE	434
FB1.SELECT.	435
FB1.TRACKINGCAL	437
FB2 Parameters	438
FB2.ENCRES.	
FB2.MODE.	439
FB2.SOURCE	
FBUS Parameters	441
FBUS.PARAM1 TO FBUS.PARAM20.	
FBUS.PLLSTATE.	443
FBUS.PLLTHRESH.	
FBUS.SAMPLEPERIOD.	
FBUS.SYNCACT	
FBUS.SYNCDIST	447
FBUS.SYNCWND.	448
FBUS.TYPE	
GEAR Parameters	
GEAR.ACCMAX	450
GEAR.DECMAX	
GEAR.IN.	
GEAR.MODE.	453
GEAR.MOVE	455
GEAR.OUT	
GEAR.VMAX	457
GUI Parameters	
GUI.DISPLAY	458
GUI.PARAM01	
GUI.PARAM02	459
GUI.PARAM03.	459
GUI.PARAM04.	460
GUI.PARAM05.	
GUI.PARAM06.	
GUI.PARAM07.	
GUI.PARAM08.	
GUI.PARAM09.	
GUI.PARAM10.	

HOME Parameters	463
HOME.ACC	463
HOME.AUTOMOVE	465
HOME.DEC	466
HOME.DIR	467
HOME.DIST	468
HOME.FEEDRATE	469
HOME.IPEAK	470
HOME.MODE	471
HOME.MOVE	472
HOME.P	473
HOME.PERRTHRESH.	474
HOME.REQUIRE.	475
HOME.SET	476
HOME.V	477
HWLS Parameters	478
HWLS.NEGSTATE.	478
HWLS.POSSTATE.	479
IL Parameters	481
IL.BUSFF.	481
IL.CMD.	482
IL.CMDU	483
IL.DIFOLD.	484
IL.FB.	485
IL.FF.	
IL.FOLDFTHRESH.	487
IL.FOLDFTHRESHU.	488
IL.FOLDWTHRESH.	
IL.FRICTION.	490
IL.IFOLD.	491
IL.IUFB.	
IL.IVFB.	493
IL.KACCFF	494
IL.KBUSFF.	495
IL.KP.	496
IL.KPDRATIO	497
IL.KPLOOKUPINDEX	
IL.KPLOOKUPVALUE	499
IL.KPLOOKUPVALUES.	
IL.KVFF	
IL.LIMITN.	
IL.LIMITP	
IL.MFOLDD.	
IL.MFOLDR	
IL.MFOLDT.	

IL.MIFOLD.	507
IL.OFFSET	508
IL.VCMD.	509
IL.VUFB	510
IL.VVFB.	511
23 LOAD.INERTIA	512
24 MODBUS Parameters	513
MODBUS.PIN AND MODBUS.POUT	514
MODBUS.PSCALE	515
MODBUS.UNITLABEL	516
MOTOR Parameters	517
MOTOR.AUTOSET	517
MOTOR.BRAKE	518
MOTOR.BRAKERLS	519
MOTOR.BRAKESTATE	520
MOTOR.CTF0	521
MOTOR.ICONT	522
MOTOR.IDDATAVALID	523
MOTOR.INERTIA	524
MOTOR.IPEAK	525
MOTOR.KE	526
MOTOR.KT	527
MOTOR.LQLL	528
MOTOR.NAME	529
MOTOR.PHASE	530
MOTOR.PITCH	531
MOTOR.POLES.	532
MOTOR.R	533
MOTOR.RTYPE	534
MOTOR.TBRAKEAPP	535
MOTOR.TBRAKERLS	536
MOTOR.TEMP	537
MOTOR.TEMPFAULT	538
MOTOR.TEMPWARN	539
MOTOR.TYPE	540
MOTOR.VMAX	541
MOTOR.VOLTMAX	542
MOTOR.VOLTMIN.	543
MOTOR.VOLTRATED.	544
MOTOR.VRATED	545
MT Parameters and Commands.	547
MT.ACC.	
MT.CLEAR	549
MT.CNTL	550
MT.CONTINUE	553

MT.DEC	554
MT.EMERGMT	556
MT.HOMEREQUIRE.	557
MT.LIST	558
MT.LOAD	559
MT.MOVE	560
MT.MTNEXT.	
MT.NUM.	562
MT.P.	563
MT.PARAMS	
MT.SET.	
MT.TNEXT	
MT.TNUM.	567
MT.TNVSAVE	568
MT.TPOSWND.	
MT.TVELWND.	
MT.V	
MT.VCMD.	
PL Parameters	
PL.CMD.	
PL.ERR.	
PL.ERRFTHRESH.	
PL.ERRMODE.	
PL.ERRWTHRESH.	
PL.FB.	
PL.FBSOURCE.	
PL.INTINMAX	
PL.INTOUTMAX	
PL.KI.	
PL.KP.	
PL.MODP1	
PL.MODP2	
PL.MODPDIR.	
PL.MODPEN.	
PLS Parameters and Commands	
PLS.EN.	
PLS.MODE.	
PLS.P1 TO PLS.P8	
PLS.RESET.	
PLS.STATE.	
PLS.T1 TO PLS.T8.	
PLS.UNITS.	
PLS.WIDTH1 TO PLS.WIDTH8.	
REC Parameters and Commands.	
REC.ACTIVE.	

REC.CH1 to REC.CH6	600
REC.DONE	601
REC.GAP	602
REC.NUMPOINTS.	603
REC.OFF.	604
REC.RECPRMLIST	605
REC.RETRIEVE.	606
REC.RETRIEVEDATA	607
REC.RETRIEVEFRMT	608
REC.RETRIEVEHDR	609
REC.RETRIEVESIZE.	610
REC.STOPTYPE	611
REC.TRIG.	612
REC.TRIGPARAM	613
REC.TRIGPOS.	614
REC.TRIGPRMLIST	615
REC.TRIGSLOPE.	616
REC.TRIGTYPE	617
REC.TRIGVAL	618
REGEN Parameters	619
REGEN.POWER.	619
REGEN.REXT.	620
REGEN.TEXT.	621
REGEN.TYPE.	622
REGEN.WATTEXT.	623
SM Parameters	625
SM.I1	625
SM.I2	
SM.MODE	627
SM.MOVE	630
SM.T1	631
SM.T2	632
SM.V1	633
SM.V2	634
STO Parameters	635
STO.STATE.	635
SWLS Parameters	636
SWLS.EN.	636
SWLS.LIMIT0	637
SWLS.LIMIT1	638
SWLS.STATE	
UNIT Parameters	
UNIT.ACCLINEAR	
UNIT.ACCROTARY	
UNIT.LABEL	643

UNIT.PIN	644
UNIT.PLINEAR	645
UNIT.POUT	646
UNIT.PROTARY	647
UNIT.VLINEAR	648
UNIT.VROTARY	649
VBUS Parameters	650
VBUS.OVFTHRESH	650
VBUS.OVWTHRESH	651
VBUS.RMSLIMIT	652
VBUS.UVFTHRESH	653
VBUS.UVMODE	654
VBUS.UVWTHRESH	655
VBUS.VALUE	656
VL Parameters	657
VL.ARPF1 TO VL.ARPF4.	657
VL.ARPQ1 TO VL.ARPQ4.	659
VL.ARTYPE1 TO VL.ARTYPE4	660
VL.ARZF1 TO VL.ARZF4.	661
VL.ARZQ1 TO VL.ARZQ4	662
VL.BUSFF	663
VL.CMD.	664
VL.CMDU	665
VL.ERR	666
VL.FB	667
VL.FBFILTER	668
VL.FBSOURCE	669
VL.FBUNFILTERED	670
VL.FF	671
VL.GENMODE	672
VL.KBUSFF	
VL.KI	674
VL.KO	675
VL.KP	676
VL.KVFF	677
VL.LIMITN	678
VL.LIMITP	679
VL.LMJR	679
VL.MODEL	681
VL.OBSBW	682
VL.OBSMODE.	683
VL.THRESH	684
WS Parameters	685
WS.ARM	685
WS.DISARM	686

WS.DISTMAX	687
WS.DISTMIN	
WS.IMAX	689
WS.MODE	690
WS.NUMLOOPS	69 [.]
WS.STATE	692
WS.T	
WS.TDELAY1	694
WS.TDELAY2	699
WS.TDELAY3	
WS.VTHRESH	697
25 Index	700

This page intentionally left blank.

21.1 General

21.1.1 About this Manual

This manual, AKD EtherCAT Communication, describes the installation, setup, range of functions, and software protocol for the EtherCAT AKD product series. All AKD EtherCAT drives have built-in EtherCAT functionality; therefore an additional option card is not required.

A digital version of this manual (pdf format) is available on the CD-ROM included with your drive. Manual updates can be downloaded from the Kollmorgen website.

Related documents for the AKD series include:

- AKD Quick Start (also provided in hard copy). This guide provides instructions for basic drive setup and connection to a network.
- AKD Installation Manual (also provided in hard copy for EU customers). This manual provides instructions for installation and drive setup.
- AKD Parameter and Command Reference Guide. This guide provides documentation for the parameters and commands used to program the AKD.
- AKD CANopen Communication. This manual includes setup information for the CAN interface and describes the CANopen profile.

Additionally, an EtherCAT XML file, entitled AKD EtherCAT Device Description, describes the drive SDO and PDO. This file is available on the Kollmorgen website:

http://www.kollmorgen.com/website/com/eng/products/drives/ac_servo_drives/akd_drives_akd_software_ tab.php

21.1.2 Target Group

This manual addresses personnel with the following qualifications:

- Installation: only by electrically qualified personnel.
- Setup: only by qualified personnel with extensive knowledge of electrical engineering and drive technology
- Programming: Software developers, project-planners

The qualified personnel must know and observe the following standards:

- ISO 12100, IEC 60364 and IEC 60664
- National accident prevention regulations

A WARNING During operation there are deadly hazards, with the possibility of death, severe injury or material damage. The operator must ensure that the safety instructions in this manual are followed. The operator must ensure that all personnel responsible for working with the servo drive have read and understand the manual.

21.1.3 Abbreviations Used

Abbreviation	Meaning			
AL	Application Layer: the protocol that directly used by the process entities.			
Cat	Category – classification for cables that is also used in Ethernet.			
DC	Distributed Clocks Mechanism to synchronize EtherCAT slaves and master			
DL	Data Link(=Layer 2). EtherCAT uses Ethernet, which is standardized as IEEE 802.3.			
FPGA	Field Programmable Gate Array			
FTP	File Transfer Protocol			
HW	Hardware			
ICMP	Internet Control Message Protocol: Mechanisms for signaling IP errors.			
IEC	International Electrotechnical Commission: The international standards			
IEEE	Institute of Electrical and Electronics Engineers, Inc.			
LLDP	Link Layer Discovery Protocol			
MAC	Media Access Control			
MII	Media Independent Interface: Standardized interface Ethernet controller <-> routing equipment.			
MDI	Media Dependant Interface: Use of connector Pins and Signaling.			
MDI-X	Media Dependant Interface (crossed): Use of connector Pins and Signaling with crossed lines.			
OSI	Open System Interconnect			
OUI	Organizationally Unique Identifier – the first 3 Bytes of an Ethernet-Address, that will be assign to			
	companies or organizations and can be used for protocoll identifiers as well (e.g. LLDP)			
PDI	Physical Device Interface: set of elements that allows access to ESC from the process side.			
PDO	Process Data Object			
PDU	Protocol Data Unit: Contains protocol information transferred from a protocol instance of trans-			
	parent data to a subordinate level			
PHY	Physical interface that converts data from the Ethernet controller to electric or optical signals.			
PLL	Phase Locked Loop			
PTP	Precision Time Protocol in accordance with IEEE 1588			
RSTP	Rapid Spanning Tree Protocol			
RT	Real-time, can be run in Ethernet controllers without special support.			
RX	Receive			
RXPDO	Receive PDO			
SNMP	Simple Network Management Protocol			
SPI	Serial Peripheral Interface			
Src Addr	Source Address: Source address of a message.			
STP	Shielded Twisted Pair			
TCP	Transmission Control Protocol			
TX	Transmit			
TXPDO	Transmit PDO			
UDP	User Datagram Protocol: Non-secure multicast/broadcast frame.			
UTP	Unshielded Twisted Pair			
ZA ECAT	Access mode EtherCAT			
ZA Drive	Acces mode drive			

21.2 Safety

21.2.1 Safety Instructions

▲ DANGER	During operation there are deadly hazards, with the possibility of death, severe injury or material damage. Do not open or touch the equipment during operation. Keep all covers and cabinet doors closed during operation. Touching the equipment is allowed during installation and commissioning for properly qualified persons only.
	 During operation, drives may have uncovered live components, depending on their level of enclosure protection.
	 Control and power connections may be live, even though the motor is not rotating. Drives may have hot surfaces during operation. Heat sink can reach temperatures above 80°C.
▲ WARNING	Electronic equipment can fail. The user is responsible for ensuring that, in the event of a failure of the servo amplifier, the drive is set to a state that is safe for both machinery and personnel, for instance with the aid of a mechanical brake.
	Drives with servo amplifiers and EtherCAT are remote-controlled machines. They can start to move at any time without previous warning. Take appropriate measures to ensure that the operating and service personnel is aware of this danger.
	Implement appropriate protective measures to ensure that any unintended start-up of the machines cannot result in dangerous situations for personnel or machinery. Software limit-switches are not a substitute for the hardware limit-switches in the machine.
NOTICE	Install the drive as described in the Installation Manual. Never break any of the electrical con-
	nections to the drive while it is live. This can result in destruction of the electronics
NOTICE	Do not connect the Ethernet line for the PC with the set up software to the EtherCAT interface X5/X6. The set up Ethernet cable must be connected to the service interface on X11

21.2.2 Use as directed

Drives are components that are built into electrical plants or machines and can only be operated as integral components of these plants or machines. The manufacturer of the machine used with a drive must generate a hazard analysis for the machine and take appropriate measures to ensure that unforeseen movements cannot cause personnel injury or property damage.

- Observe the chapters "Use as directed" and "Prohibited use" in the AKD Installation Manual.
- The EtherCAT interface serves only for the connection of the AKD to a master with EtherCAT connectivity.

21.2.3 Prohibited use

Other use than that described in chapter "Use as directed" is not intended and can lead to personnel injuries and equipment damage. The drive may not be used with a machine that does not comply with appropriate national directives or standards. The use of the drive in the following environments is also prohibited:

- potentially explosive areas
- environments with corrosive and/or electrically conductive acids, alkaline solutions, oils, vapors, dusts
- ships or offshore applications

The connectors X5 and X6 of the AKD EtherCAT drive may not be used for any ethernet protocol except EtherCAT (CoE, Can over EtherCAT).

21.3 Installation and Setup

21.3.1 Safety Instructions

A DANGER

Never disconnect any electrical connections to the drive while the drive is live. There is a danger of electrical arcing with damage to contacts and serious personal injury. Wait at least seven minutes after disconnecting the drive from the main supply power before touching potentially live sections of the equipment (e.g. contacts) or undoing any connections. Capacitors can still have dangerous voltages present up to 7 minutes after switching off the supply power. To be sure, measure the voltage in the DC Bus link and wait until it has fallen below 40 V.

Control and power connections can still be live, even if the motor is not rotating.

A WARNING Electronic equipment can fail. The user is responsible for ensuring that, in the event of a failure of the servo amplifier, the drive is set to a state that is safe for both machinery and personnel, for instance with the aid of a mechanical brake.

> Drives with servo amplifiers and EtherCAT are remote-controlled machines. They can start to move at any time without previous warning. Take appropriate measures to ensure that the operating and service personnel is aware of this danger.

> Implement appropriate protective measures to ensure that any unintended start-up of the machines cannot result in dangerous situations for personnel or machinery. Software limitswitches are not a substitute for the hardware limit-switches in the machine.

NOTICE

Install the drive as described in the Installation Manual. The wiring for the analog setpoint input and the positioning interface, as shown in the wiring diagram in the Installation Manual, is not required. Never break any of the electrical connections to the drive while it is live. This action can result in destruction of the electronics.

NOTICE

The drive's status must be monitored by the PLC to acknowledge critical situations. Wire the FAULT contact in series into the emergency stop circuit of the installation. The emergency stop circuit must operate the supply contactor.

NOTE

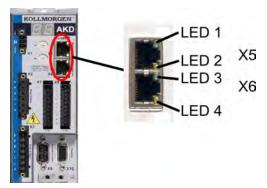
Use WorkBench to alter drive settings. Any other alterations will invalidate the warranty.

NOTE

Because of the internal representation of the position-control parameters, the position controller can only be operated if the final limit speed of the drive does not exceed:

rotary

at sinusoidal² commutation: 7500 rpm at trapezoidal commutation: 12000 rpm.


at sinusoidal² commutation: 4 m/s at trapezoidal commutation: 6.25 m/s

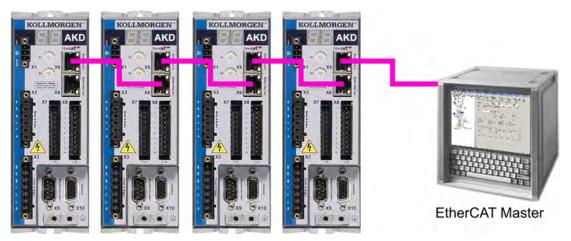
NOTE

All the data on resolution, step size, positioning accuracy etc. refer to calculatory values. Non-linearities in the mechanism (backlash, flexing, etc.) are not taken into account. If the final limit speed of the motor must be altered, then all the parameters that were previously entered for position control and motion blocks must be adapted.

21.3.2 EtherCAT Onboard

Connection to the EtherCAT Network via X5 (in port) and X6 (out port).

21.3.2.1 LED functions


The communication status is indicated by the built-in LEDs.

Connector	LED#	Name	Function
X5	LED1	IN port Link	ON = active
			OFF= not active
	LED2	RUN	ON = running
			OFF = not running
X6	LED3	OUT port Link	ON = active
			OFF = not active
	LED4	-	-

21.3.2.2 Connection technology

You can connect to the EtherCAT network using RJ-45 connectors.

21.3.2.3 Network Connection Example

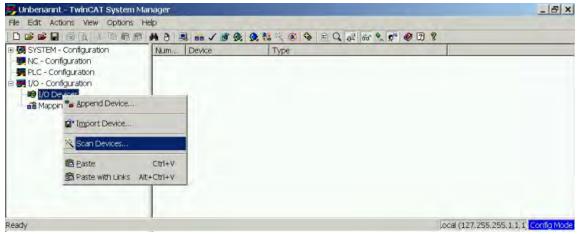
21.3.3 Guide to Setup

▲ WARNING	Only professional personnel with extensive knowledge of control and drive technology are allowed to setup the drive.
A CAUTION	Make sure that any unintended movement of the drive cannot endanger machinery or personnel.

- Check assembly/installation. Check that all the safety instructions in the product manual for the drive and this manual have been observed and implemented. Check the setting for the station address and baud rate.
- 2. Connect PC, start WorkBench. Use the setup software WorkBench to set the parameters for the drive.
- 3. Setup basic functions. Start up the basic functions of the drive and optimize the current, speed and position controllers. This section of the setup is described in the in the online help of the setup software.
- 4. Save parameters. When the parameters have been optimized, save them in the drive.

21.3.4 Setup via TwinCAT NC/PTP System Manager

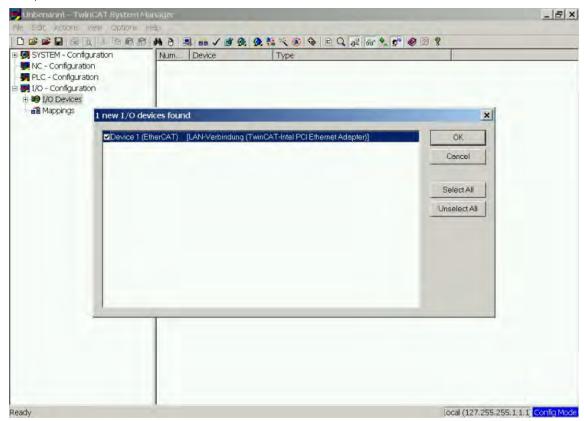
Before you set up the drive, make sure the following have been completed:


- The AKD is configured with WorkBench and the servomotor is able to move
- A correctly configured EtherCAT card is present in the master.
- TwinCAT software from Beckhoff (NC/PTP-Mode setup) is installed. Install first the TwinCAT System Manager, restart your PC, then install the option package NC/PTP-Mode.
- The XML description of the drive is available (the XML file on the CD-ROM or on the Kollmorgen website).
- An AKD EtherCAT slave is connected to the EtherCAT master PC.
- The TwinCAT system manager resides in Config-Mode. The current mode of the system manager is displayed of the bottom right side of the TwinCAT main-screen window.

Copy the XML description of the drive to the TwinCAT system (usually to the folder c:\TwinCAT\IO\EtherCAT) and restart the TwinCAT system since TwinCAT analyzes all device description files during start-up.

The following example explains the automatic EtherCAT network setup. The network setup can also be done manually; please refer to the TwinCAT manual for more details.

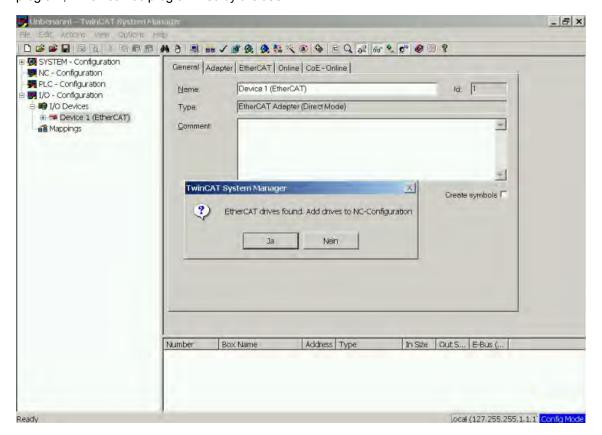
21.3.4.1 Scan devices


First ensure that the EtherCAT master is physically connected to the EtherCAT AKD. Create a new (empty) project. Right click I/O-Devices and scan for the devices. An example is included in the EtherCAT network card, which is plugged into the PC.

A pop-up window informs you that not all devices can be detected by the TwinCAT software. Click **OK** to continue.

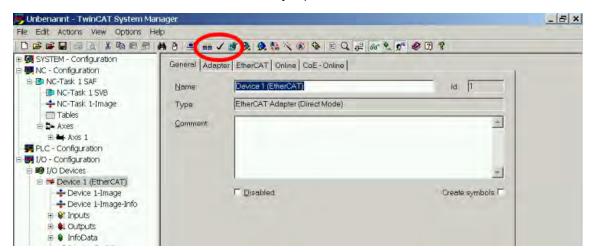
21.3.4.2 Select the device

TwinCAT must be able to find the EtherCAT network card. An EtherCAT slave must be connected to the network card; otherwise TwinCAT will find a real-time EtherNET card instead of the EtherCAT card. Press the **OK** button.

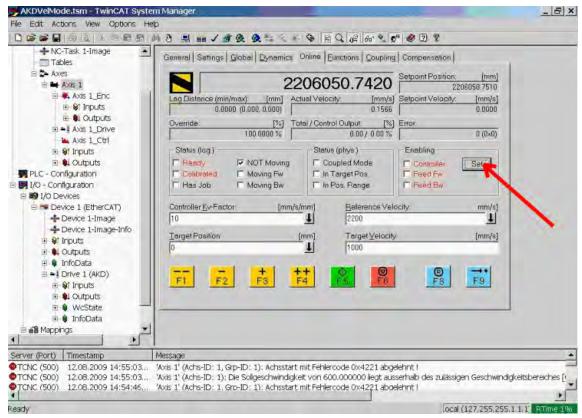

21.3.4.3 Scan for boxes

Click **Yes** to allow TwinCat to scan for boxes. A *box* is an alias for a slave device and is always used in Beckhoff software products.

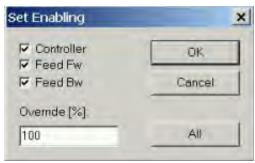
21.3.4.4 Add Slaves to NC tasks


TwinCAT should now have identified the AKD according to the Device Description file. TwinCAT next asks if the slaves should be connected to NC tasks. Click **Yes** to continue. An NC task can, for example, contain a PLC program, which can be programmed by the user.

21.3.4.5 Enable the network configuration


Confirm that the AKD appears in the device tree. Next, enable the network configuration Press first the button in order to generate the mappings, afterwards press the button in order to let TwinCAT check the configuration and use finally the button in order to step into run-mode.

Confirm afterwards that TwinCAT is allowed to jump into run-mode.


21.3.4.6 Enable the axis and move the axis

The Axis can be enabled by a mouse-click on the Set button within the Online window inside of each Axis, see also the next picture.

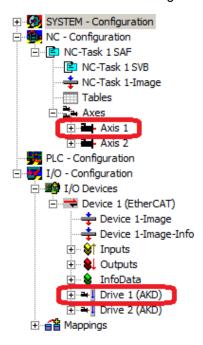
Afterwards a pop-up window appears.

The following setting enables the drive and allows command values in both directions.

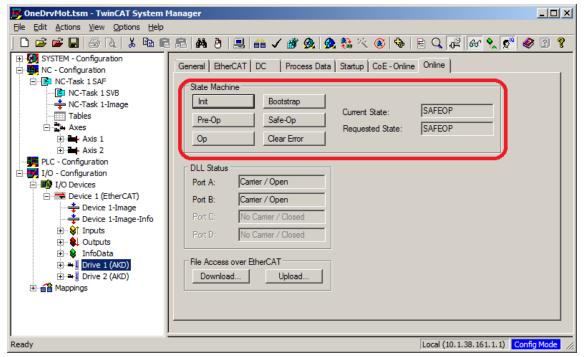
Afterwards the motor should move in positive or negative direction as soon as the clicks on the following yellow buttons within the Online window:

21.3.5 Setup WorkBench over TwinCAT

This chapter describes a quick start guide for a user to be able to setup a WorkBench over TwinCAT system and be able to make a motor spin under that system.

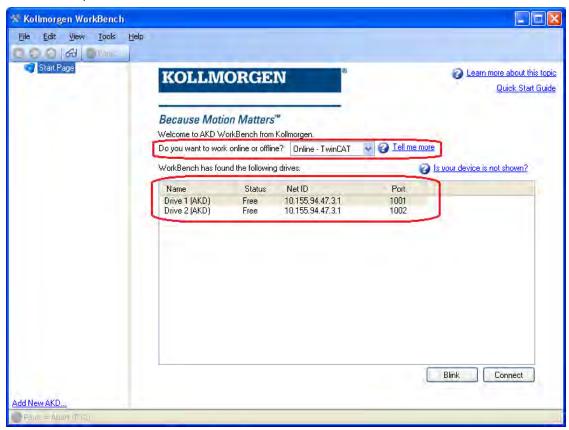

This chapter does not give any specific details on TwinCAT system or WorkBench alone but is giving guidelines and information on how TwinCAT master and WorkBench works together.

Main steps in configuring a WorkBench over TwinCAT system are:


- 1. TwinCAT and WorkBench configuration
- 2. Connecting to a drive using WorkBench
- 3. Configuring and enabling a drive

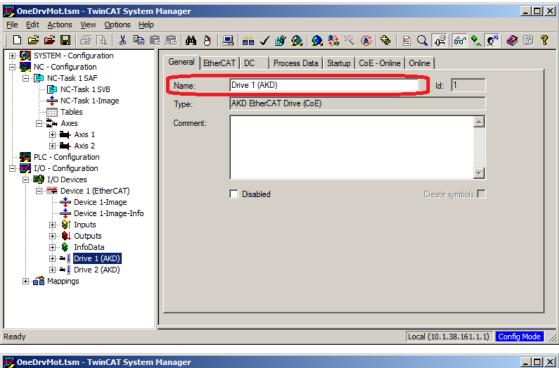
21.3.5.1 TwinCAT and WorkBenchconfiguration

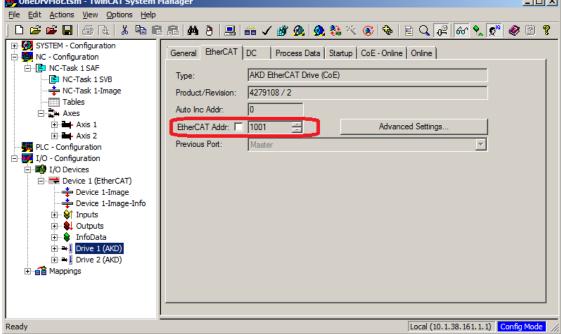
The EtherCAT network must be setup and managed using TwinCAT System Manager. To be able to connect to a drive and enable it, the drive must be loaded under the I/O Devices node in TwinCAT System Manager and axis must be added to NC - Configuration as shown in "Setup via TwinCAT NC/PTP System Manager" (=> p. 66).

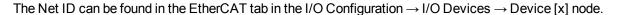

In order to connect to the drives using WorkBench, the drives must be either in Pre-Op, Safe-Op or Op state. State machine for a drive can be accessed from the Online tab for the corresponding drive under the I/O Configuration \rightarrow I/O Devices \rightarrow Device [x] \rightarrow Drive [x] node (see screenshot below).

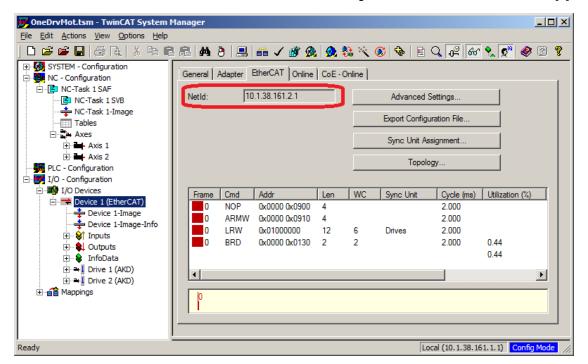
Installation process for WorkBench is the same process as normal, except that it must be installed on the same machine as TwinCAT. Communication to the drive is done thru TwinCAT master and it's not possible to connect WorkBench to the master remotely.

21.3.5.2 Connecting to a drive using WorkBench


In order to connect to a drive, a TwinCAT device must be added in WorkBench. The start page of WorkBench can be used to do this. First, the type of drive (Online - TwinCAT) must be specified. Then, a list of available drives will be provided.




The information provided for a drive are it's name, status, Net ID and Port number. After selecting a drive from the list, clicking on the "Connect" button will create a device in the left frame of WorkBenchand connect the device.

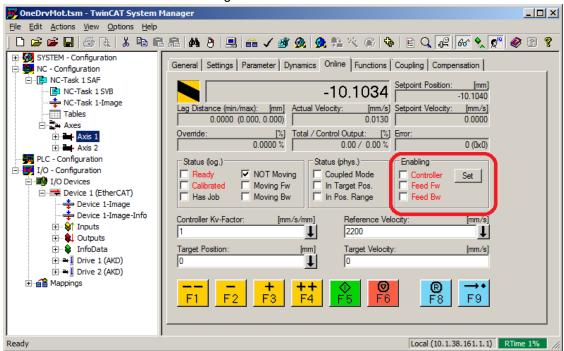

The name, Net ID and port number are information comming from the TwinCAT master configuration file (the name may be different than the drive name returned by the *DRV.NAME* command). While the status is an indicator that tells if there is already a device created within WorkBench which is already connected to that particular drive.

Using TwinCAT System Manager, the drive name and port number can be found in the General and EtherCAT tab respectively for the corresponding drive under the I/O Configuration \rightarrow I/O Devices \rightarrow Device [x] \rightarrow Drive [x] node.

It is important to understand that these information are comming from the TwinCAT master and it's configuration file but not from the drive itself. Thus, if the TwinCAT configuration is not reflecting the actual network configuration, you may have a drive listed in WorkBench which is not be powered up or even connected in the Ether-CAT network, or you have a drive powered up and connected to the TwinCAT network but not shown in the WorkBench list.

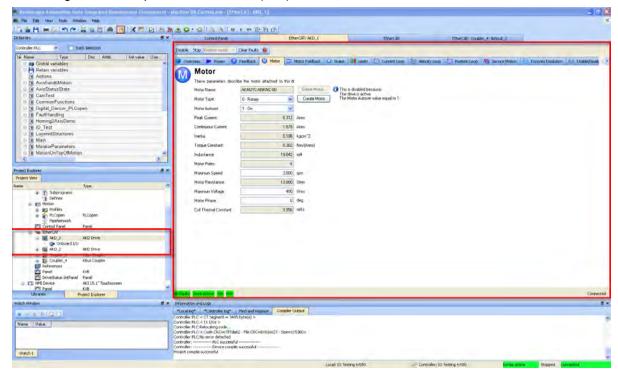
21.3.5.3 Configuring and enabling a drive

Once connected with WorkBench, a drive can be configured using all normal functionnalities of WorkBench.


The only operation that is not possible to do using WorkBench over TwinCAT is the download of a new firmware in the drive. Downloading a new firmware in the drive must be performed using File over EtherCAT (FoE) feature of TwinCAT server.

If the cyclic communication of the TwinCAT master is enabled, it is possible that some commands sent by WorkBench using the ASCII channel are overwirtten by the TwinCAT master. Typically, the drive enable command will have no effect if sent from WorkBench because the control word is usually mapped.

Using TwinCAT, enabling the drive can be done with the following procedure:


- 1. Under NC Configuration \rightarrow Axes \rightarrow Axis [x] node, choose the Online tab.
- 2. Press the Set button within the Enabling section.

3. In the pop-up dialog box, check the Controller checkbox to enable the drive (or un-check to disable the drive) and press on the OK button.

21.3.6 Setup via KAS IDE

If you are using a Kollmorgen Automation Suite (KAS) system, the AKD setup is completely integrated into the KAS Integrated Development Environment (IDE), as shown below:

For further information on the setup for a KAS system, see the following sections in the KAS documentation:

- KAS IDE User Manual: See section 4.2.3 Add and Configure Drive.
- KAS Online Help: See Using the KAS IDE> Creating a Project> Step 3 Add and Configure Drive.

21.4 EtherCAT Profile

21.4.1 Slave Register

The table below gives the addresses of individual registers in the FPGA memory. The data is provided in little-endian format, with the 'least significant byte' occupying the lowest address. A detailed description of all registers and FPGA memory locations is available in the "EtherCAT Slave Controller" description of the EtherCAT user organization (www.EtherCAT.org).

	Length		ZA	ZA
Address	(Byte)	Description	ECAT*	Drive*
0x0120	2	AL Control	R/W	R/O
0x0130	2	AL Status	R/O	R/W
0x0134	2	AL Status Code	R/O	R/W
0x0204	2	Interrupt Enable Register	R/O	R/W
0x0220	2	AL Event (IRQ Event)	R/W	R/O
0x0800	8	Sync Manager 0 (Mail Out Control Register)	R/W	R/O
0x0808	8	Sync Manager 1 (Mail In Control Register)	R/W	R/O
0x0810	8	Sync Manager 2 (Process data Output Control Register)	R/W	R/O
0x0818	8	Sync Manager 3 (Process data Input Control Register)	R/W	R/O
0x0820	8	Sync Manager 4	R/W	R/O
0x0828	8	Sync Manager 5	R/W	R/O
0x0830	8	Sync Manager 6	R/W	R/O
0x0838	8	Sync Manager 7	R/W	R/O
0x0840	8	Sync Manager 8	R/W	R/O
0x1100	Max. 64	ProOut Buffer (Process data Output, setpoints ECAT)	R/W	R/O
0x1140	Max. 64	ProIn (Process data Input, act. values ECAT)	R/O	R/W
0x1800	512	Mail Out Buffer (Object Channel Buffer ECAT,	R/W	R/O
		byte-length is specified in the device description file)		
0x1C00	512	Mail In Buffer (Object Channel Buffer Drive,	R/O	R/W
		byte-length is specified in the device description file)		

^{*} ZA ECAT = Access mode EtherCAT

^{*} ZA Drive = Access mode drive

21.4.2 AL Event (Interrupt Event) and Interrupt Enable

Communication between the drive and the EtherCAT FPGA can be interrupt-driven. The interrupt enable register and the AL event register are responsible for the EtherCAT interface interrupt functionality.

There are two events which lead also to a HW interrupt within the drive, the EEPROM emulation event and the SyncManager 2 event. The actual values of the drive (SyncManager 3 data) are written without any AL event request during each HW IRQ, e.g. triggered by a SyncManager 2 event. The Mailbox exchange between the master and the AKD is completely handled by polling the AL event register within the background task of the drive.

The drive activates individual EtherCAT interface events when the corresponding bit of the interrupt enable register is set to 1. When it is set to 0, the hardware interrupts for the specific events are deactivated.

21.4.2.1 Interrupt Enable Register (Address 0x0204:0x0205)

			ZA	ZA	
Parameter	Address	Bit	Drive	ECAT	Description
AL Control Event	0x204	0	R/W	R/O	Activation of AL control event for phase run-up
-	0x204	1	R/W	R/O	Reserved
Sync0 DC Distributed	0x204	2	R/W	R/O	Activation of distributed clock (DC) sync 0 inter-
Clock					rupts for entire communication
Sync1 DC Distributed	0x204	3	R/W	R/O	Activation of distributed clock (DC) sync 1 inter-
Clock					rupts for entire communication
SyncManager activation	0x204	4	R/W	R/O	Activation of 'SyncManager activation register
register change					change' IRQ.
EEPROM emulation	0x204	5	R/W	R/O	Activation of the EEPROM emulation interrupts.
event					
-	0x204	3 to 7	R/W	R/O	Reserved
Sync Manager 0 Event	0x205	0	R/W	R/O	Activation of output event mailbox (SDO, Sync
(Mail Out Event)					Manager 0) for object channel.
Sync Manager 1 Event	0x205	1	R/W	R/O	Activation of input event mailbox (SDO, Sync Man-
(Mail In Event)					ager 1) for object channel.
Sync Manager 2 Event	0x205	2	R/W	R/O	Activation of output event process data (PDO,
(Pro Out Event)					card's cyclical setpoints)
Sync Manager 3 Event	0x205	3	R/W	R/O	Activation of input event process data (PDO,
(Pro In Event)					drive's cyclical actual values)
-	0x205	4 to 7	R/W	R/O	Reserved

21.4.2.2 AL Event Request (Address 0x0220:0x0221)

When the relevant bit of the AL event request register is set to 1, the EtherCAT interface tells the drive which event it should process by the AKD.

			ZA	ZA	
Parameter	Address	Bit	Drive	ECAT	Description
AL Control Event	0x220	0	R/O	R/W	Processing of AL control event for phase run-up
Sync0 Distributed	0x220	2	R/O	R/W	Processing of a distributed clock (DC) event
Clock (DC) Event					
Sync1 Distributed	0x220	3	R/O	R/W	Processing of a distributed clock (DC) event
Clock (DC) Event					
SyncManager acti-	0x220	4	R/O	R/W	The content of the SyncManager activation reg-
vation register change					ister has been changed.
EEPROM emulation	0x220	5	R/O	R/W	Processing of an EEPROM emulation event in
event					order to identify the AKD within the network.
-	0x220	6 to 7	R/O	R/W	Reserved
Sync Manager 0 Event	0x221	0	R/O	R/W	Mailbox request (SDO, Sync Manager 0) for
					object channel.
Sync Manager 1 Event	0x221	1	R/O	R/W	Mailbox response (SDO, Sync Manager 1) for
					object channel.
Sync Manager 2 Event	0x201	2	R/O	R/W	Process data output (PDO, card's cyclical set-
					points)
Sync Manager 3 Event	0x201	3	R/O	R/W	Process data input (PDO, drive's cyclical actual
					values)
Sync Manager 4 –					
Sync Manager 7 Event	0x221	4 to 7	R/O	R/W	Reserved
Sync Manager 8 –					
Sync Manager 15	0x222	07	R/O	R/W	Reserved
Event					

21.4.3 Phase Run-Up

The AL control, AL status and AL status code registers are responsible for communication phase run-up (also referred to as EtherCAT status change), for current status display and for any fault messages. The drive responds to every EtherCAT interface transition request made by the AL control register via the AL Status and AL Status Code registers. Any fault messages are displayed in the AL status code register.

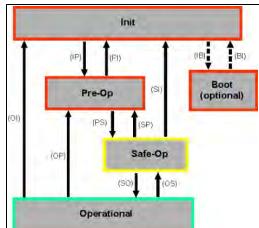
A status change within the AL control register is polled within the AKD, which means that an AL control event does not lead to a HW interrupt within the drive.

21.4.3.1 AL Control (Address 0x0120:0x0121)

			ZA	ZA	
Parameter	Address	Bit	Drive	ECAT	Description
Status	0x120	3 to 0	R/O	W/O	0x01: Init Request
0x02: PreOperational Request					
0x03: Bootstrap Mode Request					
0x04: Safe Operational Request					
0x08: Operational Request					
Acknowledgement	0x120	4	R/O	W/O	0x00: No fault acknowledgement
					0x01: Fault acknowledgement (positive edge)
Reserved	0x120	7 to 5	R/O	W/O	-
Applic. specific	0x120	15 to 8	R/O	W/O	-

21.4.3.2 AL Status (Address 0x0130:0x0131)

			ZA	ZA	
Parameter	Address	Bit	Drive	ECAT	Description
Status	0x130	3 to 0	W/O	R/O	0x01: Init
0x02: PreOperational					
0x03: Bootstrap Mode					
0x04: Safe Operational					
0x08: Operational					
Status change	0x130	4	W/O	R/O	0x00: Acknowledgement
					0x01: Error, e.g. forbidden transition
Reserved	0x130	7 to 5	W/O	R/O	-
Applic. specific	0x130	15 to 8	W/O	R/O	-


21.4.3.3 AL Status Code (Address 0x0134:0x0135)

Parameter	Address	Bit	ZA Drive	ZA ECAT	Description
Status	0x134	7 to 0	W/O	R/O	See table below
Status	0x135	7 to 0	W/O	R/O	See table below

		Current Status	
Code	Description	(Status change)	Resulting Status
0x0000	No error	All	Current Status
0x0011	Invalid requested state change	I -> S, I -> O, P -> O,	Current Status + E
		O -> B, S -> B, P -> B	
0x0017	Invalid sync manager configuration	I -> P, P -> S	Current Status + E

No other codes are supported.

21.4.3.4 EtherCAT communication phases

INIT:

Initialization, no communication. EEPROM emulation will be activated.

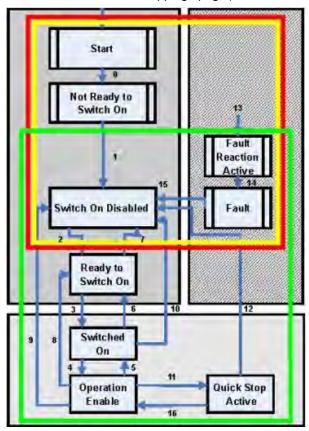
PRE-OP:

Mailbox active, slave parameterization and startup parameters

SAVE-OP:

Cyclical actual values are transferred and the drive tries to synchronize.

OPERATIONAL:


Cyclical setpoints are processed, torque enable can be activated and the drive must be synchronized.

Individual communication transitions

	AL Control	
Transition	(Bit 3 to 0)	Description
(IB)	0x03	-
(BI)	-	-
(IP)	0x02	AKD reads the SyncManager 0 & 1 configuration and verifies the value of the start-
		address and the length. The AKD prepares itself for handling SyncManager 0 events.
(PI)	0x01	-
(PS)	0x04	AKD reads the SyncManager 2 & 3 configuration and verifies the value of the start-
		address and the length.
(SP)	0x02	-
(SI)	0x01	-
(SO)	0x08	The SnycManager 2 hardware interrupt will be enabled by the drive.
(OS)	0x04	Deactivation of SyncManager 2 hardware interrupt.
(OP)	0x02	Deactivation of SyncManager 2 hardware interrupt
(OI)	0x01	Deactivation of SyncManager 2 hardware interrupt.

21.4.4 CANopen over EtherCAT (CoE) Status Machine

The status machine for the control and status words corresponds to the CANopen status machine in accordance with DS402. CANopen control and status words are captured in every instance of fixed PDO mapping (see chapter entitled 'Fixed PDO Mapping', page).

21.4.4.1 Status Description

Status	Description
Not Ready to Switch	The drive is not ready to switch on; the controller has not indicated readiness for
On	service. The drive is still in the boot phase or in fault status.
Switch On Disable	In 'Switch On Disable' status, the amplifier cannot be enabled via the EtherCAT
	interface, because (for example) there is no connection to a power source.
Ready to Switch On	In 'Ready to Switch On' status, the drive can be enabled via the control word.
Switched On	In 'Switched On' status, the amplifier is enabled, but the setpoints of the EtherCAT-
	interface are not yet transferred. The amplifier is idle, and a positive edge in bit 3 of
	the control word activates setpoint transfer (transition to 'Operation Enable' status).
Operation Enable	In this status, the drive is enabled and setpoints are transferred from the EtherCAT
	interface.
Quick Stop Active	The drive follows a quick stop ramp.
Fault Reaction Active	The drive responds to a fault with an emergency stop ramp.
Fault	A fault is pending, the drive is stopped and disabled.

21.4.4.2 Commands in the Control Word

Bit assignment in the control word

Bit	Name	Bit	Name
0	Switch on	8	Pause/halt
1	Disable Voltage	9	reserved
2	Quick Stop	10	reserved
3	Enable Operation	11	reserved
4	Operation mode specific	12	reserved
5	Operation mode specific	13	Manufacturer-specific
6	Operation mode specific	14	Manufacturer-specific
7	Reset Fault (only effective for faults)	15	Manufacturer-specific

Commands in the control word

	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	
Command	Fault Reset	Enable Operation	Quick Stop	Disable Voltage	Switch on	Transitions
Shutdown	Х	Х	1	1	0	2, 6, 8
Switch on	Х	Х	1	1	1	3
Disable Voltage	Х	Х	Х	0	Х	7, 9, 10, 12
Quick Stop	Х	Х	0	1	Х	7, 10, 11
Disable Operation	Х	0	1	1	1	5
Enable Operation	Х	1	1	1	1	4, 16
Fault Reset	1	Х	Х	Х	Х	15

Bits labeled **X** are irrelevant. **0** and **1** indicate the status of individual bits.

Mode-dependent bits in the control word

The following table shows the mode-dependent bits in the control word. Only manufacturer-specific modes are supported at present. The individual modes are set by Object 6060h Modes of operation.

Operation mode	No.	Bit 4	Bit 5	Bit 6
Profile Position Mode (pp)	01h	new_setpoint	change_set_ immediately	absolute/relative
Profile Velocity Mode (pv)	03h	reserved	reserved	reserved
Profile Torque Mode (tq)	04h	reserved	reserved	reserved
Homing Mode (hm)	06h	homing_operation_start	reserved	reserved
Interpolated Position Mode (ip)	07h		reserved	reserved
Cyclic synchronous position mode	08h	reserved	reserved	reserved

Description of the remaining bits in the control word

Bit 8: (Pause) If Bit 8 is set, then the drive halts (pauses) in all modes. The setpoints (speed for homing or jogging, motion task number, setpoints for digital mode) for the individual modes are retained.

Bit 9,10: These bits are reserved for the drive profile (DS402).

Bit 13, 14, 15: These bits are manufacturer-specific, and reserved at present.

21.4.4.3 Status Machine Bits (status word)

Bit assignment in the status word

Bit	Name	Bit	Name
0	Ready to switch on	8	Manufacturer-specific (reserved)
1	Switched on	9	Remote (always 1)
2	Operation enable	10	Target reached
3	Fault	11	Internal limit active
4	Voltage enabled	12	Operation mode specific (reserved)
5	Quick stop	13	Operation mode specific (reserved)
6	Switch on disabled	14	Manufacturer-specific (reserved)
7	Warning	15	Manufacturer-specific (reserved)

States of the status machine

State	Bit 6 switch on disable	Bit 5 quick stop	Bit 3 fault	Bit 2 operation enable	Bit 1 switched on	Bit 0 ready to switch on
Not ready to switch on	0	Х	0	0	0	0
Switch on disabled	1	Х	0	0	0	0
Ready to switch on	0	1	0	0	0	1
Switched on	0	1	0	0	1	1
Operation enabled	0	1	0	1	1	1
Fault	0	Х	1	0	0	0
Fault reaction active	0	Х	1	1	1	1
Quick stop active	0	0	0	1	1	1

Bits labeled **X** are irrelevant. **0** and **1** indicate the status of individual bits.

Description of the remaining bits in the status word

Bit 4: voltage_enabled The DC-link voltage is present if this bit is set.

Bit 7: warning There are several possible reasons for Bit 7 being set and this warning being produced. The reason for this warning can be revealed by using the Object 20subindex manufacturer warnings.

Bit 9: remote is always set to 1, i.e. the drive can always communicate and be influenced via the RS232-interface.

Bit 10: target_reached This is set when the drive has reached the target position.

Bit 11: internal_limit_active This bit specifies that a movement was or is limited. In different modes, different warnings cause the bit to be set.

21.4.5 Fixed PDO Mappings

Various ready-to-use mappings can be selected for cyclic data exchange via SDO's of the object 0x1C12 and 0x1C13. Using object 0x1C12 subindex 1 (Sync Manager 2 assignment), a fixed mapping for the cyclic command values can be set with the values 0x1701, 0x1702, 0x1703,0x1720, 0x1721 and 0x1723. Using object 0x1C13 subindex 1 (Sync Manager 3 assignment), a fixed mapping for the cyclic actual values can be set via the data 0x1B01, 0x1B02, 0x1B20 and 0x1B21.

The following sequence describes how to select the fixed command value mapping 0x1701 via SDO's:

- 1. SDO write access to object 0x1C12Sub0 Data:0x00
- 2. SDO write access to object 0x1C12Sub1 Data:0x1701
- 3. SDO write access to object 0x1C12Sub0 Data:0x01

The following fixed mappings are supported:

Position interface:

0x1701	Position command value (4 bytes), Control word (2 bytes), total (6 bytes)
0x1720	Control Word (2 bytes), Interpolated position command value (4 bytes),
	Latch control word (2 bytes), Torque feed forward (2 bytes), Digital outputs (2 bytes)
0x1721	Interpolated position command value (4 bytes), Control Word (2 bytes),
	Torque feed forward (2 bytes)
0x1723	Control word (2 bytes), Ineterpolated position command value (4 bytes),
	Latch control word (2 bytes), Torque feed forward (2 bytes), Digital outputs (2 bytes),
	Reset of changed input information (2 bytes)
0x1B01	Position actual value (4 bytes), Status word (2 bytes), total (6 bytes)
0x1B21	Position Actual Internal Value (4 bytes), Status word (2 bytes)

Velocity interface:

0x1702	Velocity command value (4 bytes), Control word (2 bytes), total (6 bytes)
0x1B02	Position actual value (4 bytes), Status word (2 bytes), total (6 bytes)

Torque interface:

0x1703 T	Torque command value (2 bytes), Control word (2 bytes)
----------	--

21.4.6 Supported Cyclical Setpoint and Actual Values

Supported cyclical setpoint values

Name	CANopen object number	Data type	Description
Position command value	0x60C1 sub 1	INT32	Interpolation data record in IP-mode
Velocity command value	0x60FF sub 0	INT32	
CANopen control-word	0x6040 sub 0	UINT16	CANopen control word.
Latch Control word	0x20a4 sub 0	UINT16	
Torque feed forward	0x60B2 sub 0	INT16	
Digital outputs	0x60FE sub 1	UINT32	

Supported cyclical actual values

Name	CANopen object number	Data type	Description
Position actual internal value	0x6063 sub 0	INT32	
Velocity actual value	0x606c sub 0	INT32	
CANopen status-word	0x6041 sub 0	UINT16	CANopen status word.
Second position feedback	2050 sub 0	INT32	
Digital inputs	60FD sub 0	UINT32	
Following error actual value	60F4 sub 0	INT32	
Latch position positive edge	20a0 sub 0	INT32	
Torque actual value	6077 sub 0	INT16	
Latch status	20A5 sub 0	UINT16	
Analog input value	3470 sub 0	INT16	

21.4.7 Supported Operation Modes

CANopen mode of operation	AKD mode of operation	Description
Profile velocity	DRV.OPMODE 2	0x6060Sub0 Data: 3
	DRC.CMDSOURCE 1	In this mode of operation the EtherCAT master
		sends cyclic velocity command values to the AKD.
Interpolated position	DRV.OPMODE 2	0x6060Sub0 Data: 7
	DRV.CMDSOURCE 1	In this mode of operation the EtherCAT master sends cyclic position command values to the AKD. These command values are interpolated by the AKD according to the fieldbus sample rate.
Homing mode	DRV.OPMODE 2	0x6060 sub 0 data : 6
	DRV.CMDSOURCE 0	In this mode an AKD-internal homing can be done.

21.4.8 Adjusting EtherCAT Cycle Time

The cycle time to be used in the drive for the cyclical setpoints and actual values can either be stored in the FBUS.SAMPLEPERIOD parameter in the amplifier or configured in the startup phase.

This takes place via SDO mailbox access to CANopen objects 60C2 subindex 1 and 2.

Subindex 2, known as the interpolation time index, defines the power of ten of the time value (e.g. -3 means 10-3 or milliseconds) while subindex 1, known as interpolation time units, gives the number of units (e.g. 4 means 4 units).

You can run a 2 ms cycle using various combinations. For example,

Index = -3, Units = 2

or

Index = -4, Units = 20 etc.

The FBUS.SAMPLEPERIOD parameter is counted in multiples of 62.5us microseconds within the device. This means, for example that 2 ms equates to FBUS.SAMPLEPERIOD value of 32.

21.4.9 Maximum Cycle Times depending on operation mode

The minimum cycle time for the drive is largely dependent on the drive configuration (second actual position value encoder latch functionality enabled and so on)

Interface	Cycle time AKD
Position	≥ 0.25 ms (≥ 250 µs)
Velocity	≥ 0.25 ms (≥ 250 µs)
Torque	≥ 0.25 ms (≥ 250 µs)

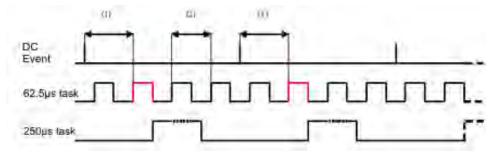
21.4.10 Synchronization

On all drives, the internal PLL is theoretically able to even out an average deviation of up to 4800 ppm in the cycle time provided by the master. The drive checks once per fieldbus cycle a counter within the drive internal FPGA, which is cleared by a Sync0 (Distributed clock) event. Depending of the counter value, the drive extends or decreases the $62.5 \,\mu s$ MTS signal within the drive by a maximum of $300 \, ns$.

The theoretical maximum allowed deviation can be calculated by using the following formula:

$$max_{de}v = \frac{300[ns]}{62.5[\mu s]} \cdot 1,000,000 = 4800 [ppm]$$

The synchronization functionality within the drive can be enabled via setting bit 0 of the FBUS.PARAM02 parameter to high. Therefore FBUS.PARAM02 must be set to the value of 1. Furthermore the distributed clock functionality must be enabled by the EtherCAT master in order to activate cyclic Sync0 events.


21.4.10.1 Synchronization behavior with distributed clocks (DC) enabled

When the EtherCAT master enables distributed clocks, a distributed clock (DC) event is created in the AKD once per fieldbus cycle. An assigned 62.5 µs real-time task in the AKD monitors the elapsed time between the DC events and the AKD System time and extends or reduces the 62.5 µs strobe to the CPU as necessary.

The following fieldbus parameters are used for the synchronization feature:

- 1. FBUS.SYNCDIST = Expected time delay of the AKD PLL-code to the DC event.
- 2. FBUS.SYNCACT = Actual time delay of the AKD PLL-code to the DC event.
- 3. FBUS.PLLTHRESH = Number of consecutive successful synchronized PLL cycles of the AKD before the Drive is considered as synchronized.
- 4. FBUS.SYNCWND = Synchronization window in which the AKD is considered to be synchronized. The Drive is considered synchronized as long as the following statement is true is true for FBUS.PLLTHRESH consecutive cycles:
 - FBUS.SYNCDIST-FBUS.SYNCWND < FBUS.SYNCACT < FBUS.SYNCDIST+FBUS.SYNCWND

Example with a 4kHz fieldbus sample rate:

Explanation:

The red-marked 62.5[μ s] real-time task displays the AKD 62.5 μ s real-time task within one fieldbus cycle which is responsible for calling the AKD PLL-code. The time delay (1) shows the actual delay to the previous DC event, which is ideally close to the adjusted FBUS.SYNCDIST parameter. Depending on (1) the AKD slightly extends or reduce the 62.5[μ s] IRQ generation of the high-priority real-time task in order to either increase or decrease the measured time delay to the DC event (1) for the next PLL cycle. The time distance (2) shows the 62.5[μ s] \pm x[ms] realtime task of the AKD.

21.4.10.2 Synchronization behavior with distributed clocks (DC) disabled

The AKD fieldbus synchronization algorithm is similar to that used by Distributed Clocks. The difference is that the AKD synchronizes to a SyncManager2 event instead of the DC event. A SyncManager2 event is created when the EtherCAT Master sends a new package of command values to the drive while the network is in the Operational state. This occurs once per fieldbus cycle.

21.4.11 Latch Control Word and Latch Status Word

Latch Control word (2 Byte)

Bit	Value (bin)	Value (hex)	Description
0	00000000 00000001	zz01	Enable extern latch 1 (positive rise)
1	00000000 00000010	zz02	Enable extern latch 1 (negative rise)
2	00000000 00000100	zz04	Enable extern latch 2 (positive rise)
3	00000000 00001000	zz08	Enable extern latch 2 (negative rise)
4			
5-7			Reserve
8-12	00000001 00000000	01zz	Read external latch 1 (positive rise)
	00000010 00000000	02zz	Read external latch 1 (negative rise)
	00000011 00000000	03zz	Read external latch 2 (positive rise)
	00000100 00000000	04zz	Read external latch 2 (negative rise)
13-15			Reserve

Latch Status word (2 Byte)

Bit	Value (bin)	Value (hex)	Description
0	00000000 00000001	zz01	External latch 1 valid (positive rise)
1	00000000 00000010	zz02	External latch 1 valid (negative rise)
2	00000000 00000100	zz04	External latch 2 valid (positive rise)
3	00000000 00001000	zz08	External latch 2 valid (negative rise)
4			
5-7			Reserve
8-11	00000001 00000000	z1zz	Acknowledge value external latch 1 (positive rise)
	00000010 00000000	z2zz	Acknowledge value external latch 1 (negative rise)
	00000011 00000000	z3zz	Acknowledge value external latch 2 (positive rise)
	00000100 00000000	z4zz	Acknowledge value external latch 2 (negative rise)
12-15	00010000 00000000	1zzz	Zustand Digital Input 4
	00100000 00000000	2zzz	Zustand Digital Input 3
	01000000 00000000	4zzz	Zustand Digital Input 2
	10000000 00000000	8zzz	Zustand Digital Input 1

21.4.12 Mailbox Handling

With EtherCAT, acyclical data traffic (object channel or SDO channel) is called mailbox. This system is based around the master:

Mailbox Output:

The master (EtherCAT controller) sends data to the slave (drive). This is essentially a (read/write) request from the master. Mailbox output operates via Sync Manager 0.

Mailbox Input:

The slave (drive) sends data to the master (EtherCAT controller). The master reads the slave's response. Mailbox input operates via Sync Manager 1.

Timing diagram

The timing diagram illustrates the mailbox access process:

- 1. The EtherCAT master writes the mailbox request to the mail-out buffer.
- 2. On the next interrupt, the EtherCAT interface activates a Sync Manager 0 event (mailbox output event) in the AL event register.
- 3. The drive reads 16 bytes from the mail-out buffer and copies them to the internal mailbox output array.
- 4. The drive identifies new data in the internal mailbox output array and performs an SDO access to the object requested by the EtherCAT interface. The response from the drive is written to an internal mailbox input array.
- 5. The drive deletes all data in the internal mailbox output array so that a new mailbox access attempt can be made.
- 6. The drive copies the response telegram from the internal mailbox input array to the mail-in buffer of the EtherCAT interface.

21.4.12.1 Mailbox Output

An interrupt by the EtherCAT-interface with a Sync Manager 0 - Event starts a Mailbox Output Process. A 1 in the Mail Out Event-Bit of the AL Event register signalizes the drive, that the EtherCAT-interface wants to send a Mailbox message and that it has already stored the required data in the Mail Out Buffer. Now 16 Byte data are read by the drive with the IRQ process. The bytes are defined as follows

			Address	0x1800	00			Address 0x180F							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		CAN ov	er EtherC		cific data	CAN specific data									
			(CoE F	leader)	(standard 0						CAN	SDO)			
Byte 0			data (Low												
Byte 1			data (Hig	h Byte)											
Byte 2		Address (Low Byte)													
Byte 3		Address (High Byte)													
Byte 4		Bit 0 to 5: Channel													
	Bit 6 to 7: Priority Bit 0 to 3: Type														
Byte 5	Bit 01	to 3: Typ	e		= Resen = Resen					_					
					= Reserv			ei Eu	IEICA	N I					
	Rit 4 t	to 7: Res	erved		- Oan o	rei Etile	10/(1)								
Byte 6			(with PD	O transi	missions	only Bi	t 0 = LSB	of th	e PD	O nur	nber s	see By	/te 7 fo	or MS	(B)
Byte 7			the PDO					01 (11	0.0	- 1101		300 2	,	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>
-,		to 3: Res			, , .										
			= specific	type 0	: Reserve	ed									
					: Emerge	ncy mes	ssage								
				2	: SDO re	quest									
				3	: SDO an	swer									
				4	: TXPDO)									
				5	: RxPDO)									
					: Remote			•							
					: Remote		ission red	quest	of a l	RxPD	00				
					15: res	erved									
Byte 8			in the CA	<u>~</u>											
		access:			x23=4By	te, 0x27	'=3Byte,	0x2B	=2By	/te, 0	(2F=1	Byte			
		access:			x40										
Byte 9			ne CAN o	•		,									
Byte 10			he CAN			,									
Byte 11			ording to	•		ication f	or the dri	ve							
Byte 12			rite acces	•	byte)										
Byte 13			rite acces												
Byte 14					Pyto)										
Byte 15	บลเล	with a W	rite acces	s (High	byte)										

The drive answers every telegram with an answer in the Mailbox Input buffer.

21.4.12.2 Mailbox Input

The drive answers every CoE telegram with a 16 byte answer telegram in the Mailbox Input buffer. The bytes are defined as follows:

	Address 0x1C00						Address 0x1C0F								
0	1 2 3 4 5 6 7					7	8	9	10	11	12	13	14	15	
	CAN over EtherCAT specific of				ific data	3		CAN specific data							
	(CoE Header)							(standard CAN SDO)							
Byte 0	Length of the data (Low Byte)														
Byte 1	Length	n of the c	data (Higl	n Byte)											
Byte 2		ss (Low													
Byte 3		ss (High													
Byte 4		o 5: Cha	_												
		7: Prio													
Byte 5	Bit 0 to	о 3: Туре	е				ed: ADS				۸ .				
							ed: Ethe er Ether(tnerC	ΑI				
	Rit 1 to	7: Res	enved		3.	- Carrov	ei Eilleit	JA 1 .)						
Byte 6				O transm	issions	only Rit	0 = I SB	of the	2 PD() num	her s	see Ry	te 7 fc	or MS	B)
Byte 7			•	number,			O LOB	01 (11)		O Hairi	DC1, C	JCC D,	710 7 10) IVIO	<u> </u>
		3: Res													
			specific	tvpe	0:	Reserve	ed								
				-71				sage							
						1: Emergency message 2: SDO request									
						3: SDO answer									
					4:	TXPDO									
					5:	RxPDO									
					6:	Remote	transmis	sion	reque	est of a	тхР	DO			
					7:	Remote	transmis	sion	reque	est of a	RxF	OQ			
					8.	15: rese	erved								
Byte 8				N telegrar	n:										
		access C				60									
				th of ansv			te), 0x47	(3 By	/te), ()x4B (2Byte	e), 0x4	₽F (1B	yte)	
			- or write			80									
Byte 9		•		bject num	•	,									
	High Byte of the CAN object number (Index)														
Byte 11	<u> </u>														
Byte 12		Low Byt	:e)												
Byte 13	Data						Fehlerco	de ac	cordi	ng to (JANC	pen S	pecifi	cation	ın
Byte 14	Doto					se of an		ioot :	2.000	o of c	10000	ofull =	ood oo	20000	
Byte 14 Byte 15		High Dv	to)	data value of the obj				Ject II	ı cas	e oi st	icces	SIUIIT	eau ac	cess	
Dyte 15	Data (High By	(U)												

21.4.12.3 Example: Mailbox Access

In the example below, PDOs 0x1704 are mapped (see Chapter # "Fixed PDO Mappings"):

The master sends this mailbox output message:

Byte 0	0x0A	The next 10 Bytes contain data (Byte 2 to Byte 11)
Byte 1	0x00	The next 10 Bytes contain data (Byte 2 to Byte 11)
Byte 2	0x00	Address 0
Byte 3	0x00	Address 0
Byte 4	0x00	Channel 0 and Priority 0
Byte 5	0x03	CoE Object
Byte 6	0x00	PDO Number 0
Byte 7	0x20	PDO Number 0 and SDO-Request
Byte 8	0x2B	2 Byte write access
Byte 9	0x12	SDO-Object 0x1C12
Byte 10	0x1C	SDO-Object 0x1C12
Byte 11	0x01	Subindex 1
Byte 12	0x04	Data value 0x00001704
Byte 13	0x17	Data value 0x00001704
Byte 14	0x00	Data value 0x00001704
Byte 15	0x00	Data value 0x00001704

The drive returns the following message:

Byte 0	0x0E	The next 14 Bytes contain data (Byte 2 to Byte 15)
Byte 1	0x00	The next 14 Bytes contain data (Byte 2 to Byte 15)
Byte 2	0x00	Address 0
Byte 3	0x00	Address 0
Byte 4	0x00	Channel 0 and Priority 0
Byte 5	0x03	CoE Object
Byte 6	0x00	PDO Number 0
Byte 7	0x20	PDO Number 0 and SDO-Answer
Byte 8	0x60	Successful write access
Byte 9	0x12	SDO-Object 0x1C12
Byte 10	0x1C	SDO-Object 0x1C12
Byte 11	0x01	Subindex 1
Byte 12	0x00	Data value 0x00000000
Byte 13	0x00	Data value 0x00000000
Byte 14	0x00	Data value 0x00000000
Byte 15	0x00	Data value 0x00000000

21.4.13 Fieldbus Parameters

The AKD holds several fieldbus-specific, general purpose parameters. Some of them contain the following Ether-CAT relevant data:

- **FBUS.PARAM02**: This parameter activates the synchronization feature of the AKD. The DC feature must be activated in order to allow the AKD to get synchronized with the master. A value of 1 enables the drive internal PLL functionality, a value of 0 deactivates this feature.
- **FBUS.PARAM03**: This parameter contains the Configured Station Alias address of the AKD. An EEP-ROM emulation write access to the Configured Station Alias address forces the AKD to store the drive parameters automatically using the DRV.NVSAVE command.
- **FBUS.PARAM04**: This parameter enables (1) or disables(0) the synchronization supervision of the CAN-Open or EtherCAT fieldbus.

Default values for this parameter are as follows:

CANopen drive: disabled (0)

EtherCAT drive: enabled (1)

Synchronization supervision is active when FBUS.PARAM 04 = 1 and the first CANOpen Sync message or first EtherCAT frame is received. When more than three CANOpen sync messages or seven Ether-CAT frames have not been received and the drive is enabled, fault F125 ("Synchronization lost"), occurs.

AKD User Guide |

This page intentionally left blank.

21.5 Index		607Dh 6081h	219 220
		6083h	220
1		6084h	220
•		608Fh	201
1000h	163	6092h	202
1001h	164	6098h	214
1002h	165	6099h	216
1003h	166	609Ah	216
1005h	167	60C0h	209
1006h	167	60C1h	210
1008h	168	60C2h	211
1009h	168	60C4h	212
100Ah	168	60F4h	208
100Ch	169	60FDh	182
100Dh	169	60FEh	182
1010h	170	60FFh	204
1014h	171	6502h	183
1016h	171		
1017h	172	A	
1018h	172		
1026h	174	Abbreviations	60, 137
1400-1403h	185	Acceleration ramp	359
1600-1603h	186	AL Event	80
1800-1803h	188	Analog inputs	275
1A00-1A03h	190	Analog output	103
_		Analog setpoints	275
2		Anti-resonance filter	662
0044 0045	4==	Aux. supply 24V, interface	267
2014-2017h	175	В.	
2018h	176	В	
2026h	177	Dania data turan	4.47
204Ch	200	Basic data types	147 34
20A0h	178	Basic drive setup	236
20A1h	178	Basic testing Blink	362
20A2h	178		302
20A3h	179	Block diagrams current loop	282
20A4h	179	•	282
20A5h	180	position and velocity loops Brake view	80
20A6h	180	Drake view	00
20B8h	181	С	
6		CANopen over EtherCAT	84
6040h	195	Capture	81
6041h	196	Check communications	40, 43
6060h	198	Command buffer	96
6061h	199	Command source	366
6063h	207	Communication Objects	149
6064h	208	Connect to another drive	40
6065h	208	Connected and disconnected states	38
606Ch	203	Connection diagram	
6071h	205	AKD-x00306 to x00606	264
6073h	205	AKD-x01206	265
6077h	206	AKD-x01206 & AKD-xzzz07	266
607Ah	219	Connection Diagrams	263
607Ch	214	Control word	195

Control Word Commands Controlled Stop	85 115	Foldback	77
current loop	121	G	
Current loop gain scheduling	122		
Cycle Time		General definitions	163
Adjust	89	General objects	163
Max.Values	89		
Cyclical Values	88	Н	
D		Heartbeat	158
		Homing	134
Data types	147	Homing Mode	214
DC bus link, interface	270	1	
deceleration	369	•	
Device control	192	I/O-Connection	104, 273
Device Not Shown	38, 46	Inputs	10-1, 270
Dig. Encoder emulation, interface	277	Analog	275
Digital inputs	99	Digital	99
Digital Inputs and Outputs	88	Enable	102
Direct DC mains	56	Programmable	102
Disable	373	Interpolated position mode	209
Disconnected state	38	Interrupt Event	80
Display Codes	34	Invalid Firmware	259
Downloading Firmware	259	invalia i iiiiwalo	200
Drive Motion Status	153	J	
Dynamic Braking	117		4.50
E		Jog Move	153
Electronic gearing	106	K	
Emergency Messages	253, 160		
Emergency Object	151	KAS IDE	77
emergency timeout	375		
Emulated Encoder Output	277	L	
ENABLE	102	Latch Words	91
Enable/Disable	111	Later words	91
encoder emulation	74	M	
Error Messages		IAI	
parameter and command	250	Macros	219
EtherCAT onboard	65	Mailbox	92
EtherCAT Proflie	78	Mains supply, interface	271
Examples	236	Manufacturer specific objects	175
Examples, setup	236	master/slave	74
Examples, special applications	249	Mixed data types	148
Extended data types	149	Modbus	6
••		Modbus Dynamic Mapping	9
F		Modulo position	127
		Motion Tasks	144
Factor Groups	199	Motor	64
Fault messages	240	Motor interface	268
Faults	364		
clearing	249	N	
Feedback 1	66		
Feedback 2	73	Network Management Object	150
Feedback Connection	279	Nodeguard	157
Fieldbus	96	Non-Plug and Play Feedback Devices	76
Fieldhus Daramotors	96		

0		Settings	52
		Setup	66
Object Dictionary	223	Signed Integer	148 79
Operating mode	198	Slave Register	160
parameters and commands active in	225,	Slider Tuning Status machine	192
	265	Status Machine	84
Operation Modes	88	Status wachine Status word	196
Outputs		Status Word	86
Analog	274		90
Overview	50	Synchronization Synchronization Object	150
P		Т	
Parameter Comparer	221	•	
Parameter Load/Save	221	Target group	59, 136
PDO configuration	184	TCP/IP	48
PDO Mapping	87	Terminal	218
Performance Servo Tuner	160	Time Stamp Object	150
advanced	164	Transmission modes	156
	82	Transmit PDOs	188
Phase run-up Position Control Function	207	Trigger modes	156
		Trouble Shooting	257
Position Loop	126	Tuning	189
Power Pote Object	56 455	TwinCAT	66
Process Data Object	155	TWINGAT	00
Profile Position Mode	218	U	
Profile specific objects	182	•	
Profile torque mode	205	Units	84
Profile Velocity Mode	203	Unsigned Integer	147
Programmable Limit Switch	109	Up/Down Input	278
Prohibited Use	62, 139	Use as directed	62, 139
Pulse Direction, interface	278		02, 100
R		V	
Bassina BBOs	405	Velocity Loop	124
Receive PDOs	185	•	
Regen resistor, interface	269	W	
Regeneration	58		
Registration moves	149	Wake and shake (WS)	68
Response monitoring	169	Warnings	240
		Watch	52
S		Wizard	35
Safa Tarqua Off (STO)	118	Workbench over TwinCAT	71
Safe Torque Off (STO)	110		
Safety Instructions	64 141		
Electrical Installation	64, 141		
General	62, 139		
Save On Disconnect	157		
Save On Exit	156		
Save On Firmware Download	158		
Save Options	156		
scope	205		
channels	205		
settings and presets	212		
time-base	205		
SDO abort codes	154		
Service Data Object	152		
Service Motion	152		

AKD User Guide |

This page intentionally left blank.

This page intentionally left blank.

Sales and Service

We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance.

If you are unaware of your local sales representative, please contact us.

Europe

Kollmorgen Customer Support Europe

 Internet
 www.kollmorgen.com

 E-Mail
 technik@kollmorgen.com

 Tel.:
 +49(0)2102 - 9394 - 0

 Fax:
 +49(0)2102 - 9394 - 3155

North America

Kollmorgen Customer Support North America

 Internet
 www.kollmorgen.com

 E-Mail
 support@kollmorgen.com

 Tel.:
 +1 - 540 - 633 - 3545

 Fax:
 +1 - 540 - 639 - 4162

22 CANopen Manual

AKDTM

CANopen Communication

Edition: Revision C, April 2011
Valid for Hardware Revision C
Part Number 903-200004-00
Original Documentation

Keep all manuals as a product component during the life span of the product. Pass all manuals to future users and owners of the product.

Record of Document Revisions:

Revision	Remarks
- ,11/2009	Beta launch version
-, 12/2009	Objects 2018&60FE added, Object dictionary, formatting updated
A, 04/2010	Termination connector "optional", several new objects, Object dictionary split
B, 07/2010	Part number added, several new objects, object dictionary expanded
C, 01/2011	HW Rev. C, new objects, object dictionary expanded
D, 04/2011	Object dictionary updated, baudrate setup

Hardware Revision (HR)

Hardware Revision	Firmware	WorkBench	Remarks
Α	M_01-03-zz-zzz	1.3.0.zzzzz	Start revision
С	≥ M_01-03-00-011	≥ 1.3.0.zzzzz	STO certified

EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH
EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH
HIPERFACE is a registered trademark of Max Stegmann GmbH
WINDOWS is a registered trademark of Microsoft Corporation
AKD is a registered trademark of Kollmorgen Corporation

Current patents:

US Patent 5,646,496 (used in control card R/D and 1 Vp-p feedback interface)

US Patent 5,162,798 (used in control card R/D)

US Patent 6,118,241 (used in control card simple dynamic braking)

Technical changes which improve the performance of the device may be made without prior notice!

Printed in the United States of America

This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of Kollmorgen.

Table of Contents

1 About this User Guide.	29
1.1 About this User Guide	29
1.2 Abbreviations	29
2 AKD Models	31
2.1 CC Drive Models	31
3 Basic Drive Setup.	33
3.1 Basic Drive Setup.	34
3.2 Display Codes	34
3.3 AKD Setup Wizard	
4 Connecting the Drive	37
4.1 Connected and Disconnected States.	38
4.2 Disconnected	38
4.3 Device Not Shown	38
4.4 Find and Enter IP Address.	39
4.5 Check Communications.	40
4.6 Connect To Another Drive.	40
5 Communicating with the Drive	41
5.0.1 Overview	42
5.0.2 Identifying the Drive IP Address	42
5.0.2.1 Automatic (Dynamic) IP Addressing.	42
5.0.2.2 Static IP Addressing.	42
5.1 Check Communications.	43
5.2 Troubleshooting Connection and Communication Problems	45
5.2.1 No Drives are Shown	46
5.2.2 Device Not Shown	46
5.2.3 Find and Enter IP Address.	46
5.3 TCP/IP Communication Protocols.	48
5.4 IP Address.	48
5.4.1 Port Number	48
5.4.2 MAC Address.	48
6 Using WorkBench	
6.1 Welcome Screen	
6.1.1 Online	49
6.1.2 Offline	50
6.2 AKD Overview.	
6.3 Online and Offline.	
6.3.1 Online Drive.	
6.3.2 Offline Drive	
6.3.3 Switching Between Online and Offline.	
6.4 Watch	
6.5 Settings.	
6.5.1 Navigation Tree	52

6.5.2 Settings View.	52
7 Configuring Drive Power.	55
7.1 Power	56
7.1.1 Drive Setup for Power and Bus.	56
7.1.2 Direct DC Mains Operation.	56
7.2 Regeneration	58
7.2.1 Overview.	
7.2.2 Regen Resistor Options.	
7.2.3 Calculating Motor Peak Energy and Regen Resistor Size.	
7.2.4 Selecting a Compatible Regen Resistor	
7.2.5 Configuring Regen Parameter Values.	
7.2.6 Related Parameters.	
8 Configuring Motor Settings	
8.1 Motor	
8.1.1 Overview.	
8.1.2 Motor Setup.	
8.1.3 Using the Motor View.	
8.1.4 Selecting a Motor.	
8.1.4.1 Configuring Custom Motors.	
8.1.4.2 Validating Motor Parameters.	
8.2 Feedback 1.	
8.2.1 Overview.	
8.3 Using Feedback Options.	
8.3.1 Auto.	
8.3.2 Incremental Encoder	
8.3.3 Sine Encoder.	
8.3.4 Endat 2.1, Endat 2.2.	
8.3.5 BiSS.	
8.3.6 Hiperface	68
8.3.8 SFD.	
8.3.9 Using Wake and Shake (WS)	
8.3.9.1 Overview.	
8.3.9.2 Configuring WS.	
Wake and Shake, More View.	
Special Cases for WS.	
Operation with Motor Brake.	
End of Travel Limits.	70
Large Load Inertia or High Friction System	70
8.3.9.3 Using WS: Advanced.	70
Maximizing WS Reliability	71
8.3.9.4 Troubleshooting WS.	72

8.3.9.5 Related Parameters.	73
8.3.10 Commutation Alignment.	73
8.4 Feedback 2	73
8.4.1 Encoder Emulation.	74
8.4.1.1 Overview.	74
8.4.1.2 Using Encoder Emulation.	74
8.4.1.3 Function Settings.	74
Mode 0: Disable X9.	74
Output Modes 1 and 2	74
Input Modes 3, 4, and 5.	75
8.4.1.4 Resolution	76
8.4.1.5 Related Parameters and Commands	76
8.5 Non-Plug and Play Feedback Devices.	76
8.6 Parameters	76
8.7 Calculations	76
8.7.1 Current Loop.	77
8.7.2 Velocity Loop.	77
8.7.3 Position Loop.	77
8.7.4 Slider Tuning	77
8.7.4.1 Input - Motor Data	77
8.7.4.2 Constants.	77
8.7.4.3 Output - Control Loop Gains.	
8.8 Foldback	
8.8.1 Drive Foldback	
8.8.2 Setting up motor foldback	
8.8.3 Setting Fault and Warning Levels.	
8.8.4 Motor Peak Current Time.	
8.8.5 Motor Foldback Ramp.	
8.8.6 Motor Recovery.	
8.9 Overall Foldback	
8.10 Brake.	
8.11 Using Position Capture.	
8.11.1 Overview	
8.11.2 Configuring Position Capture. 8.11.2.1 Setting the Capture Source (CAP0.TRIGGER).	
,	
8.11.2.2 Setting the Capture Mode (CAP0.MODE)	
8.11.2.4 Setting the Capture Edge (CAP0.EDGE).	
8.11.2.5 Setting the Pre-Condition Event: (CAP0.EVENT).	
8.11.2.6 Setting up a Pre-Condition for complex capture.	
- · · · · · · · · · · · · · · · · · · ·	
Setting the Precondition Edge: (Terminal Command: CAP0.PREEDGE)	
Setting the Pre-Condition Select: (Terminal Command: CAP0.PRESELECT)	82
8.11.3 Related Parameters	82

9 Selecting Units for Your Application	83
9.1 Selecting and Saving Units.	84
9.2 Units Example.	84
9.2.1 Related Parameters.	86
10 Configuring General Drive Settings.	87
10.1 Digital Inputs and Outputs.	88
10.1.1 Overview.	88
10.1.2 Using Digital I/O.	88
10.1.3 Digital Inputs.	88
10.1.4 Digital Outputs.	94
10.2 Command Buffer	96
10.2.1 Overview.	96
10.2.2 Editing the Command Buffers.	97
10.2.3 Behavior of the Command Buffer.	98
10.2.4 Delays for the Buffer	99
10.3 Digital Inputs (X7/X8).	99
10.3.1 Digital Inputs 1 and 2	102
10.3.2 Digital Inputs 3 to 7.	102
10.3.3 Digital Input 8 (ENABLE).	102
10.4 Analog Input	103
10.4.1 Analog Input	103
10.4.2 Related Parameters and Commands	103
10.5 Analog Output	103
10.6 I/O Connection	104
10.6.1 I/O Connectors (X7 and X8).	105
10.7 Electronic Gearing.	106
10.7.1 Overview.	106
10.7.2 Limits	106
10.7.3 Determining Maximum Cable Length	107
10.7.4 Related Parameters:	
10.7.5 Limits.	109
10.8 Programmable Limit Switch	
10.8.1 Overview.	
10.8.2 Using Programmable Limit Switches.	109
10.8.3 Single Shot Mode.	111
10.8.4 Related Parameters and Commands.	
10.9 Enable/Disable.	111
10.9.1 Enable Modes.	111
10.9.1.1 Hardware Enable Mode.	111
10.9.1.2 Software Enable Default.	
10.9.2 Disable Modes.	
10.9.3 Drive Status.	
10.9.4 Controlled Stop.	
10.9.5 More/Less Button	
10.10 Controlled Stop	115

10.10.0.1 Related Parameters and Commands.	
10.10.1 Related topics:	
10.11 Dynamic Braking	
10.11.1 Drive Regeneration.	
10.11.1.1 AKD-x00306 to AKD-x00606.	
10.11.1.2 AKD-x01206 to AKD-x02406 and AKD-xzzz07.	
10.12 Emergency Stop.	
10.13 Safe Torque Off (STO).	
10.14 Under Voltage Fault Behavior.	
11 Using Command Source and Operating Modes 11.1 Overview.	
11.2 Using Command Source and Operation Modes.	
11.2.1 Command Source.	
11.2.1.1 Service.	
11.2.1.2 Fieldbus.	
11.2.1.3 Electronic Gearing.	
11.2.1.4 Analog.	
11.2.1.5 Operation Mode.	
11.2.2 Related Parameters.	
11.3 Current Loop.	
11.3.1 Overview.	
11.3.2 Current Loop Gain.	
11.3.3 Current Loop Gain Scheduling	
11.3.3.1 Using the Gain Scheduling View in WorkBench.	
11.3.3.2 Using the Terminal View for Gains Scheduling.	. 123
11.4 Velocity Loop.	. 124
11.4.1 Overview	. 124
11.4.2 Tabs in the Velocity Loop View.	. 124
11.4.3 Velocity Loop Default Settings and Changes.	
11.4.3.1 Velocity Loop Changes Based on Slider Tuning.	. 125
11.4.3.2 Velocity Loop Changes Based on PST.	
11.5 Position Loop.	
11.5.1 Overview	
11.5.2 Tabs in the Position Loop View.	
11.5.3 Position Loop Default Behavior and Changes.	
11.5.3.1 Position Loop Changes Based on Slider Tuning.	
11.5.3.2 Position Loop Changes Based on PST.	
11.5.4 Modulo Position	
11.5.4.2 Setting up the modulo axis in Workberich	
11.5.4.3 Parameters affected by the modulo axis.	
11.5.4.4 Drive functions affected by modulo axis.	
Software limit switch	. 129
Programmable limit switch	. 129
Digital output Modes 5 and 6.	. 129

Motion tasking to absolute target positions.	129
11.5.4.5 Using the modulo position feature with multiturn encoders.	129
12 Creating Motion	
12.1 Homing	
12.1.1 Overview.	
12.1.2 Using Homing. 12.1.2.1 Home Default Window.	
Mode Selection:	
Settings:	135
Controls:	136
12.1.2.2 Selecting and Using Homing Modes.	136
Homing Mode 0: Home Using Current Position	136
Homing Mode 1: Find Limit Input	136
Homing Mode 2: Find Input Limit then Find Zero Angle.	137
Homing Mode 3: Find Input Limit then Find Index.	138
Homing Mode 4: Find Home Input.	139
Homing Mode 5: Find Home Input then Find Zero Angle.	139
Homing Mode 6: Find Home Input then Find Index.	140
Homing Mode 7: Find Zero Angle.	141
Homing mode 8: Move Until Position Error Exceeded	141
Homing Mode 9: Move Until Position Error Exceeded then Find Zero Angle	141
12.1.2.3 Homing Mode 10: Move Until Position Error Exceeded then Find Index	142
Homing Mode 11: Find Index Signal.	143
12.1.3 Using Homing: Advanced.	
12.1.3.1 Related Parameters and Commands.	
12.1.3.2 Related Topics.	
12.2 Motion Tasks	
12.2.2 Motion Task Input Table.	
12.2.3 Using Motion Tasks.	
12.2.3.1 Motion Profiles.	
12.2.3.2 Motion Types.	147
Absolute motion task.	148
Motion task relative to command position (PL.CMD).	148
Motion task relative to previous target position.	148
12.2.4 Using Motion Tasks: Advanced.	148
12.2.4.1 Joining multiple tasks.	
12.2.4.2 Start Conditions	149

40.0.4.0. Pland's a	4.40
12.2.4.3 Blending.	
12.3 Registration Moves (Motion Task Blending).	
12.3.1 Configuring Registration Moves in WorkBench	
12.4 Service Motion.	
12.5 Jog Move.	
12.6 Drive Motion Status.	
13 Saving Your Drive Configuration	
13.1 Save Options.	156
13.2 Save On Exit	156
13.3 Save On Disconnect.	157
13.4 Save On Firmware Download.	158
14 Tuning Your System.	
14.1 Slider Tuning	
14.1.0.1 Gentle, Medium, and Stiff.	
14.1.0.2 The Slider	
14.1.0.3 Inertia Ratio.	
14.2 Load Inertia	
14.3.1 Overview	
14.3.2 Using the PST	
14.3.2.1 Saving and Emailing Bode Plots.	
14.3.2.2 Importing a Frequency Response.	
14.3.3 Measurement Options.	
14.3.3.1 Using Manual Excitation Levels.	163
14.3.3.2 Taking a Bode Measurement without the PST	164
14.3.4 Using the Performance Servo Tuner: Advanced	164
14.3.4.1 Typical Cases for Advanced PST Use.	165
Tuning Systems with Low-Frequency Resonances.	165
Tuning Systems with High-Frequency Resonances.	166
Tuning systems with noisy frequency responses.	167
14.3.4.2 PST Options.	169
Enable BiQuad 1 Tuner.	170
Enable BiQuad 2 Tuner.	170
Biquad Type	170
Tune Acceleration FF	170
Enable Stability Motion.	170
Phase and Gain Margins.	170
Tune Velocity Integral	170
Enable Low Pass Search	170
14.3.4.3 Measurement Options.	170

Current Amplitude	171
Velocity Amplitude.	171
Smooth %	171
Measurement	174
Injection Point	174
Excitation Type	175
FFT Points	175
Excite Gap	175
Number Points.	175
Velocity Max	176
14.3.4.4 Plot Options.	177
Coherence	177
14.3.4.5 Cursors	177
14.3.4.6 Resizing Bode Plots.	
Reading and Understanding the Bode Plot	180
Using the Performance Servo Tuner to Manually Tune Systems	183
Using the Tuning Simulation	184
Using the Performance Servo Tuner Manual Tuning Interface	
Simulating Modified Loop Gains with the Performance Servo Tuner	185
Simulating Filters with the Performance Servo Tuner.	188
Using Filters to Reduce Noise.	189
14.4 Tuning Guide	189
14.4.1 Overview	
14.4.2 Determining Tuning Criteria	
14.4.3 Before You Tune	190
14.4.4 Closed Loop Tuning Methods.	190
14.4.4.1 Tuning the Velocity Loop.	191
14.4.4.2 Tuning the Position Loop.	
14.4.5 Torque Feedforward Tuning Methods.	
14.4.5.1 Shape Based Feedforward Tuning	
14.4.6.1 Rigued Coloulations	
14.4.6.1 Biquad Calculations. 14.4.6.2 Common Uses Of Anti Resonance Filters.	
14.4.6.2 Common uses of Anti Resonance Pillers.	
15.1 Overview.	
15.2 Using the Scope.	
15.2.1 Scope Channels Tab.	
15.2.1.1 Source Column	

15.2.1.2 Color Column	206
15.2.1.3 Hide Column	206
15.2.1.4 Y-Axis Column	206
15.2.1.5 Filter and Filter Frequency Column.	206
15.2.2 Scope Time-base and Trigger Tab.	206
15.2.2.1 Scope Time-base and Trigger, More View.	207
15.2.2.2 Trigger Type	208
15.2.2.3 Trigger Position.	208
15.2.2.4 Trigger Value.	209
15.2.2.5 Effects of Recorder Gap.	210
15.2.2.6 Trigger Slope.	211
15.3 Scope Settings	211
15.3.1 Load a setting (preset) to Scope screen	212
15.3.2 Create a new preset	212
15.3.3 Save or delete preset.	212
15.3.4 Import preset.	212
15.3.5 Export preset	213
15.3.6 Scope axis scaling and zooming.	214
15.3.7 Manual range per axis	215
15.3.8 Unit display on Y axis	215
16 Using Parameters and the Terminal Screen	217
16.1 Terminal	218
16.1.1 Overview	218
16.1.2 Using the Terminal	218
16.1.3 Macros.	219
16.1.3.1 Creating a Macro from Terminal commands	219
16.1.3.2 Macro Editor.	220
16.2 Viewing Parameters	221
16.3 Parameter List	221
16.4 Parameter Load/Save.	221
16.5 Parameter Comparer.	221
16.5.1 Reference Parameter Selection	222
16.5.2 Target Parameter Selection	222
16.5.3 Display the comparison.	223
16.5.4 Motion Task Comparison.	224
Summary of Parameters and Commands.	225
17 Faults and Warnings	239
17.1 Fault and Warning Messages	240
17.2 Clearing Faults	249
17.3 Parameter and Command Error Messages.	250
17.4 CANopen Emergency Messages and Error Codes	
17.5 Unknown Fault.	
17.5.0.1 Remedies	
18 Troubleshooting the AKD	257
19 Firmware and Firmware Updates.	

59
59
59
60
60
3
34
35
6
37
8
39
70
71
71
72
73
73
74
75
76
76
76
77
78
78
78
78
78
79
79
31
32
32
1
3
3
3
3
3
3
4
5
6

6
6
6
6
8
8
9
9
10
10
11
11
11
12
12
13
23
27
58
59
59
60
61
62
62
62
63
64
65
65
65
65
66
66
67
67
68
68
69
70
71
72
73
76
77

21.4 EtherCAT Profile	
21.4.1 Slave Register	
21.4.2 AL Event (Interrupt Event) and Interrupt Enable.	
21.4.2.1 Interrupt Enable Register (Address 0x0204:0x0205).	
21.4.2.2 AL Event Request (Address 0x0220:0x0221).	81
21.4.3 Phase Run-Up.	82
21.4.3.1 AL Control (Address 0x0120:0x0121).	82
21.4.3.2 AL Status (Address 0x0130:0x0131).	82
21.4.3.3 AL Status Code (Address 0x0134:0x0135).	83
21.4.3.4 EtherCAT communication phases.	83
21.4.4 CANopen over EtherCAT (CoE) Status Machine.	84
21.4.4.1 Status Description.	84
21.4.4.2 Commands in the Control Word	85
21.4.4.3 Status Machine Bits (status word).	86
21.4.5 Fixed PDO Mappings.	87
21.4.6 Supported Cyclical Setpoint and Actual Values.	88
21.4.7 Supported Operation Modes.	
21.4.8 Adjusting EtherCAT Cycle Time	89
21.4.9 Maximum Cycle Times depending on operation mode	
21.4.10 Synchronization.	
21.4.10.1 Synchronization behavior with distributed clocks (DC) enabled	
21.4.10.2 Synchronization behavior with distributed clocks (DC) disabled	
21.4.11 Latch Control Word and Latch Status Word	
21.4.12 Mailbox Handling.	
21.4.12.1 Mailbox Output	
21.4.12.2 Mailbox Input	
21.4.12.3 Example: Mailbox Access.	
21.4.13 Fieldbus Parameters	
21.5 Index	
22 CANopen Manual	104
22.1 General	
22.1.1 About this Manual	
22.1.2 Target Group.	
22.1.3 Abbreviations used	
22.2 Safety	
22.2.1 Safety Instructions.	
22.2.2 Use As Directed	
22.2.3 Prohibited Use.	
22.3 Installation and Setup.	
22.3.1 Safety Instructions.	
22.3.2 Guide to Setup.	
22.4 CANopen Basics.	
22.4.1 Basic Features implemented by CANopen.	
22.4.1.1 Setup and general functions:	
22.4.1.2 Positioning functions:	143

22.4.1.3 Data transfer functions:	143
22.4.2 Transmission Rate and Procedure.	
22.4.3 Response to BUSOFF Communication Faults	
22.5 CANopen Communication Profile.	
22.5.1 General Description of CAN.	
22.5.2 Construction of the Communication Object Identifier.	
22.5.3 Definition of the Used Data Types.	
22.5.3.1 Basic data types	
Unsigned Integer.	
Signed Integer.	
22.5.3.2 Mixed data types.	
22.5.3.3 Extended data types.	
Octet String.	
Visible String.	149
22.5.4 Communication Objects.	
22.5.4.1 Network Management Objects (NMT). 22.5.4.2 Synchronization Object (SYNC).	
22.5.4.3 Time-Stamp Object (TIME).	
22.5.4.4 Emergency Object (EMCY).	
Application of the Emergency Object.	151
Composition of the Emergency Object	151
22.5.4.5 Service Data Objects (SDO).	152
Composition of the Service Data Object	152
Initiate SDO Download Protocol.	154
Download SDO Segment Protocol.	154
Initiate SDO Upload Protocol.	154
Upload SDO Segment Protocol.	154
Abort SDO Protocol.	154
22.5.4.6 Process Data Object (PDO).	155
Transmission modes.	156
Trigger modes	156
22.5.4.7 Nodeguard.	157
22.5.4.8 Heartbeat	
22.6 CANopen Drive Profile.	
22.6.1 CANopen Emergency Messages and Error Codes	
22.6.2.1 General objects.	
Object 1000h: Device Type (DS301)	163

	Object 1001h: Error register (DS301).	164
	Object 1002h: Manufacturer Status Register (DS301).	165
	Object 1003h: Predefined Error Field (DS301).	166
	Object 1005h: COB-ID of the SYNC Message (DS301).	167
	Object 1006h: Communication Cycle Period (DS301).	167
	Object 1008h: Manufacturer Device Name (DS301).	168
	Object 1009h: Manufacturer Hardware Version.	168
	Object 100Ah: Manufacturer Software Version (DS301).	168
	Object 100Ch: Guard Time (DS301)Response monitoring.	169
	Object 100Dh: Lifetime Factor (DS301).	169
	Object 1010h: Store Parameters (DS301).	170
	Object 1014h: COB-ID for Emergency Message (DS301).	171
	Object 1016h: Consumer Heartbeat Time.	171
	Object 1017h: Producer Heartbeat Time.	172
	Object 1018h: Identity Object (DS301).	172
	Object 1026h: OS Prompt	174
2	2.6.2.2 Manufacturer specific objects.	175
	Object 2014-2017h: 1st-4th Mask 1 to 4 for Transmit-PDO.	175
	Object 2018h: Firmware Version.	176
	Object 2026h: ASCII Channel.	177
	Object 20A0h: Latch position 1, positive edge.	178
	Object 20A1h: Latch position 1, negative edge.	178
	Object 20A2h: Latch position 2, positive edge.	178
	Object 20A3h: Latch position 2, negative edge.	179
	Object 20A4h: Latch Control Register.	179
	Object 20A5h: Latch Status Register.	180
	Object 20A6h: Latch position 1, positive or negative edge.	180
	Object 20B8h: Reset of changed input information.	181
2	2.6.2.3 Profile specific objects.	182
	Object 60FDh: Digital inputs (DS402).	182
	Object 60FEh: Digital outputs (DS402).	182
	Object 6502h: Supported drive modes (DS402).	183
	5.3 PDO Configuration.	
2	2.6.3.1 Receive PDOs (RXPDO)	185

Objects 1400-1403h: 1st - 4th RXPDO communication par	rameter (DS301)
Objects 1600-1603h: 1st - 4th RXPDO mapping paramete	r (DS301)
Default RXPDO definition.	187
22.6.3.2 Transmit PDOs (TXPDO).	
Objects 1800-1803h: 1st - 4th TXPDO communication par	rameter (DS301)
Objects 1A00-1A03h: 1st - 4th TXPDO mapping paramete	er (DS301)
Default TXPDO definition	191
22.6.4 Device Control (dc). 22.6.4.1 Status Machine (DS402).	
States of the Status Machine	193
Transitions of the status machine.	
22.6.4.2 Object Description	
Object 6040h: Control word (DS402).	
Object 6041h: Status word (DS402).	
Object 6060h: Modes of Operation (DS402)	198
Object 6061h: Modes of Operation Display (DS402)	
22.6.5 Factor Groups (fg) (DS402). 22.6.5.1 General Information.	
Factors.	199
Relationship between Physical and Internal Units	199
22.6.5.2 Objects for velocity scaling	
Object 204Ch: pv scaling factor.	
22.6.5.3 Objects for position calculation	201
Object 608Fh: Position encoder resolution (DS402)	201
Object 6092h: Feed constant (DS402).	202
22.6.6 Profile Velocity Mode (pv) (DS402). 22.6.6.1 General Information.	
Objects that are defined in this section	203
Objects that are defined in other sections	203
22.6.6.2 Object description.	203
Object 606Ch: velocity actual value (DS402)	203
Object 60FFh: target velocity (DS402).	
22.6.7 Profile Torque Mode (tq) (DS402)	
Objects that are defined in this section	

Objects that are defined in other sections.	205
22.6.7.2 Object description.	205
Object 6071h: Target torque (DS402).	205
Object 6073h: Max current (DS402).	205
Object 6077h: Torque actual value (DS402).	206
22.6.8 Position Control Function (pc) (DS402). 22.6.8.1 General Information.	
Objects that are defined in this section.	207
Objects that are defined in other sections.	207
22.6.8.2 Object Description.	207
Object 6063h: position actual value* (DS402).	207
Object 6064h: position actual value (DS402).	208
Object 6065h: Following error window.	208
Object 60F4h: Following error actual value (DS402).	208
22.6.9 Interpolated Position Mode (ip) (DS402). 22.6.9.1 General information.	
Objects defined in this section.	209
Objects defined in other sections.	209
22.6.9.2 Object description	209
Object 60C0h: Interpolation sub mode select	209
Object 60C1h: Interpolation data record.	210
Object 60C2h: Interpolation time period.	211
Object 60C4h: Interpolation data configuration.	212
22.6.10 Homing Mode (hm) (DS402). 22.6.10.1 General information.	
Objects that are defined in this section.	214
Objects that are defined in other sections.	214
22.6.10.2 Object Description	214
Object 607Ch: homing offset (DS402)	214
Object 6098h: homing method (DS402).	214
Object 6099h: homing speeds (DS402).	216
Object 609Ah: homing acceleration (DS402).	216
Homing Mode Sequence.	217
22.6.11 Profile Position Mode (pp)	218
22.6.11.1 General Information	218

Objects that are defined in this section.	218
Objects that are defined in other sections.	218
22.6.11.2 Object Description	219
Object 607Ah: target position (DS402).	219
Object 607Dh: Software position limit (DS402).	219
Object 6081h: profile velocity (DS402).	220
Object 6083h: profile acceleration (DS402).	220
Object 6084h: profile deceleration (DS402).	220
Functional Description.	221
22.7 Appendix	223
22.7.1 Object Dictionary.	223
22.7.1.1 Float Scaling.	223
22.7.1.2 Communication SDOs.	
22.7.1.3 Manufacturer specific SDOs.	
22.7.1.4 Profile specific SDOs. 22.7.2 Examples.	
22.7.2.1 Examples, setup.	
Basic testing of the connection to the AKD controls.	
Example: Operating the Status Machine	
Example: Jog Mode via SDO	
Example: Torque Mode via SDO	238
Example: Jog Mode via PDO	239
Example: Torque Mode via PDO.	241
Example: Homing via SDO.	242
Example: Using the Profile Position Mode.	244
Example: ASCII Communication	247
Test for SYNC telegrams.	248
22.7.2.2 Examples, special applications.	249
Example: External Trajectory with Interpolated Position Mode	249
22.8 Index	255
Appendix B.	261
	262
About the Parameter and Command Reference Guide.	
Parameter and Command Naming Conventions. Summary of Parameters and Commands.	
AIN Parameters.	
AIN.CUTOFF.	
AIN.DEADBAND.	

AIN.DEADBANDMODE	283
AIN.ISCALE	285
AIN.OFFSET	286
AIN.PSCALE	
AIN.VALUE	288
AIN.VSCALE	
AIN.ZERO	290
AIO Parameters	291
AIO.ISCALE	291
AIO.PSCALE	292
AIO.VSCALE	293
AOUT Parameters.	295
AOUT.DEBUGADDR	295
AOUT.DEBUGSCALE	296
AOUT.ISCALE	297
AOUT.MODE	298
AOUT.OFFSET	299
AOUT.PSCALE	300
AOUT.VALUE	302
AOUT.VALUEU	303
AOUT.VSCALE	304
BODE Parameters	305
BODE.EXCITEGAP	305
BODE.FREQ	306
BODE.IAMP	307
BODE.IFLIMIT	308
BODE.IFTHRESH	309
BODE.INJECTPOINT	310
BODE.MODE	311
BODE.MODETIMER	314
BODE.PRBDEPTH	316
BODE.VAMP	
BODE.VFLIMIT	318
BODE.VFTHRESH	319
CAP Parameters	
CAP0.EDGE, CAP1.EDGE	320
CAP0.EN, CAP1.EN	321
CAP0.EVENT, CAP1.EVENT	322
CAP0.FILTER, CAP1.FILTER	325
CAP0.MODE, CAP1.MODE	326
CAP0.PLFB, CAP1.PLFB.	327
CAP0.PREEDGE, CAP1.PREEDGE	328
CAP0.PREFILTER, CAP1.PREFILTER	329
CAP0.PRESELECT, CAP1.PRESELECT	330
CAP0.STATE, CAP1.STATE.	331

CAP0.T, CAP1.T	332
CAP0.TRIGGER, CAP1.TRIGGER	333
CS Parameters.	334
CS.DEC	334
CS.STATE	336
CS.TO	337
CS.VTHRESH	337
DIN Parameters.	339
DIN.HCMD1 TO DIN.HCMD4.	340
DIN.LCMD1 to DIN.LCMD4.	341
DIN.ROTARY	341
DIN.STATES	343
DIN1.FILTER TO DIN7.FILTER.	344
DIN1.INV TO DIN7.INV.	345
DIN1.MODE TO DIN7.MODE.	346
DIN1.PARAM TO DIN7.PARAM	348
DIN1.STATE TO DIN7.STATE.	349
DOUT Parameters	351
DOUT.CTRL	351
DOUT.RELAYMODE	352
DOUT.STATES.	353
DOUT1.MODE AND DOUT2.MODE.	354
DOUT1.PARAM AND DOUT2.PARAM	355
DOUT1.STATE AND DOUT2.STATE	356
DOUT1.STATEU AND DOUT2.STATEU	357
DRV Parameters and Commands	359
DRV.ACC.	359
DRV.ACTIVE.	361
DRV.BLINKDISPLAY	362
DRV.CLRFAULTHIST	363
DRV.CLRFAULTS	364
DRV.CMDDELAY	365
DRV.CMDSOURCE	366
DRV.CRASHDUMP	367
DRV.DBILIMIT	368
DRV.DEC.	369
DRV.DIR	370
DRV.DIS	372
DRV.DISMODE	373
DRV.DISSOURCES	374
DRV.DISTO.	375
DRV.EMUEDIR	376
DRV.EMUEMODE	377
DRV.EMUEMTURN	378
DRV.EMUERES	379

	DRV.EMUEZOFFSET	380
	DRV.EN.	381
	DRV.ENDEFAULT	382
	DRV.FAULTHIST	383
	DRV.FAULTS.	. 384
	DRV.HANDWHEEL	385
	DRV.HELP	386
	DRV.HELPALL.	387
	DRV.HWENMODE	388
	DRV.ICONT	389
	DRV.INFO.	390
	DRV.IPEAK	. 391
	DRV.IZERO.	. 392
	DRV.LIST.	393
	DRV.LOGICVOLTS.	394
	DRV.MEMADDR	395
	DRV.MEMDATA	396
	DRV.MOTIONSTAT	397
	DRV.NAME	398
	DRV.NVLIST	399
	DRV.NVLOAD	400
	DRV.NVSAVE	401
	DRV.ONTIME.	402
	DRV.OPMODE.	403
	DRV.READFORMAT	404
	DRV.RSTVAR	405
	DRV.RUNTIME	406
	DRV.SETUPREQBITS	407
	DRV.SETUPREQLIST.	408
	DRV.STOP.	. 409
	DRV.TEMPERATURES	. 410
	DRV.TYPE	411
	DRV.VER.	412
	DRV.VERIMAGE.	. 413
	DRV.WARNINGS.	414
	DRV.ZERO.	415
F	B1 Parameters	416
	FB1.BISSBITS.	. 416
	FB1.ENCRES.	417
	FB1.HALLSTATE.	. 418
	FB1.HALLSTATEU.	. 419
	FB1.HALLSTATEV.	420
	FB1.HALLSTATEW.	421
	FB1.IDENTIFIED.	. 422
	FB1.INITSIGNED.	423

FB1.MECHPOS.	424
FB1.MEMVER	425
FB1.OFFSET.	426
FB1.ORIGIN	427
FB1.PFIND.	429
FB1.PFINDCMDU	430
FB1.POLES	431
FB1.PSCALE.	432
FB1.RESKTR	433
FB1.RESREFPHASE	434
FB1.SELECT.	435
FB1.TRACKINGCAL	437
FB2 Parameters	438
FB2.ENCRES.	
FB2.MODE.	439
FB2.SOURCE	
FBUS Parameters	441
FBUS.PARAM1 TO FBUS.PARAM20.	
FBUS.PLLSTATE.	443
FBUS.PLLTHRESH.	
FBUS.SAMPLEPERIOD.	
FBUS.SYNCACT	
FBUS.SYNCDIST	447
FBUS.SYNCWND.	448
FBUS.TYPE	
GEAR Parameters	
GEAR.ACCMAX	450
GEAR.DECMAX	
GEAR.IN.	
GEAR.MODE.	453
GEAR.MOVE	455
GEAR.OUT	
GEAR.VMAX	457
GUI Parameters	
GUI.DISPLAY	458
GUI.PARAM01	
GUI.PARAM02	459
GUI.PARAM03.	459
GUI.PARAM04.	460
GUI.PARAM05.	
GUI.PARAM06.	
GUI.PARAM07.	
GUI.PARAM08.	
GUI.PARAM09.	
GUI.PARAM10.	

HOME Parameters	463
HOME.ACC.	463
HOME.AUTOMOVE	465
HOME.DEC.	466
HOME.DIR.	467
HOME.DIST.	
HOME.FEEDRATE.	469
HOME.IPEAK	470
HOME.MODE	471
HOME.MOVE	
HOME.P	473
HOME.PERRTHRESH.	474
HOME.REQUIRE	475
HOME.SET.	476
HOME.V	477
HWLS Parameters	478
HWLS.NEGSTATE.	478
HWLS.POSSTATE.	479
IL Parameters	481
IL.BUSFF.	481
IL.CMD.	482
IL.CMDU	483
IL.DIFOLD.	484
IL.FB.	485
IL.FF	486
IL.FOLDFTHRESH.	487
IL.FOLDFTHRESHU.	488
IL.FOLDWTHRESH	489
IL.FRICTION.	490
IL.IFOLD.	491
IL.IUFB.	492
IL.IVFB.	493
IL.KACCFF.	494
IL.KBUSFF.	495
IL.KP.	496
IL.KPDRATIO.	497
IL.KPLOOKUPINDEX	498
IL.KPLOOKUPVALUE	499
IL.KPLOOKUPVALUES	500
IL.KVFF	501
IL.LIMITN	502
IL.LIMITP	503
IL.MFOLDD	504
IL.MFOLDR	505
IL.MFOLDT.	506

IL.MIFOLD.	507
IL.OFFSET.	508
IL.VCMD	509
IL.VUFB.	510
IL.VVFB.	511
23 LOAD.INERTIA	512
24 MODBUS Parameters	513
MODBUS.PIN AND MODBUS.POUT	514
MODBUS.PSCALE	515
MODBUS.UNITLABEL	516
MOTOR Parameters	517
MOTOR.AUTOSET	517
MOTOR.BRAKE	518
MOTOR.BRAKERLS	519
MOTOR.BRAKESTATE	520
MOTOR.CTF0.	521
MOTOR.ICONT	522
MOTOR.IDDATAVALID.	523
MOTOR.INERTIA	524
MOTOR.IPEAK	525
MOTOR.KE	526
MOTOR.KT	527
MOTOR.LQLL	528
MOTOR.NAME	529
MOTOR.PHASE.	530
MOTOR.PITCH.	531
MOTOR.POLES.	532
MOTOR.R	533
MOTOR.RTYPE	534
MOTOR.TBRAKEAPP	535
MOTOR.TBRAKERLS	536
MOTOR.TEMP	537
MOTOR.TEMPFAULT	538
MOTOR.TEMPWARN	539
MOTOR.TYPE	540
MOTOR.VMAX	541
MOTOR.VOLTMAX	542
MOTOR.VOLTMIN.	543
MOTOR.VOLTRATED	544
MOTOR.VRATED.	545
MT Parameters and Commands	547
MT.ACC	547
MT.CLEAR	549
MT.CNTL	550
MT.CONTINUE	553

MT.DEC.	554
MT.EMERGMT	556
MT.HOMEREQUIRE	557
MT.LIST	558
MT.LOAD.	
MT.MOVE	
MT.MTNEXT	
MT.NUM.	
MT.P.	
MT.PARAMS.	
MT.SET.	
MT.TNEXT.	
MT.TNUM.	
MT.TNVSAVE	
MT.TPOSWND.	
MT.TVELWND.	
MT.V.	
MT.VCMD.	
PL Parameters	
PL.CMD.	
PLERR	
PL.ERRFTHRESH.	
PL.ERRMODE.	
PL.ERRWTHRESH.	
PL.FB.	
PL.FBSOURCE.	
PLINTINMAX	
PLINTOUTMAX	
PL.KI.	
PL.KP.	
PL.MODP1.	
PL.MODP2	
PL.MODPDIR	
PL.MODPEN.	
PLS Parameters and Commands	
PLS.EN.	
PLS.MODE.	
PLS.P1 TO PLS.P8.	
PLS.RESET.	
PLS.STATE	
PLS.T1 TO PLS.T8.	
PLS.UNITS.	
PLS.WIDTH1 TO PLS.WIDTH8	
REC Parameters and Commands	
REC.ACTIVE	599

	REC.CH1 to REC.CH6.	600
	REC.DONE.	601
	REC.GAP	602
	REC.NUMPOINTS	603
	REC.OFF.	604
	REC.RECPRMLIST.	605
	REC.RETRIEVE	606
	REC.RETRIEVEDATA	607
	REC.RETRIEVEFRMT	608
	REC.RETRIEVEHDR.	609
	REC.RETRIEVESIZE.	610
	REC.STOPTYPE.	611
	REC.TRIG.	612
	REC.TRIGPARAM.	613
	REC.TRIGPOS.	614
	REC.TRIGPRMLIST	615
	REC.TRIGSLOPE	616
	REC.TRIGTYPE	617
	REC.TRIGVAL	618
R	EGEN Parameters	619
	REGEN.POWER.	619
	REGEN.REXT.	620
	REGEN.TEXT.	621
	REGEN.TYPE.	622
	REGEN.WATTEXT	623
S	M Parameters	
	SM.I1.	
	SM.I2	
	SM.MODE.	
	SM.MOVE.	
	SM.T1	
	SM.T2	632
	SM.V1	633
	SM.V2	634
S	TO Parameters	635
	STO.STATE.	
S	WLS Parameters	
	SWLS.EN.	
	SWLS.LIMITO.	
	SWLS.LIMIT1	
	SWLS.STATE.	
U	NIT Parameters	
	UNIT.ACCLINEAR.	
	UNIT.ACCROTARY.	
	UNIT.LABEL	

UNIT.PIN.	644
UNIT.PLINEAR	645
UNIT.POUT	646
UNIT.PROTARY	647
UNIT.VLINEAR	648
UNIT.VROTARY	649
VBUS Parameters	650
VBUS.OVFTHRESH.	650
VBUS.OVWTHRESH	651
VBUS.RMSLIMIT	652
VBUS.UVFTHRESH.	653
VBUS.UVMODE	654
VBUS.UVWTHRESH	655
VBUS.VALUE	
VL Parameters.	
VL.ARPF1 TO VL.ARPF4.	
VL.ARPQ1 TO VL.ARPQ4	
VL.ARTYPE1 TO VL.ARTYPE4.	
VL.ARZF1 TO VL.ARZF4	
VL.ARZQ1 TO VL.ARZQ4.	
VL.BUSFF	
VL.CMD	
VL.CMDU.	
VL.ERR	
VL.FB.	
VL.FBFILTER.	
VL.FBSOURCE.	
VL.FBUNFILTERED.	
VL.FF.	
VL.GENMODE.	
VL.KBUSFF.	
VL.KI.	
VL.KO.	
VL.KP.	
VL.KVFF.	
VL.LIMITN	
VL.LIMITP.	
VL.LMJR.	
VL.MODEL	
VL.OBSBW	
VL.OBSMODE	
VL.THRESH.	
WS Parameters.	
WS.ARM.	
WS.DISARM	686
WOLDIONINI	DOD

WS.DISTMAX	687
WS.DISTMIN	
WS.IMAX	689
WS.MODE	690
WS.NUMLOOPS.	
WS.STATE	692
WS.T	693
WS.TDELAY1	694
WS.TDELAY2	695
WS.TDELAY3	696
WS.VTHRESH	697
25 Index	

This page intentionally left blank.

22.1 General

22.1.1 About this Manual

This manual, AKD CANopen Communication, This manual describes the installation, setup, range of functions, and software protocol for the CANopen AKD product series. All AKD CANopen drives have built-in CANopen functionality; therefore an additional option card is not required.

A digital version of this manual (pdf format) is available on the CD-ROM included with your drive. Manual updates can be downloaded from the Kollmorgen website.

Related documents for the AKD series include:

- AKD Quick Start (also provided in hard copy). This guide provides instructions for basic drive setup and connection to a network.
- AKD Installation Manual (also provided in hard copy). This manual provides instructions for installation and drive setup.
- AKD Parameter and Command Reference Guide. This guide provides documentation for the parameters and commands used to program the AKD.
- AKD EtherCAT Communication. This manual includes setup information for the EtherCAT interface and describes the EtherCAT profile.

Additional documentation:

- CAN Application (CAL) for Industrial Applications (publisher CiA e.V.)
- Draft Standards 301 (from Version 4.0), 402 (publisher CiA e.V.)
- CAN Specification Version 2.0 (publisher CiA e.V.)
- ISO 11898 ... Controller Area Network (CAN) for high-speed communication

22.1.2 Target Group

This manual addresses personnel with the following qualifications:

- Installation: only by electrically qualified personnel.
- Setup: only by qualified personnel with extensive knowledge of electrical engineering and drive technology
- Programming: Software developers, project-planners

The qualified personnel must know and observe the following standards:

- ISO 12100, IEC 60364 and IEC 60664
- National accident prevention regulations

A WARNING During operation there are deadly hazards, with the possibility of death, severe injury or material damage. The operator must ensure that the safety instructions in this manual are followed. The operator must ensure that all personnel responsible for working with the servo drive have read and understand the manual.

22.1.3 Abbreviations used

Abbreviation	Meaning			
BTB/RTO	Ready to operate (standby)			
COB	Communication Object			
COB-ID	Communication Object Identifier			
EEPROM	Electrically erasable/programmable memory			
EMC	Electromagnetic compatibility			
EMCY	Emergency Objects			
ISO	International Standardization Organization			
km	1000 m			
LED	Light-emitting diode			
LSB	Low significant Byte (or Bit)			
MSB	Main significant Byte (or Bit)			
MB	Megabyte			
NMT	Network Management Objects			
NSTOP	Limit switch for negative (left) rotation			
PC	Personal Computer			
PDO	Process Data Object			
PSTOP	Limit switch for positive (right) rotation			
RAM	Volatile memory			
ROD	Incremental position encoder			
RXPDO	Receive PDO			
SDO	Service Data Object			
SYNC	Synchronization Objects			
TXPDO	Transmit PDO			

22.2 Safety

22.2.1 Safety Instructions

A DANGER

During operation there are deadly hazards, with the possibility of death, severe injury or material damage. Do not open or touch the equipment during operation. Keep all covers and cabinet doors closed during operation. Touching the equipment is allowed during installation and commissioning for properly qualified persons only.

- During operation, drives may have uncovered live components, depending on their level of enclosure protection.
- Control and power connections may be live, even though the motor is not rotating.
- Drives may have hot surfaces during operation. Heat sink can reach temperatures above 80°C.

WARNING

Electronic equipment is basically not failure-proof. The user is responsible for ensuring that, in the event of a failure of the drive, the drive is set to a state that is safe for both machinery and personnel, for instance with the aid of a mechanical brake.

Drives with drives and CANopen expansion cards are remote-controlled machines. They can start to move at any time without previous warning. Take appropriate measures to ensure that the operating and service personnel is aware of this danger.

Implement appropriate protective measures to ensure that any unintended start-up of the machines cannot result in dangerous situations for personnel or machinery. Software limit-switches are not a substitute for the hardware limit-switches in the machine.

NOTICE

Install the drive as described in the *Installation Manual*. The wiring for the analog setpoint input and the positioning interface, as shown in the wiring diagram in the *Installation Manual*, is not required. Never break any of the electrical connections to the drive while it is live. This action can result in destruction of the electronics

22.2.2 Use As Directed

Drives are components that are built into electrical plants or machines and can only be operated as integral components of these plants or machines. The manufacturer of the machine used with a drive must generate a hazard analysis for the machine and take appropriate measures to ensure that unforeseen movements cannot cause personnel injury or property damage.

Please observe the chapters "Use as directed" and "Prohibited use" in the AKD Installation Manual.

The CANopen interface serves only for the connection of the AKD to a master via the CAN bus.

22.2.3 Prohibited Use

Other use than that described in chapter "Use as directed" is not intended and can lead to personnel injuries and equipment damage. The drive may not be used with a machine that does not comply with appropriate national directives or standards. The use of the drive in the following environments is also prohibited:

- potentially explosive areas
- environments with corrosive and/or electrically conductive acids, alkaline solutions, oils, vapors, dusts
- ships or offshore applications

22.3 Installation and Setup

22.3.1 Safety Instructions

A DANGER

Never undo any electrical connections to the drive while it is live. There is a danger of electrical arcing with damage to contacts and serious personal injury. Wait at least seven minutes after disconnecting the drive from the main supply power before touching potentially live sections of the equipment (e.g. contacts) or undoing any connections.

Capacitors can still have dangerous voltages present up to 7 minutes after switching off the supply power. To be sure, measure the voltage in the DC Bus link and wait until it has fallen below 40 V.

Control and power connections can still be live, even if the motor is not rotating.

A WARNING Electronic equipment is basically not failure-proof. The user is responsible for ensuring that, in the event of a failure of the drive, the drive is set to a state that is safe for both machinery and personnel, for instance with the aid of a mechanical brake.

> Drives with drives and CANopen are remote-controlled machines. They can start to move at any time without previous warning. Take appropriate measures to ensure that the operating and service personnel is aware of this danger.

> Implement appropriate protective measures to ensure that any unintended start-up of the machines cannot result in dangerous situations for personnel or machinery. Software limitswitches are not a substitute for the hardware limit-switches in the machine.

NOTICE

Install the drive as described in the Installation Manual. The wiring for the analog setpoint input and the positioning interface, as shown in the wiring diagram in the Installation Manual, is not required. Never break any of the electrical connections to the drive while it is live. This action can result in destruction of the electronics.

NOTICE

The drive's status must be monitored by the PLC to acknowledge critical situations. Wire the FAULT contact in series into the emergency stop circuit of the installation. The emergency stop circuit must operate the supply contactor.

NOTE

It is permissible to use the setup software to alter the settings of the drive. Any other alterations will invalidate the warranty.

NOTE

Because of the internal representation of the position-control parameters, the position controller can only be operated if the final limit speed of the drive does not exceed:

rotary

at sinusoidal² commutation: 7500 rpm at trapezoidal commutation: 12000 rpm.

at sinusoidal² commutation: 4 m/s at trapezoidal commutation: 6.25 m/s

NOTE

All the data on resolution, step size, positioning accuracy etc. refer to calculatory values. Non-linearities in the mechanism (backlash, flexing, etc.) are not taken into account. If the final limit speed of the motor must be altered, then all the parameters that were previously entered for position control and motion blocks must be adapted.

22.3.2 Guide to Setup

▲ WARNING	Only professional personnel with extensive knowledge of control and drive technology are allowed to setup the drive.
▲ CAUTION	Make sure that any unintended movement of the drive cannot endanger machinery or personnel.

- 1. Check assembly/installation. Check that all the safety instructions in the product manual for the drive and this manual have been observed and implemented. Check the setting for the station address and baud rate.
- 2. Connect PC, start WorkBench. Use the setup software WorkBench to set the parameters for the drive.
- 3. Setup basic functions. Start up the basic functions of the drive and optimize the current, speed and position controllers. This section of the setup is described in the in the online help of the setup software.
- 4. Save parameters. When the parameters have been optimized, save them in the drive.
- 5. Start up communication. The altered parameters will only become effective after a reboot (switch off 24V and switch on again). Adjust the transmission rate of the AKD to match the master.
- 6. Test communication. Check for the bootup-message, when you switch on the drive. Do an SDO read access on index 0x1000 subindex 0 (DeviceType).
- 7. Setup position controller. Setup the position controller, as described in the WorkBenchonline help.

22.4 CANopen Basics

22.4.1 Basic Features implemented by CANopen

It is assumed that the basic operating functions of the communication profile are known and available as reference documentation. When working with the position controller that is integrated in AKD, the following functions are available:

22.4.1.1 Setup and general functions:

- Homing, set reference point
- Provision of a digital setpoint for speed and torque control
- Support of the following modes of the CANopen Profile DS402:
 - Profile position mode
 - Homing mode
 - Profile torque mode
 - Interpolated position mode
 - Profile velocity mode

22.4.1.2 Positioning functions:

- Execution of a motion task from the motion block memory of the drive
- Execution of a direct motion task
- Absolute trajectory, ip-Mode

22.4.1.3 Data transfer functions:

- Transmit a motion task to the drive's motion block memory. A motion task consists of these elements:
 - Position setpoint (absolute task) or path setpoint (relative task)
 - Speed setpoint
 - · Acceleration time, braking time
 - Type of motion task (absolute/relative)
 - Number of a following task (with or without pause)
- Read a motion task from the motion block memory of the drive
- · Read actual values
- Read the error register
- · Read the status register
- Read/write control parameters

22.4.2 Transmission Rate and Procedure

- Bus connection and bus medium: CAN-standard ISO 11898 (CAN high-speed)
- Transmission rate: max. 1Mbit/s
- Possible settings for the drive: 125 (default), 250, 500 and 1000 kbit/s
- The baudrate is set with the AKD parameter FBUS.PARAM01. It gets effective by saving this parameter to NVRAM and re-starting the drive.

22.4.3 Response to BUSOFF Communication Faults

The communication fault BUSOFF is directly monitored and signaled by Level 2 (CAN controller). This message may have various causes. A few examples:

- Telegrams are transmitted, although there is no other CAN node connected
- CAN nodes have different transmission rates
- The bus cable is faulty
- Faulty cable termination causes reflections on the cable.

A BUSOFF is only signaled by the AKD, if another CAN node is connected and at least one object was successfully transmitted to start off with. The BUSOFF condition is signaled by the error message 702. If the output stage is enabled at the moment when this fault occurs, the output stage is disabled.

22.4.4 Important Configuration Parameters

FBUS.PARAM01 see "Transmission Rate and Procedure"

FBUS.PARAM02 0 - no PLL used for synchronization

1 - PLL used for synchronized modes, IP (7), CSP (8), generates a warning n125, when PLL is unlocked

FBUS.PARAM04 0 - arrival of SYNC-messages in cyclic-synchronized application is not supervised

1 - arrival of SYNC-messages in cyclic-synchronized application is supervised (after 3 missing SYNC-telegrams the fault F125 is generated)

FBUS.PARAM05 description for bits 0 to 3 as in AKD - command reference

Bit 4 = 0: Scaling for position, velocity and acceleration objects is done via UNIT parameters

Bit 4 = 1: Scaling is done via special DS402 - objects (independent on units)

Bit 5 used in EtherCAT, reserved for CAN

Bit 6 = 0: Bit 0 of parameter MT.CNTL (object 35D9 sub 0) is exclusively used for DS402 controlword

Bit 6 = 1: Bit 0 of parameter MT.CNTL (object 35D9 sub 0) can be accessed

22.5 CANopen Communication Profile

22.5.1 General Description of CAN

This chapter describes the basic services and communication objects of the CANopen communication profile DS 301, which are used in the AKD.

NOTEIt is assumed that the basic operating functions of the communication profile are known, and available as reference documentation.

The transmission method that is used here is defined in ISO 11898 (Controller Area Network CAN for high-speed communication).

The Layer-1/2 protocol (Physical Layer/Data Link Layer) that is implemented in all CAN modules provides, amongst other things, the requirements for data.

Data transport or data request is made by means of a data telegram (Data Frame) with up to 8 bytes of user data, or by a data request telegram (Remote Frame).

Communication objects (COBs) are labeled by an 11-bit Identifier (ID) that also determines the priority of objects.

A Layer-7 protocol (Application Layer) was developed, to decouple the application from the communication. The service elements that are provided by the Application Layer make it possible to implement an application that is spread across the network. These service elements are described in the CAN Application Layer (CAL) for Industrial Applications.

The communication profile CANopen and the drive profile are mounted on the CAL.

The basic structure of a communication object is shown in the following diagram:

S	COB-ID	R	CTRL	Data Segment	CRC	Α	EOM
О		Τ				С	
M		R				K	

SOM Start of message

COB-ID Communication Object Identifier (11-bit)

RTR Remote Transmission Request

CTRL Control Field (e.g. Data Length Code)

Data Segment 0 to 8byte (Data-COB)

Obyte (Remote-COB)

CRC Cyclic Redundancy Check

ACK Acknowledge slot EOM End of message

22.5.2 Construction of the Communication Object Identifier

The following diagram shows the layout of the COB Identifier (COB-ID). The Function Code defines the interpretation and priority of the particular object.

10	9	8	7	6	5	4	3	2	1	0
Fur	octic	n-C	ode			Мо	dule	-ID		

Bit 0 .. 6

Module ID (drive's CAN-bus address, range 1 to 127; is set up in WorkBench or the drive,)

Bit 7 to 10

Function Code (number of the communication object that is defined in the server)

NOTE If an invalid station number (=0) is set, then the module will be set internally to 1.

The following tables show the default values for the COB Identifier after switching on the drive. The objects, which are provided with an index (Communication Parameters at Index), can have a new ID assigned after the initialization phase. The indices in brackets are optional.

Predefined broadcast objects (send to all nodes):

Object	Function code (binary)	Resulting	COB-IDs	Communication parameters
		Dec.	Hex.	at index
NMT	0000	0	0	_
SYNC	0001	128	80	(1005)
TIME	0010	256	100	not supported

Predefined Peer-to-Peer objects (node sends to node):

Object	Function code (binary)	Resulting COB-IDs		Communication parameters	Priority
		Dec.	Hex.	at index	
EMERGENCY	0001	129255	81FF	_	high
TPDO 1	0011	385511	1811FF	1800	
RPDO 1	0100	513639	20127F	1400	
TPDO 2	0101	641767	2812FF	1801	
RPDO 2	0110	769895	30137F	1401	
TPDO 3	0110	8971023	3813FF	1802	
RPDO 3	1000	10251151	40147F	1402	
TPDO 4	1001	11531279	4814FF	1803	
RPDO 4	1010	12811407	50157F	1403	
SDO (tx*)	1011	14091535	5815FF		
SDO (rx*)	1100	15371663	60167F		
Nodeguard	1110	17931919	70177F	(100E)	low

*tx = direction of transmission: AKD => Master rx = direction of transmission: Master => AKD

22.5.3 Definition of the Used Data Types

This chapter defines the datatypes that are used. Each datatype can be described by bit-sequences. These bit-sequences are grouped into "Octets" (bytes). The so-called "Little—Endian" format (a.k.a. Intel format) is used for numerical data types (see also: DS301 Application Layer "General Description of Data Types and Encoding Rules").

22.5.3.1 Basic data types

Unsigned Integer

Data in the basic data type UNSIGNEDn define exclusively positive integers.

The value range is from 0 to 2^n -1. The bit sequence $b = b_0$ to b_{n-1} defines the value UNSIGNEDn(b) = b_{n-1} 2^{n-1} + to + b_1 2^1 + b_0 2^0

Example: the value 266 = 10Ah is transmitted in the data type UNSIGNED16, in the form of two octets (1st octet = 0Ah, 2^{nd} octet = 01h).

Transmission syntax for the data type UNSIGNEDn

Octet number	1.	2.	3.	4.
UNSIGNED8	b ₇ to b ₀			
UNSIGNED16	b ₇ to b ₀	b ₁₅ to b ₈		
UNSIGNED24	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	
UNSIGNED32	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
UNSIGNED40	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
UNSIGNED48	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
UNSIGNED56	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
UNSIGNED64	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄

Octet number	5.	6.	7.	8.
UNSIGNED8				
UNSIGNED16				
UNSIGNED24				
UNSIGNED32				
UNSIGNED40	b ₃₉ to b ₃₂			
UNSIGNED48	b ₃₉ to b ₃₂	b ₄₇ to b ₄₀		
UNSIGNED56		b ₄₇ to b ₄₀	b ₅₅ to b ₄₈	
UNSIGNED64	b ₃₉ to b ₃₂	b ₄₇ to b ₄₀	b ₅₅ to b ₄₈	b ₆₃ to b ₅₆

Signed Integer

Data in the basic data type INTEGERn define both positive and negative integers.

The value range is from $-2^{n-1}-1$ to $2^{n-1}-1$. The bit sequence $b=b_0$ to b_{n-1} defines the value INTEGERn(b) = b_{n-2} 2^{n-2} + to + b_1 2^1 + b_0 2^0 with b_{n-1} = 0

Negative numbers are represented as 2's complement, which means:

INTEGERn(b) = -INTEGERn(b) - 1 with $b_{n-1} = 1$

Example: the value -266 = FEF6h is transmitted in the data type INTEGER16, in the form of two octets (1st octet = F6h, 2nd octet = FEh).

Transmission syntax for the data type INTEGERn

Octet number	1.	2.	3.	4.
INTEGER8	b ₇ to b ₀			
INTEGER16	b ₇ to b ₀	b ₁₅ to b ₈		
INTEGER24	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	
INTEGER32	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
INTEGER40	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
INTEGER48	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
INTEGER56	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄
INTEGER64	b ₇ to b ₀	b ₁₅ to b ₈	b ₂₃ to b ₁₆	b ₃₁ to b ₂₄

Octet number	5.	6.	7.	8.
INTEGER8				
INTEGER16				
INTEGER24				
INTEGER32				
INTEGER40	b ₃₉ to b ₃₂			
INTEGER48	b ₃₉ to b ₃₂	b ₄₇ to b ₄₀		
INTEGER56	b ₃₉ to b ₃₂	b ₄₇ to b ₄₀	b ₅₅ to b ₄₈	
INTEGER64	b ₃₉ to b ₃₂	b ₄₇ to b ₄₀	b ₅₅ to b ₄₈	b ₆₃ to b ₅₆

22.5.3.2 Mixed data types

Mixed data types combine basic data types (INTEGERn, UNSIGNEDn, REAL). Two types of mixed data are distinguished:

- STRUCT: This data type is composed of elements with different data types.
- ARRAY: This data type is composed of elements of the same data type.

22.5.3.3 Extended data types

Extended data types are derived from basic data types and mixed data types. The types of extended data that are supported are defined below.

Octet String

The data type OCTET_STRING is defined with the data type ARRAY. Length is the length of the octet string.

ARRAY[length] OF UNSIGNED8 OCTET_STRINGlength

Visible String

The data type VISIBLE_STRING can be defined with the data type UNSIGNED8 or the data type ARRAY. Permissible values are 00h and the range from 20h to 7Eh. The data are interpreted as 7 bit ASCII code (as per ISO 646-1973(E)). Length is the length of the visible string.

UNSIGNED8 VISIBLE_CHAR

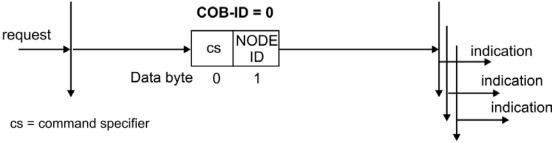
ARRAY[length] OF VISIBLE_CHAR VISIBLE_STRINGlength

22.5.4 Communication Objects

Communication objects are described with the help of service elements and protocols. Two basic types of service elements are used.

- Unconfirmed services PDO
- Confirmed services SDO


All services require faultless operation of the Data Link and Physical Layer.


AKD supports communication objects that are described in detail in the following sections:

- Network Management Objects (NMT)
- Synchronization Object (SYNC)
- Emergency Object (EMCY)
- Process Data Object (PDO)
- Service Data Object (SDO)
- Nodeguard/Heartbeat

22.5.4.1 Network Management Objects (NMT)

The followind diagram describes the NMT telegram:

The drive supports the following network management functions:

cs=129, resetnode:

Causes a cold-start of the drive. This deletes all parameters saved in the RAM and loads the values stored in the EEP-ROM.

cs = 130, reset communication node:

Causes a stop of PDO-communication, gives a new bootup-message

cs = 1. start remote node:

Starts the CAN node. I.e. the PDOs of the drive are enabled for operation. From this moment, transmit-PDOs will be transmitted under event-control, and cyclical process data operation can commence.

cs = 2, stop remote node:

Stops the CAN node, I.e. the drive no longer responds to any received PDOs or transmits any PDOs.

22.5.4.2 Synchronization Object (SYNC)

The SYNC object usually is used as a periodic Broadcast Object and provides the basic clock for the bus. SYNC has a high priority, to ensure constant time intervals. The usage of this protocol is explained in the appendix from page. You can use the SYNC object to start motion task of several axes simultaneously for example.

22.5.4.3 Time-Stamp Object (TIME)

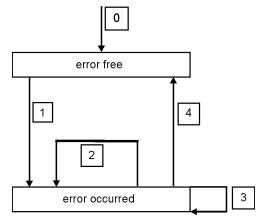
This communication object is not supported by the AKD.

22.5.4.4 Emergency Object (EMCY)

EMCY is event-triggered and generated by an internal fault/error situation. This object is transmitted afresh for every error. Since the error codes are device-dependent, they are described in the Chapter ""CANopen Emergency Messages and Error Codes" (=> p. 160)". The last 10 Emergency error codes can be read via object 1003.

Application of the Emergency Object

The reaction in the event of an error or fault depends on the error class and is therefore variable. For this reason, the reaction is described with the aid of an error status machine. The error conditions error-free and error occurred are distinguished. The following transitions are defined:


Transition 0: After initialization, the error-free status is taken up if no errors are detected. No error signal is generated in this condition.

Transition1: The AKD detects an internal error and indicates this in the first three bytes of the emergency telegram (error code in Bytes 0,1 and error register in Byte 2).

Transition2: One error has been reset, but not all. The EMCY telegram contains error code 0000 and the error register indicates the remaining errors that are present. The manufacture-specific area is set to zero.

Transition3: A new error has occurred. The AKD remains in the error status and transmits an EMCY. Object with the corresponding error code. The new error code is entered into bytes 0 and 1.

Transition4: All errors have been reset. The EMCY telegram contains the error code 0000, The error register does not indicate any other errors. The manufacture-specific area is set to zero.

Composition of the Emergency Object

The Emergency Object is composed of 8 bytes, divided as follows:

If an Emergency Object is generated, the error condition is then signaled to the status machine (error free/error occurred) by the generation of a second Emergency Object. Only the first four bytes are relevant in this case (Emergency Error code, Error register, Category). Byte 0/1 contains the Emergency Error Code (0000) and Byte 2 indicates if a possible further error is present. If the error register contains 00, the error status is error-free. Byte 3 contains the category. The interpretations of the error numbers (error code) and the error categories are described in the section Emergency Messages. The error register is defined through object 1001. Error register'.

22.5.4.5 Service Data Objects (SDO)

SDOs are used to implement access to the Object Dictionary. The SDOs are required for parametrerization and for status polling. Access to an individual object is made with a multiplexer via the Index and Subindex of the Object Dictionary. The following communication protocols are supported by AKD:

- Initiate SDO Download Protocol
- Download SDO Segment Protocol
- Initiate SDO Upload Protocol
- Upload SDO Segment Protocol
- Abort SDO Transfer Protocol

The definitions of the individual communication services and protocols can be found in DS301. Examples of the usage of SDOs can be found in the appendix from page.

NOTE

Since a SDO is a confirmed service, the system must always wait for the SDO response telegram before it is allowed to transmit a new telegram.

Composition of the Service Data Object

An SDO consists of the following components:

1. The control byte (Byte 1):

The control byte determines whether the SDO should write or read the content of the entry in the Object Dictionary. A description of the complete Object Dictionary for AKD=> p. 223. Data exchange with the AKD is governed by the *CMS multiplexed domain protocols* standard, as described in the CAN standard DS 202. To read data, the control byte must be written in the manner shown below:

Bit	7	6	5	4	3	2	1	0
Content	ccs=2			Χ	Χ	Χ	Χ	Χ

ccs => client command specifier (ccs = 2 => initiate upload request)

X => free data

So a value of 0100 0000 (binary) or 40h must be transmitted in the control byte.

The drive sends back a corresponding response byte:

Bit	7	6	5	4	3	2	1	0
Content	scs=2			Χ	r	า	е	S

scs =>server command specifier (scs = 2 => initiate upload response)

n = only valid for e = s = 1, if this is so, n contains the number of bytes that do not contain data X = free data

If reading is successfull, the response byte always has set the bits 0 and 1 (e = s = 1).

Encoded byte length in the SDO response:

0x43 - 4 bytes

0x47 - 3 bytes

0x4B - 2 bytes

0x4F - 1 byte.

If an error occurs, scs is set to 4, the response byte is 0x80 and the error information is in the four byte data field. The decoding of the error => p. 160

To write data, the control byte must be written in the manner shown below:

Client		Initiate Domain Download									Server					
	Byte 1					2	3	4	5	6	7	8				
request	7	6	5	4	3	2	1	0								indication
=>	ccs=1			Х	ı	า	е	S		m		d	d	d	d	=>
		=	=> =>	=> =>	=>=	>=> =	> =>=	> => =	=>=>	=> =>:	=> =>	=>=>	=> =>	>		

n,e and s are defined like in the reading case, m: index + Subindex, d: 4 bytes data field

The data length of an object can be taken from the object dictionary in the appendix.

The control byte should be:

0x23 for a 4-byte access

0x27 for a 3-byte access

0x2B for a 2-byte access

0x2F for a 1-byte access

Client		<= <= <= <= <= <= <= <= <= <= <= <= <= <									Server					
		Byte 1					2	3	4	5	6	7	8			
confirm	7	6	5	4	3	2	1	0								response
<=		scs=3 X					m	`		rese	rved		<=			

2. Index (Bytes 2 and 3):

The Index is the main entry in the Object Dictionary, and divides the parameters into groups.

(Example: Index 1018h is the Identity Object). As for all CAN data, the Index is stored with the bytes in reverse order.

For example: Index 6040h means Byte 2 = 40h, Byte 3 = 60h)

3. Subindex (Byte 4):

The Subindex divides the parameters within a group of parameters.

4. Data field (Bytes 5 to 8):

These components are used for the exchange of user data. In read-request telegrams to the AKD they are set to 0. They have no content in a write confirmation from the AKD if the transfer was successful, but if the write operation was faulty they contain an error => p. 160.

Initiate SDO Download Protocol

The Initiate SDO Download protocol is used for write access to objects with up to 4 bytes of user data (expedited transfer) or to initiate a segment transfer (normal transfer).

Download SDO Segment Protocol

The Download SDO Segment protocol is used for write access to objects with more than 4 bytes of user data (normal transfer).

Initiate SDO Upload Protocol

The SDO Upload protocol is used for read access to objects with up to 4 bytes of user data (expedited transfer) or to initiate a segment transfer (normal transfer).

Upload SDO Segment Protocol

The Upload SDO Segment protocol is used for read access to objects with more than 4 bytes of user data (normal transfer).

Abort SDO Protocol

The Abort SDO protocol breaks off SDO transmission, and indicates the error that caused the break in transmission through an abort code (error code). The error code is in the format of an UNSIGNED32 value. The following table shows possible reasons for an abort SDO.

Abort Code	Description
0504 0000h	SDO timeout
0504 0001h	Command specifier invalid
0504 0002h	SDO segmented: invalid blocksize
0504 0004h	SDO segmented: invalid block CRC
0504 0005h	SDO segmented: out of memory
0601 0001h	Attempted read access to a write-only object
0601 0002h	Attempted write access to a read-only object
0602 0000h	Object does not exist in Object Dictionary
0604 0041h	Object cannot be mapped to a PDO
0604 0042h	Size and number of mapped objects exceed permissible PDO length
0604 0043h	General parameter incompatibility
0606 0000h	SDO hardware fault
0607 0010h	Data type incompatible, length of service parameter is incompatible
0609 0011h	Subindex does not exist
0609 0030h	Outside value range for the parameter (only for write access)
0609 0031h	Parameter value too high
0609 0032h	Parameter value too low
0800 0020h	Data cannot be transmitted or saved
0800 0022h	Data cannot be transmitted or saved because of device status

Abort Codes not listed above are reserved.

22.5.4.6 Process Data Object (PDO)

PDOs are used for real-time data communication. PDOs can, for instance, be used to set up controllers similar to analog drives. Instead of +/-10VDC setpoints and ROD feedback, digital speed setpoints and position feedback are attained via PDOs in this case.

Transmission is carried out unconfirmed without a protocol "overhead". This communication object uses the unconfirmed communication service.

PDOs are defined via the Object Dictionary for the AKD. Mapping is made during the configuration phase, with the help of SDOs. Length is defined with the mapped objects.

The definition of the PDO service and protocol can be found in DS301. Examples of the usage of PDOs can be found in the appendix.

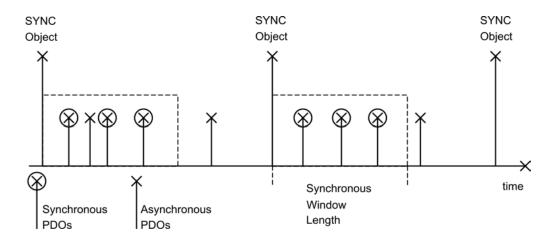
Basically, two types of PDOs can be distinguished, depending on the direction of transmission:

- Transmit-PDOs (TPDOs) (AKD => Master)
 The TPDOs transmit data from AKD to control system (for example actual value objects, instrument status).
- Receive-PDOs (RPDOs) (Master =>AKD)
 The RPDOs receive data from control system to AKD (for example setpoints).

AKD supports four independent PDO channels for each direction of transmission. The channels are labeled by the channel numbers 1 to 4.

There are two parameter sets each for the configuration of each of the four possible PDOs, and they can be set up through the corresponding SDOs:

- 1. Mapping parameters, to determine which data are available (mapped) in the selected PDO and to define, which data are contained.
- 2. Communication parameters, that define whether the PDOs operate in synchronized mode, or event-driven (objects 1400h to 1403h, 1800h to 1803h).


Transmission modes

The following PDO transmission modes are distinguished:

- Synchronous transmission
- Asynchronous transmission

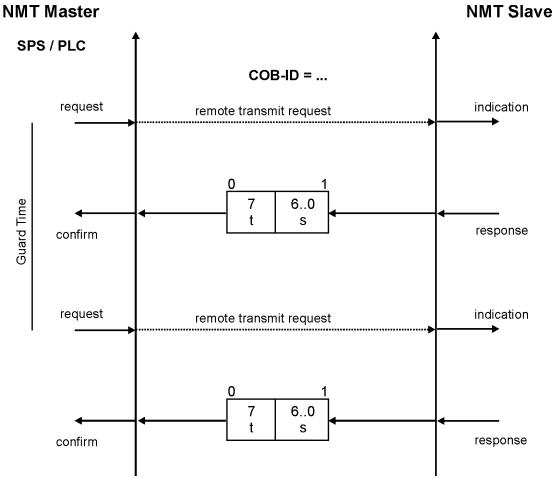
The pre-defined SYNC Object is transmitted periodically (bus clock), to synchronize the drives. Synchronous PDOs are transmitted within a pre-defined time window immediately following the SYNC Object.

The transmission modes are set up with the aid of the PDO communication parameters.

Trigger modes

Three different trigger modes are distinguished:

- Event driven: The transmission of the telegrams is triggered by an object-specific event.
- **Time driven**: If event driven signals put a high strain on the bus, you can determine the period of time after which a PDO can be transmitted again via the inhibit time (Communication parameter, Subindex 03h)
- Event Timer driven: If a PDO shall be sent within a defined time interval, even if it doesn't change, this interval can be defined by a special SDO.


22.5.4.7 **Nodeguard**

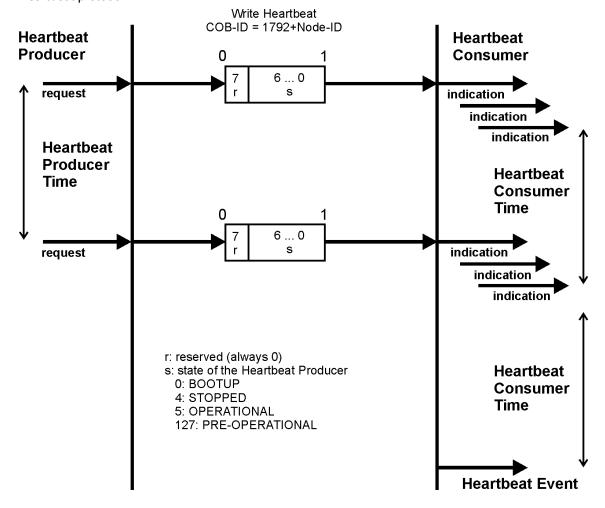
The Node Guarding protocol is a functional monitoring for the drive. It requires that the drive is accessed at regular intervals by the CANopen master.

The maximum time interval that is permitted between two Nodeguard telegrams is given by the product of the Guard Time (Object 100Ch) and the Life Time Factor (Object 100Dh). If one of these two values is 0, then the response monitoring is de-activated.

If the drive is not accessed within the time defined by objects 100Ch and 100Dh, then fault F129 (response monitoring) appears on the drive, the drive is braked to a stop, and any other movement is prevented.

The time sequence for node guarding is as shown below:

t = toggle Bit, changes its status with every slave telegram


s = status of the NMT slave status machine

Node guarding is carried out by the Master through RTR telegrams with the COB-ID 700h + slave node address.

22.5.4.8 Heartbeat

The Heartbeat Protocol defines an Error Control Service without need for remote frames. A Heartbeat Producer transmits a Heartbeat message cyclically. One or more Heartbeat Consumer receive the indication. The relationship between producer and consumer is configurable via Object 1016h/1017h. The Heartbeat Consumer guards the reception of the Heartbeat within the Heartbeat Consumer Time. If the Heartbeat is not received within the Heartbeat Consumer Time a Heartbeat Event will be generated.

Heartbeat protocol:

22.6 CANopen Drive Profile

22.6.1 CANopen Emergency Messages and Error Codes

Emergency messages are triggered by internal equipment errors. They have a high ID-priority to ensure quick access to the bus. An emergency message contains an error field with pre-defined error/fault numbers (2 bytes), an error register (1byte), the error category (1 byte), and additional information.

Error numbers from 0000h to 7FFFh are defined in the communication or drive profile. Error numbers from FF00h to FFFFh have manufacturer-specific definitions. The following table describes the various error codes:

Error Code	Fault/Warning	Description
	Code	·
0x0000	0	Emergency error free
0x3110	523	Bus over voltage
0x3120	-	Bus under voltage
0x3130	503	Phase failure
0x3180	503	Warning: Supply missing phase
0x3210	501	DC link over-voltage
0x3220	502	DC link under-voltage
0x4210	234	Excess temperature, device (control board)
0x4310	235	Excess temperature, drive (heat sink)
0x5113	512	Supply low voltage, U3 = supply +5 V
0x5114	505	Supply low voltage, manufacturer specific: supply 1V2
0x5115	507	Supply low voltage, manufacturer specific: supply 2V5
0x5116	509	Supply low voltage, manufacturer specific: supply 3V3
0x5117	514	Supply low voltage, manufacturer specific: supply 12 V
0x5118	516	Supply low voltage, manufacturer specific: supply -12V
0x5119	518	Supply low voltage, manufacturer specific:supply 3V3 analogue
0x5180	504	Supply overvoltage, manufacturer specific:supply 1V2
0x5181	506	Supply overvoltage, manufacturer specific:supply 2V5
0x5182	508	Supply overvoltage, manufacturer specific:supply 3V3
0x5183	510	Supply overvoltage, manufacturer specific:supply 5V0
0x5184	513	Supply overvoltage, manufacturer specific:supply 12 V
0x5185	104	Supply overvoltage, manufacturer specific:supply -12V
0x5186	517	Supply overvoltage, manufacturer specific:supply 3V3 analogue
0x5510	201	Hardware memory, RAM
0x5530	105	Hardware memory, EEPROM
0x5580	106	Hardware memory, non-volatile memory data
0x5581	202	Hardware memory, external Ram for resident firmware failed
0x5582	203	Hardware memory, code integrity failed for resident firmware
0x5583	102	Hardware memory, resident firmware failed
0x5584	103	Hardware memory, resident FPGA failed
0x5585	104	Hardware memory, operational FPGA failed
0x7180	301	Motor overheat
0x7182	305	Motor open circuit
0x7183	306	Motor short circuit
0x7184	307	Motor brake applied
0x7303	426	Resolver 1 fault
0x7305	417	Incremental sensor 1 fault
0x7380	402	Feedback 1, analogue fault
0x7381	403	Feedback 1, EnDat communication fault
0x7382	404	Feedback 1, illegal hall

Error Code	Fault/Warning Code	Description
0x7383	405	Feedback 1, BiSS watchdog
0x7384	406	Feedback 1, BiSS multi cycle
0x7385	407	Feedback 1, BiSS sensor
0x7386	408	Feedback 1. SFD configuration
0x7387	409	Feedback 1, SFD UART overrun
0x7388	410	Feedback 1, SFD UART frame
0x7389	412	Feedback 1, SFD UART parity
0x738A	413	Feedback 1. SFD transfer timeout
0x738C	415	Feedback 1, SFD mult. corrupt position
0x738D	416	Feedback 1, SFD Transfer incomplete
0x738E	418	Feedback 1, power supply fault
0x738F	401	Feedback 1, failed to set feedback
0x73A0	424	Feedback 2, resolver amplitude low
0x73A1	425	Feedback 2, resolver amplitude high
0x73A2	425	Feedback 2, resolver fault
0x73A3	427	Feedback 2, analogue low
0x73A4	428	Feedback 2, analogue high
0x73A5	429	Feedback 2, incremental low
0x73A6	430	Feedback 2, incremental high
0x73A7	431	Feedback 2, halls
0x73A8	432	Feedback 2, communication
0x73A9	-	Reserved
0x73AA	-	Reserved
0x8130	129	Life Guard Error or Heartbeat Error
0x8311	304	Excess torque
0x8331	524	Torque fault
0x8480	302	Velocity overspeed
0x8580	107	Software limit switch, positive
0x8581	108	Software limit switch, negative
0x8611	439	Following error
0x8686	151	Not enough distance to move; Motion Exception
0x8687	152	Not enough distance to move; Following Motion Exception
0x8688	153	Velocity Limit Violation, Exceeding Max Limit
0x8689	154	Following Motion Failed; Check Motion Parameters
0x868A	156	Target Position crossed due to Stop command
0x86A0	157	Homing Index pulse not found
0x86A1	158	Homing Reference Switch not found
0x86A2	159	Failed to set motion task parameters
0x86A3	160	Motion Task Activation Failed
0x86A4	161	Homing Procedure Failed
0x8780	125	Fieldbus synchronization lost
0x8AF0	137	Homing and Feedback mismatch
0xFF00	701	Fieldbus runtime fault
0xFF01	702	Fieldbus communication lost
0xFF02	529	lu offset limit exceeded
0xFF03	530	Iv offset limit exceeded
0xFF04	521	Stored energy reached critical point
0xFF05	527	lu detection stuck
5A1 1 00	021	in actorion ctack

Error Code	Fault/Warning	Description
	Code	
0xFF06	528	Iv detection stuck
0xFF07	525	Control output over current
0xFF08	526	Current sensor short circuit
0xFF09	128	Axis dpoles
0xFF0A	531	Power stage fault
0xFF0B	602	Safe torque off
0xFF10	414	Warning: SFD single corrupted position.
0x8380	524	Warning: Drive foldback
0x8387	304	Warning: Motor foldback
0xFF13	438	Warning: Control position deviation
0x8582	107	Warning: Positive software position limit is exceeded.
0x8583	108	Warning: Negative software position limit is exceeded.
0x8684	123	Warning: Motion global warning
0x7786	301	Warning: Motor overheated.
0x4380	234	Warning: Control temperature sensor 1 high
0x4387	235	Warning: Power temperature sensor 1 high.
0x4382	236	Warning: Power temperature sensor 2 high.
0x4393	237	Warning: Power temperature sensor 3 high.
0x4394	240	Warning: Control temperature sensor 1 low.
0x4385	241	Warning: Control temperature sensor 1 low.
0x4396	242	Warning: Power temperature sensor 2 low.
0x4392	243	Warning: Power temperature sensor 3 low.
0x3280	502	Warning: Bus under voltage.
0x3780	503	Warning: Input phase loss.
0x3287	521	Warning: Dynamic Braking I ² T.
0x8787	125	Warning: Fieldbus PLL unlocked.

22.6.2 General Definitions

This chapter describes objects with a general validity (e.g. Object 1000h Device Type). The next section explains the free configuration of Process Data Objects ("free mapping").

22.6.2.1 General objects

Object 1000h: Device Type (DS301)

This object describes the device type (servo drive) and device functionality (DS402 drive profile). Definition:

MSE	3				LSB
	Additional in	nformation		Device profile number	
	Mode bits	Type		402d=192h	
31	24	23	16 15		0

The device profile number is DS402, the type is 2 for drives, the mode bits 28 to 31 are manufacturer specific and may be changed from its actual value of 0. A read access delivers 0x00002192 at the moment.

Index	1000h
Name	device type
Object code	VAR
Data type	UNSIGNED32
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED32
Default value	no

Object 1001h: Error register (DS301)

This object is an error register for the device. The device can map internal errors into this byte. It is a part of an Emergency object.

Index	1001h
Name	Error register
Object code	VAR
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED8
Default value	no

Error reasons to be signaled: If a bit is set to 1 the specified error has occurred. The generic error is signaled at any error situation.

Bit	Description	Bit	Description
0	generic error	4	communication error (overrun, error state)
1	current	5	device profile specific
2	voltage	6	reserved (always 0)
3	temperature	7	manufacturer specific

Object 1002h: Manufacturer Status Register (DS301)

The manufacturer status register contains important drive informations.

Index	1002h
Name	Manufacturer Status Register
Object code	VAR
Data type	UNSIGNED32
Category	optional

Access	R/O
PDO mapping	possible
Value range	UNSIGNED32
Default value	no

The following table shows the bit assignment for the status register:

Bit	Description	Bit	Description
0	1 = Movement (positioning, homing) active	16	1 = Homing move active
1	reserved	17	reserved
2	1 = reference switch high (home-position)	18	reserved
3	1 = In Position	19	1 = Emergency stop active
4	reserved	20	reserved
5	reserved	21	reserved
6	reserved	22	reserved
7	reserved	23	1 = Homing move finished
8	Warning active	24	reserved
9	1 = target velocity reached (profile position mode)	25	1 = digital input 1 set
10	reserved	26	1 = digital input 2 set
11	1 = Homing error	27	1 = digital input 3 set
12	reserved	28	1 = digital input 4 set
13	1 = Safety selected	29	1 = digital input hardware enable set
14	1 = Power stage enabled	30	reserved
15	1 = Error state	31	reserved

Object 1003h: Predefined Error Field (DS301)

The object 1003h provides an error history with a maximum size of 10 entries.

Subindex 0 contains the number of errors which have occured since the last reset of the error history, either by startup of the drive or resetting the error history by writing 0 to subindex 0.

A new Emergency-message is written into subindex 1 shifting the old entries one subindex higher. The old content of subindex 8 is lost.

The UNSIGNED32-information written to the subindizes is defined in the field Error Code in the description of the Emergency Messages (=> p. 160).

• •	• , ,
Index	1003h
Name	pre-defined Error Field
Object code	ARRAY
Data type	UNSIGNED32
Category	optional
Subindex	0
Description	Number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/W
PDO mapping	not possible
Value range	0 to 10
Default value	0
Subindex	1 to 10
Description	Standard error field (=> p. 160)
Category	optional
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED32
Default value	no

Object 1005h: COB-ID of the SYNC Message (DS301)

This object defines the COB-Id of the synchronisation object (SYNC).

Index	1005h
Name	COB-ID for the SYNC message
Object code	VAR
Data type	UNSIGNED32
Category	conditional
Access	R/W
PDO mapping	not possible
Value range	UNSIGNED32
Default value	no

Bit coded information:

Bit	Value	Meaning
31 (MSB)	Χ	_
30	0	Device not generate SYNC message
	1	Device generates SYNC message
29	0	11 Bit ID (CAN 2.0A)
	1	29 Bit ID (CAN 2.0B)
28 to 11	Х	_
	0	if Bit 29=0
10 to 0 (LSB)	Х	Bit 0 to 10 of SYNC COB-ID

The device does not support the generation of SYNC-messages and only the 11-bit IDs. So the bits 11 to 30 are always 0.

Object 1006h: Communication Cycle Period (DS301)

This object can be used to define the period (in μ s) for the transmission of the SYNC telegram.

Index	1006h
Name	Period of the communication cycle
Object code	VAR
Data type	UNSIGNED32
Category	0
Access	R/W
PDO mapping	not possible
Value range	UNSIGNED32
Default value	00h

Object 1008h: Manufacturer Device Name (DS301)

The device name consists of four ASCII characters in the form Yzzz, whereby Y stands for the mains voltage (L, M, H or U, e.g. H for High Voltage) zzz stands for the power stage current.

Index	1008h
Name	Manufacturer Device Name
Object code	VAR
Data type	Visible String
Category	Optional
Access	const
PDO mapping	not possible
Value range	
Default value	no

Object 1009h: Manufacturer Hardware Version

This object will be supported in the future.

Index	1009h
Name	manufacturer hardware version
Object code	VAR
Data type	Visible String
Category	Optional
Access	const
PDO mapping	not possible
Value range	-
Default value	no

Object 100Ah: Manufacturer Software Version (DS301)

The object contains the manufacturer software version (here: the CANopen-part of the drive firmware).

Index	100Ah	
Name	Manufacturer Software Version	
Object code	VAR	
Data type	Visible String	
Category	Optional	
Access	const	
PDO mapping	not possible	
Value range	0.01 to 9.99	
Default value	no	

Object 100Ch: Guard Time (DS301)Response monitoring

The arithmetical product of the Objects 100Ch Guard Time and 100Dh Lifetime Factor is the response monitoring time. The Guard Time is given in milliseconds. The response monitoring is activated with the first Nodeguard object. If the value of the object Guard Time is set to zero, then the response monitoring is inactive.

Index	100Ch
Name	Guard Time
Object code	VAR
Data type	UNSIGNED16
Category	conditional;
	mandatory, if heartbeat not supported
Access	R/W
PDO mapping	not possible
Value range	UNSIGNED16
Default value	0

Object 100Dh: Lifetime Factor (DS301)

The product of Guard Time and Life Time Factor gives the life time for the nodeguarding protocol. If it's 0, the protocol is not used.

Index	100Dh
Name	Lifetime Factor
Object code	VAR
Data type	UNSIGNED8
Category	conditional; (mandatory, if heartbeat not supported)
Access	R/W
PDO mapping	not possible
Value range	UNSIGNED8
Default value	0

Object 1010h: Store Parameters (DS301)

This object supports the saving of parameters to a flash EEPROM. Only the subindex 1 for saving of all parameters, which can also be saved in the parameter files via the GUI, is supported.

Index	1010h
Name	store parameters (DRV.NVSAVE)
Object code	ARRAY
Data type	UNSIGNED32
Category	optional
Subindex	0
Name	number of entries
Object code	VAR
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO Mapping	not possible
Value range	1
Default value	1
Subindex	1
Name	save all parameters
Object code	VAR
Data type	UNSIGNED32
Category	mandatory
Access	R/W
PDO Mapping	not possible
Value range	UNSIGNED32
Default value	1

Data definition:

Bit	Value	Meaning
31 to 2	0	reserved (=0)
1	0	Device does not save parameters autonomously
	1	Device does save parameters autonomously
0	0	Device does not save parameters on command
	1	Device does not save parameters on command

By read access to subindex 1 the drive provides information about its storage functionality.

This drive provides a constant value of 1 by read access, i.e. all parameters can be saved by writing to Object 1010 sub 1. In general the drive does not save parameters autonomously with the exception of e.g. the special treatment of the homing of multiturn absolute encoders.

Storing of parameters is only done if a special signature ("save") is written to subindex 1. "save" is equivalent to the unsigned32 - number 65766173h.

Object 1014h: COB-ID for Emergency Message (DS301)

This object defines the COB-ID of the Emergency message.

Index	1014h
Name	COB-ID emergency message
Object code	VAR
Data type	UNSIGNED32
Category	conditional; mandatory, if Emergency is supported
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED32
Default value	80h + Node - ID

Object 1016h: Consumer Heartbeat Time

The consumer heartbeat time defines the expected heartbeat cycle time (ms) and must be higher than the corresponding producer heartbeat time configured on the device producing this heartbeat. Monitoring starts after the reception of the first heartbeat. If the consumer heartbeat time is 0 ms the corresponding entry is not used.

Index	1016h	
Name	consumer heartbeat time	
Object code	ARRAY	
Data type	UNSIGNED32	
Category	optional	
Subindex	0	
Description	number of entries	
Data type	UNSIGNED8	
Category	mandatory	
Access	R/O	
PDO Mapping	not possible	
Value range	1	
Default value	1	
Subindex	1	
Description	Consumer heartbeat time	
Category	mandatory	
Access	R/W	
PDO Mapping	g not possible	
Value range	unsigned 32	
Default value	no	
Definition of the entry value of Subindex 1		

Definition of the entry value of Subindex 1

	MSB			LSB
Value	reserved (value: 00)	Node-ID	heartbeat time	
Encoded as	-	UNSIGNED8	UNSIGNED16	
Bit	31 24	23 16	15	0

Object 1017h: Producer Heartbeat Time

The producer heartbeat time defines the cycle time of the heartbeat in ms. If it's 0, it is not used.

Index	1017h
Name	Producer heartbeat time
Object code	VAR
Data type	UNSIGNED16
Category	conditional;
	mandatory, if guarding is not supported
Access	R/W
PDO mapping	not possible
Value range	UNSIGNED16
Default value	0

Object 1018h: Identity Object (DS301)

The Identity Object contains general device information.

Index	1018h
Name	Identity Object
Object code	RECORD
Data type	Identity
Category	mandatory
Subindex	0
Description	Number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	1 to 4
Default value	4

Subindex 1 is a unique number for a device manufacturer.

Subindex	1
Description	Vendor ID
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED32
Default value	0x6Ah (Danaher Motion)

Subindex 2 contains four ASCII - characters, which determine the voltage range and current class of the device. The voltage range is one character L, M or H for low, medium and high voltage. The next three characters are showing the continuos current of the drive.

Subindex	2
Description	Product Code
Category	optional
Access	R/O
PDO mapping	not possible
Value range	e.g. M006 for an MV6 drive
Default value	no

Subindex 3 consists of two revision numbers:

- the major revision number in the upper word containing the CAN-version
- the minor revision number is not used in the AKD. The firmware version can be retrieved as a string via object 0x100A or as numbers voa object 0x2018 subindex 1 to 4.

E.g. a value of 0x0014 0000 means CAN-version 0.20.

Subindex	3
Description	Revision Number
Category	optional
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED32
Default value	no

Subindex 4 gives the serial number of the drive. This number contains the following information in it:

- bits 0..14: Board serial number (production in week of year)
- bits 15..20: week of production
- bits 21..24: year of production 2009
- bits 25..31: ASCII-code of MFR-ID

Subindex	4
Description	Serial Number
Category	optional
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED32
Default value	no

Object 1026h: OS Prompt

The OS prompt is used to build up an ASCII - communication channel to the drive.

Index	1026h
Name	OS Prompt
Object code	ARRAY
Data type	UNSIGNED8
Category	optional
Subindex	0
Description	Number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	2
Default value	2

Subindex 1 is used to send one character to the drive.

Subindex	1
Description	StdIn
Category	mandatory
Access	W
PDO mapping	possible
Value range	UNSIGNED8
Default value	_

Subindex 2 is used to receive one character from the drive.

Subindex	2
Description	StdOut
Category	mandatory
Access	R/O
PDO mapping	possible
Value range	UNSIGNED8
Default value	0

22.6.2.2 Manufacturer specific objects

Object 2014-2017h: 1st-4th Mask 1 to 4 for Transmit-PDO

In order to reduce the bus loading with event-triggered PDOs, masking can be used to switch off the monitoring for individual bits in the PDO. In this way it can be arranged, for instance, that actual position values are only signaled once per turn.

This Object masks the PDO-channels 1 to 4. If only two bytes have been defined in a PDO, then it masks just two bytes, although 4 bytes of mask information have been transmitted.

An activated bit in the mask means that monitoring is active for the corresponding bit in the PDO.

	in the mack means that memorisening
Index	2014h
	2015h
	2016h
	2017h
Name	tx_mask 1 to 4
Object code	ARRAY
Data type	UNSIGNED32
Subindex	1
Description	tx_mask1 to 4_low
Mode	independent
Access	R/W
PDO mapping	not possible
Unit	_
Value range	UNSIGNED32
Default value	FFFFFFFh
Subindex	2
Description	tx_mask1 to 4_high
Mode	independent
Access	R/W
PDO mapping	not possible
Unit	_
Value range	UNSIGNED32
Default value	FFFFFFFh

Object 2018h: Firmware Version

This object gives all information regarding the firmware version.

Example: Firmware version M_01_00_01_005 would show the numbers 1, 0, 1, 5 in the sub-indices 1 to 4.

Index	2018h
Name	firmware version
Object code	ARRAY
Data type	UNSIGNED16
Subindex	1
Description	major version
Mode	independent
Access	R/O
PDO mapping	not possible
Unit	_
Value range	UNSIGNED16
Default value	0
Subindex	2
Description	minor version
Mode	independent
Access	R/O
PDO mapping	not possible
Unit	_
Value range	UNSIGNED16
Default value	0
Subindex	3
Description	revision
Mode	independent
Access	R/O
PDO mapping	not possible
Unit	_
Value range	UNSIGNED16
Default value	0
Subindex	4
Description	branch revision
Mode	independent
Access	R/O
PDO mapping	not possible
Unit	_
Value range	UNSIGNED16
Default value	0

Object 2026h: ASCII Channel

This object is used to build up an ASCII - communication channel to the drive with 4-byte ASCII-strings.

Index	2026h
Name	ASCII Channel
Object code	ARRAY
Data type	Visible String
Category	optional
Subindex	0
Description	Number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	2
Default value	2

Subindex 1 is used to send four ASCII-characters to the drive.

Subindex	1
Description	Command
Category	mandatory
Access	wo
PDO mapping	no
Value range	Visible String
Default value	_

Subindex 2 is used to receive four characters from the drive.

Subindex	2
Description	Response
Category	mandatory
Access	R/O
PDO mapping	no
Value range	Visible String
Default value	-

Object 20A0h: Latch position 1, positive edge

This object is used to output the position or a time, depending on CAP0.MODE, at which the first positive edge occurred on a signal, which can be configured with the command CAP0.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5). With CAP0.MODE = 3 the latched position of the encoder index pulse is transferred via this object.

Index	20A0h
Name	Latch position 1, positive edge, CAP0.PLFB
	Time capture, CAP0.T
Object code	VAR
Data type	INTEGER32
Category	optional
Access	R/O
PDO mapping	possible
Value range	INTEGER32
Default value	0

Object 20A1h: Latch position 1, negative edge

This object is used to output the position or a time, depending on CAP0.MODE, at which the first negative edge occurred on a signal, which can be configured with the command CAP0.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5).

Index	20A1h
Name	Latch position 1, negative edge, CAP0.PLFB
	Time capture, CAP0.T
Object code	VAR
Data type	INTEGER32
Category	optional
Access	R/O
PDO mapping	possible
Value range	INTEGER32
Default value	0

Object 20A2h: Latch position 2, positive edge

This object is used to output the position or a time, depending on CAP1.MODE, at which the first positive edge occurred on a signal, which can be configured with the command CAP1.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5).

Index	20A2h
Name	Latch position 2, positive edge, CAP1.PLFB
	Time capture, CAP1.T
Object code	VAR
Data type	INTEGER32
Category	optional
Access	R/O
PDO mapping	possible
Value range	INTEGER32
Default value	0

Object 20A3h: Latch position 2, negative edge

This object is used to output the position or a time, depending on CAP0.MODE, at which the first negative edge occurred on a signal, which can be configured with the command CAP0.TRIGGER. The latch enable must be active for that purpose(see object 20A4 and 20A5).

Index	20A3h
Name	Latch position 2, negative edge, CAP1.PLFB
	Time capture, CAP1.T
Object code	VAR
Data type	INTEGER32
Category	optional
Access	R/O
PDO mapping	possible
Value range	INTEGER32
Default value	0

Object 20A4h: Latch Control Register

The latch control register is used to enable the latch monitoring of the capture engines 0 and 1. The latch is enabled with a 1 signal and disabled with a 0 signal. Whether or not a latch event has occurred can be recognised by the latch status register (object 20A5).

Index	20A4h
Name	Latch Control Register
Object code	VAR
Data type	UNSIGNED16
Category	optional
Access	rww
PDO mapping	possible
Value range	0 to 15
Default value	0

Bit	Value (bin)	Value (hex)	Description
0	00000000 00000001	xx01	Enable extern latch 1 (positive rise)
1	00000000 00000010	xx02	Enable extern latch 1 (negative rise)
2	00000000 00000100	xx04	Enable extern latch 2 (positive rise)
3	00000000 00001000	xx08	Enable extern latch 2 (negative rise)
4	00000000 00010000	xx10	Enable latch of encoder index pulse
5 to 7			Reserve
8	00000001 00000000	01xx	Read external latch 1 (positive rise)
9	00000010 00000000	02xx	Read external latch 1 (negative rise)
10	00000011 00000000	03xx	Read external latch 2 (positive rise)
11	00000100 00000000	04xx	Read external latch 2 (negative rise)
12	00000101 00000000	05xx	Read latched position of encoder index pulse
13 to 15			Reserve

Object 20A5h: Latch Status Register

The latch status register is used to look for the states of the capture engines 0 and 1.

Index	20A5h
Name	Latch Status Register
Object code VAR	
Data type	UNSIGNED16
Category	optional
Access	rwr
PDO mapping	possible
Value range	-
Default value	0

Bit	Value (bin)	Value (hex)	Description	
0	00000000 00000001	zz01	External latch 1 valid (positive rise)	
1	00000000 00000010	zz02	External latch 1 valid (negative rise)	
2	00000000 00000100	zz04	External latch 2 valid (positive rise)	
3	00000000 00001000	zz08	External latch 2 valid (negative rise)	
4	00000000 00010000	z10	Latched position of encoder index pulse valid (pos-	
			itive rise)	
5 to 7			Reserve	
8 to 11	00000001 00000000	z1zz	Acknowledge value external latch 1 (positive rise)	
	00000010 00000000	z2zz	Acknowledge value external latch 1 (negative rise)	
	00000011 00000000	z3zz	Acknowledge value external latch 2 (positive rise)	
	00000100 00000000	z4zz	Acknowledge value external latch 2 (negative rise)	
	00000101 00000000	z5zz	Acknowledge value of latched position of encoder	
			index pulse (positive rise)	
12 to 15	00010000 00000000	1zzz	State Digital Input 4	
	00100000 00000000	2zzz	State Digital Input 3	
	01000000 00000000	4zzz	State Digital Input 2	
	10000000 00000000	8zzz	State Digital Input 1	

Object 20A6h: Latch position 1, positive or negative edge

This object is used to output the position or a time, depending on CAP0.MODE, at which the first positive or negative edge occurred on a signal, which can be configured with the command CAP0.TRIGGER.

The latch enable must be active for that purpose (see object 20A4 and 20A5).

Index	20A6h
Name	Latch position 1, positive or negative, CAP0.PLFB
Object code	VAR
Data type	INTEGER32
Category	optional
Access	ro
PDO mapping	possible
Value range	INTEGER32
Default value	0

Object 20B8h: Reset of changed input information

This object is used in PDOs to reset the state change information for the digital inputs shown in the Bits 24 to 30 in the object 60FD. Bit 0 to 6 are used to reset the information of the digital input 1 to 7.

Index	20B8h	
Name	Reset of changed input information	
Object code	VAR	
Data type	UNSIGNED16	
Category	optional	
Access	rw	
PDO mapping	possible	
Value range	UNSIGNED16	
Default value	0	

22.6.2.3 Profile specific objects

Object 60FDh: Digital inputs (DS402)

This index defines simple digital inputs for drives. The manufacturer bits 16 to 22 are used to mirror the digital inputs 1 to 7. The manufacturer bits 24 to 30 are used to show the change of the state of the digital inputs 1 to 7.

Index	60FDh
Name	digital inputs
Object code	VAR
Data type	UNSIGNED32
Category	optional
Access	R/O
PDO mapping	possible
Value range	UNSIGNED32
Default value	0

31 16	3 15	, 3	2	1	0
manufacturer specific	interlock	interlock	home switch	•	neg. limit switch
MSB					LSB

Object 60FEh: Digital outputs (DS402)

This index defines simple digital outputs for drives. The manufacturer bits 16 and 17 are used to mirror the digital outputs 1 and 2.

Index	60FEh
Name	digital outputs
Object code	Array
Data type	UNSIGNED32
Category	optional
Subindex	0
Description	number of entries
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	2
Default value	2

Subindex	1							
Description	physica	physical outputs						
Category	manda	tory						
Access	R/W							
PDO mapping	possibl	е						
Value range	UNSIG	SNED32						
Default value	0							
Subindex	2							
Description	bit mas	k						
Category	optiona	optional						
Access	R/W							
PDO mapping	possibl	е						
Value range	Value range UNSIGNED32							
Default value 0								
31	18	17	16	15	1	0		
manufacturer sp	ecific	DOUT2	DOUT1	reserved		set brake		
MSB	MSB LS					LSB		

Object 6502h: Supported drive modes (DS402)

A drive can support more then one and several distinct modes of operation. This object gives an overview of the implemented operating modes in the device. This object is read only.

Index	6502h
Name supported drive modes	
Object code	VAR
Data type	UNSIGNED32
Category	optional
Access	R/O
PDO mapping	possible
Value range	UNSIGNED32
Default value	0x65 (ip hm pv pp)

31 16	15	7	6	5	4	3	2	1	0
manufacturer specific	reserved		ip	hm	reserved	tq	рν	νl	pp
MSB									LSB

22.6.3 PDO Configuration

PDOs are used for process data communication. There are two types of PDOs: Receive PDOs (RPDOs) and transmit PDOs (TPDOs).

The content of the PDOs is pre-defined (see descriptions on pages => p. 185 and => p. 188). If the data content is not appropriate for a special application the data objects in the PDOs can be remapped freely.

One data entry in the PDOs looks like this:

MSB		LSB
index (16 bit)	Subindex (8 bit)	data length in bits (8 bit)

The configuration procedure for a free mapping of a PDO looks like this (example for TPDO1):

1. Stop possible transmission of the PDO.

COB-ID	Control byte	Index		Sub-	Data	Comment
		Low byte	High byte	index		
601	23	′00	18	01h	81 01 00 C0	Switch-off COB-Id

2. Delete the actual mapping of the PDO by writing a 0 to the subindex 0 of the mapping Object.

COB-ID	Control byte	Index		Sub-	Data	Comment
		Low byte	High byte	index		
601	2F	′00	1A	00h	00 00 00 00	Delete actual mapping

3. Build the mapping with object dictionary objects (see page => p. 223)) which are mappable, e.g.

COB-ID	Control byte	Index		Sub-	Data	Comment
		Low byte	High byte	index		
601	23	00	1A	01h	10 00 41 60	1st entry: CANopen statusword with 16 bits
601	23	00	1A	02h	20 00 02 10	2nd entry: Manufacturer status with 32 bits

3. Write the number of mapped objects to subindex 0 of the mapping Object.

COB-ID	Control byte	Index		Sub-	Data	Comment
		Low byte	High byte	index		
601	2F	00	1A	00h	02 00 00 00	Check for the right number of entries

Mapping shall be done before the network management is switched to OPERATIONAL.

22.6.3.1 Receive PDOs (RXPDO)

Four Receive PDOs can be configured in the drive:

- - configuration of the communication (Objects 1400-1403h)
- - configuration of the PDO-contents (mapping, Objects 1600-1603h)

Objects 1400-1403h: 1st - 4th RXPDO communication parameter (DS301)

Index	1400h to 1403h for RXPDO 1 to 4
Name	receive PDO parameter
Object code	RECORD
Data type	PDO CommPar
Category	mandatory

Defined sub-indices

Default Value

Definited Sub-indices				
Subindex	0			
Name	number of entries			
Data type	UNSIGNED8			
Category	mandatory			
Access	R/O			
PDO Mapping	not possible			
Value Range	2			
Default Value	2			
Subindex	1			
Name	COB-ID used by PDO			
Category	mandatory			
Access	R/W			
PDO Mapping	not possible			
Value Range	UNSIGNED32			

Subindex 1 contains the COB-Id of the PDO as a bit coded information:

Index 1400h: 200h + Node-ID

Index 1402h: 400h + Node-ID

Bit	Value	Meaning
31	0	PDO exists/is valid
	1	PDO does not exist/is not valid
30	0	RTR allowed on this PDO, not to be used (Can in Automation organisation)
	1	RTR not allowed on this PDO
29	0	11 bit-ID (CAN 2.0A)
	1	29 bit-ID (CAN 2.0B), not supported
28 to 11	Χ	Identifier-bits with 29 bit-ID, not relevant
10 to 0	Χ	Bits 10-0 of COB-ID

Index 1401h: 300h + Node-ID

Index 1403h: 500h + Node-ID

Subindex	2
Name	transmission type
Category	mandatory
Access	R/W
PDO Mapping	not possible
Value Range	UNSIGNED8
Default Value	FFh

Subindex 2 contains the transmission type of the PDO. There are two ways of setting:

- the value FFh or 255 for event-triggered PDO, which is directly interpreted by reception and taken into actions,
- values from 0 to 240, which cause a SYNC-telegram-controlled interpretation of the PDO contents. Values of 1 to 240 mean, that 0 to 239 SYNC-telegrams are ignored, before one is interpreted.
 The value 0 means, that only the next SYNC-telegram is interpreted.

Objects 1600-1603h: 1st - 4th RXPDO mapping parameter (DS301)

Index	1600h - 1603h for RXPDO 1 4	
Name	receive PDO mapping	
Object Code	RECORD	
Data Type	PDO Mapping	
Category	mandatory	
Subindex	0	
Name	number of entries	
Data type	UNSIGNED8	
Category	mandatory	
Access	R/W	
PDO Mapping	not possible	
Value Range	0: PDO is not active	
	1 - 8: PDO activated, mappings are taken only byte-wise	
Default Value	PDO1: 1	
	PDO2: 2	
	PDO3: 2	
	PDO4: 2	
Subindex	1 - 8	
Name	PDO - mapping for the n-th application object	
Category	Conditional, depends on number and size of object be mapped	
Access	R/W	
PDO Mapping	not possible	
Value Range	UNSIGNED32	
Default Value	See below	

Default RXPDO definition

RXPDO 1:

Subindex	Value	Meaning
0	1	One PDO-mapping entry
1	60 40 00 10	Control word

RXPDO 2:

Subindex	Value	Meaning
0	2	Two PDO-mapping entries
1	60 40 00 10	Control word
2	60 60 00 08	Modes of Operation

RXPDO 3:

Subindex	Value	Meaning
0	2	Two PDO-mapping entries
1	60 40 00 10	Control word
2	60 7A 00 20	Target Position (Mode PP)

RXPDO 4:

Subindex	Value	Meaning
0	2	Two PDO-mapping entries
1	60 40 00 10	Control word
2	60 FF 00 20	Target Velocity (Mode PV)

22.6.3.2 Transmit PDOs (TXPDO)

Four Transmit PDOs can be configured in the drive:

- - configuration of the communication (Objects 1800-1803h)
- - configuration of the PDO-contents (mapping, Objects 1A00-1A03h)

Objects 1800-1803h: 1st - 4th TXPDO communication parameter (DS301)

Index	1800h to 1803h for TXPDO 1 to 4
Name	transmit PDO parameter
Object code	RECORD
Data type	PDO CommPar
Category	mandatory
Subindex	0
Name	number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO Mapping	not possible
Value Range	5
Default Value	5
Subindex	1
Name	COB-ID used by PDO
Category	mandatory
Access	R/W
PDO Mapping	not possible
Value Range	UNSIGNED32
Default Value	Index 1800h: 180h + Node-IDIndex 1801h: 280h + Node-ID Index 1802h: 380h + Node-ID Index 1803h: 480h + Node-ID
Subindex	2
Name	transmission type
Category	mandatory
Access	R/W
PDO Mapping	not possible
Value Range	UNSIGNED8
Default Value	FFh

Subindex	3
Name	inhibit time
Category	optional
Access	R/W
PDO Mapping	not possible
Value Range	UNSIGNED16 (n*1/10ms)
Default Value	0h
Subindex	4
Name	reserved
Category	optional
Access	R/W
PDO Mapping	not possible
Value Range	0
Default Value	0
Subindex	5
Name	event timer
Category	optional
Access	R/W
PDO Mapping	not possible
Value Range	UNSIGNED16 (0=not used, ms)
Default Value	0h

Subindex 1 contains the COB-Id of the PDO as a bit coded information:

Bit-Number	Value	Meaning
31	0	PDO exists/is valid
	1	PDO does not exist/is not valid
30	0	RTR allowed on this PDO, not supported
	1	RTR not allowed on this PDO, not supported
29	0	11 bit-ID (CAN 2.0A)
	1	29 bit-ID (CAN 2.0B), not supported
28 to 11	Х	Identifier-bits with 29 bit-ID, not relevant
10 to 0	Х	Bits 10-0 of COB-ID

Subindex 2 contains the transmission type of the PDO. There are two ways of setting:

- A value of FFh or 255d for an event-triggered PDO, which is sent immediately after a change in the
 mapped application objects. Setting of Subindex 3 or 5 has an influence on the sending of a PDO. With
 Subindex 3 you can configure, in which minimal time the so configured Transmit-PDOs are sent, if PDOdata contents change (reduction of bus-load). With Subindex 5 (event time) a timer is used, which is reset
 with every event-triggered sending of this PDO. If there is no change of the PDO-content in this time, the
 PDO is sent caused by this timer event.
- Values from 0 to 240 cause a SYNC-Telegram controlled sending of the PDO.
 Values from 1 to 240 define how often the SYNC-telegram leads to a sending of a PDO.
 The value 0 means, that only the next SYNC-telegram leads to a sending of the so configured PDOs.

Objects 1A00-1A03h: 1st - 4th TXPDO mapping parameter (DS301)

Index	1A00h - 1A03h for TXPDO 1 4	
Name	transmit PDO mapping	
Object Code	RECORD	
Data Type	PDO Mapping	
Category	mandatory	
Subindex	0	
Name	number of mapped application objects in PDO	
Data type	UNSIGNED8	
Category	mandatory	
Access	R/W	
PDO Mapping	not possible	
Value Range	0: PDO is not active	
	1 - 8: PDO activated, mappings are taken only byte-wise	
Default Value	PDO1: 1	
	PDO2: 2	
	PDO3: 2	
	PDO4: 2	
Subindex	1 - 8	
Name	PDO - mapping for the n-th application object	
Category	Conditional, depends on number and size of object be mapped	
Access	R/W	
PDO Mapping	not possible	
Value Range	UNSIGNED32	
Default Value	See below	

Default TXPDO definition

TXPDO 1:

Subindex	Value	Meaning
0	1	One PDO-mapping entry
1	60 41 00 10	Status word

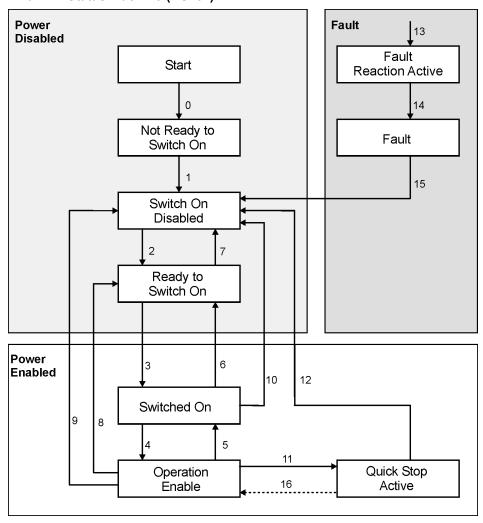
TXPDO 2:

Subindex	Value	Meaning
0	2	Two PDO-mapping entries
1	60 41 00 10	Status word
2	60 61 00 08	Modes of Operation display

TXPDO 3:

Subindex	Value	Meaning
0	2	Two PDO-mapping entries
1	60 41 00 10	Status word
2	60 64 00 20	Position actual value

TXPDO 4:


Subindex	Value	Meaning
0	2	Two PDO-mapping entries
1	60 41 00 10	Status word
2	60 6C 00 20	Velocity actual value

22.6.4 Device Control (dc)

The device control of the AKD can be used to carry out all the motion functions in the corresponding modes. The control of the AKD is implemented through a mode-dependent status machine. The status machine is controlled through the control word (=> p. 195).

The mode setting is made through the object "Modes of Operation" (=> p. 198). The states of the status machine can be revealed by using the status word (=> p. 196).

22.6.4.1 Status Machine (DS402)

States of the Status Machine

State	Description
Not Ready for Switch On	AKD is not ready to switch on, there is no operational readiness (BTB/RTO) sig-
	naled from the controller program.
Switch On Disable	AKD is ready to switch on, parameters can be transferred,
	the DC-link voltage can be switched on, motion functions cannot be carried out yet.
Ready to Switch On	DC-link voltage may be switched on, parameters can be transferred,
	motion functions cannot be carried out yet.
Switched On	DC-link voltage must be switched on, parameters can be transferred, motion func-
	tions cannot be carried out yet, output stage is switched on (enabled).
Operation Enable	No fault present, output stage is enabled, motion functions are enabled.
Quick Stop Active	Drive has been stopped with the emergency ramp, output stage is enabled, motion
	functions are not enabled.
Fault Reaction Active	A fault has occured and the drive is stopped with the quickstop ramp.
Fault	A fault is active, the drive has been stopped and disabled.

Transitions of the status machine

The state transitions are affected by internal events (e.g. switching off the DC-link voltage) and by the flags in the control word (bits 0,1,2,3,7).

Transition	Event	Action
0	Reset	Initialization
1	Initialization completed successfully. AKD is	none
	ready to operate.	
2	Bit 1 Disable Voltage and Bit 2 Quick Stop are	none
	set in the control word (Shutdown command).	
	DC-link voltage may be present.	
3	Bit 0 is also set (Switch On command)	Output stage is switched on (enabled), provided that
		the hardware enable is present (logical AND). Drive has torque.
4	Bit 3 is also set (Enable Operation command)	Motion function is enabled, depending on the mode
4	Bit 3 is also set (Eliable Operation Command)	that is set.
5	Bit 3 is canceled	Motion function is inhibited. Drive is stopped, using
	(Disable Operation command)	the relevant ramp (mode-dependent). The present
	(2.000.000)	position is maintained.
6	Bit 0 is canceled (Shutdown command)	Output stage is disabled.
	·	Drive has no torque.
7	Bits 1 and 2 are canceled	none
	(Quick Stop/Disable Voltage command)	
8	Bit 0 is canceled (Shutdown command)	Output stage is disabled. Drive has no torque.
9	Bit 1 is canceled (Disable Voltage command)	Output stage is disabled. Drive has no torque.
10	Bits 1 and 2 are canceled	Output stage is disabled. Drive has no torque.
	(Quick Stop/Disable Voltage command)	
11	Bit 2 is canceled	Drive is stopped with the emergency braking ramp.
	(Quick Stop command)	The output stage remains enabled. Setpoints are
		canceled (motion block number, digital setpoint,
		speed for jogging or homing). Bit 2 must be set again before any further motion tasks can be per-
		formed.
12	Bit 1 is canceled ('Disable Voltage' command)	Output stage is disabled. Drive has no torque.
13	Fault reaction active	Execute appropriate fault reaction
14	Fault reaction is completed	Drive function is disabled. The power section may
	,	be switched off.
15	"Fault Reset" command received from host	A reset of the fault condition is carried out if no fault
		exists currently on the drive. After leaving the state
		Fault the Bit7 'Reset Fault' of the controlword must
		be cleared by the host
16	Bit 2 is set	Motion function is enabled again.

NOTE

If the drive is operated through the control word/status word, then no control commands may be sent through another communication channel (ASCII channel, RS232).

22.6.4.2 Object Description

Object 6040h: Control word (DS402)

The control commands are built up from the logical combination of the bits in the control word and external signals (e.g enable output stage). The definitions of the bits are shown below:

Index	6040h
Name	control word
Object code	VAR
Data type	UNSIGNED16
Access	R/W
PDO mapping	possible
Unit	_
Value range	0 to 65535
EEPROM	no
Default value	0

Bit assignment im control word

Bit	Name	Bit	Name
0	Switch on	8	Pause/halt
1	Disable Voltage	9	reserved
2	Quick Stop	10	reserved
3	Enable Operation	11	reserved
4	Operation mode specific	12	reserved
5	Operation mode specific	13	Manufacturer-specific
6	Operation mode specific	14	Manufacturer-specific
7	Reset Fault (only effective for faults)	15	Manufacturer-specific

Commands in the control word

Command	Bit 7	Bit 3	Bit 2	Bit 1		Transitions
	Fault	Enable	Quick	Disable	Switch	
	Reset	Operation	Stop	Voltage	on	
Shutdown	Χ	Х	1	1	0	2, 6, 8
Switch on	Χ	Х	1	1	1	3
Disable Voltage	Χ	Х	Х	0	Х	7, 9, 10, 12
Quick Stop	Χ	Х	0	1	Х	7, 10, 11
Disable Operation	Χ	0	1	1	1	5
Enable Operation	Х	1	1	1	1	4, 16
Fault Reset	1	Х	Х	Х	Х	15

Bits marked by an X are irrelevant.

Mode-dependent bits in the control word

The following table shows the mode-dependent bits in the control word. Only manufacturer-specific modes are supported at present. The individual modes are set by Object 6060_h Modes of operation.

Operation mode	No.	Bit 4	Bit 5	Bit 6
Profile Position Mode (pp)	01h	new_setpoint	change_set_immediately	absolute/relative
Profile Velocity Mode (pv) 03h		reserved	reserved	reserved
Profile Torque Mode (tq)	04h	reserved	reserved	reserved
Homing Mode (hm)	06h	homing_operation_start	reserved	reserved
Interpolated Position Mode	07h	Enable Interpolation	reserved	reserved
(ip)				
Cyclic sync position Mode	08h	reserved	reserved	reserved
(csp)				

Description of the remaining bits in the control word

The remaining bits in the control word are described below.

Bit 8 Pause If Bit 8 is set, then the drive halts (pauses) in all modes. The setpoints (speed for homing or jogging, motion task number, setpoints for digital mode) for the individual modes are retained.

Bit 9,10 These bits are reserved for the drive profile (DS402).

Bit 13, 14, 15 These bits are manufacturer-specific, and reserved at present.

Object 6041h: Status word (DS402)

The momentary state of the status machine can be read out with the aid of the status word.

Index	6041h
Name	Status word
Object code	VAR
Data type	UNSIGNED16
Access	R/W
PDO mapping	possible
Unit	_
Value range	0 to 65535
EEPROM	yes
Default value	0

Bit assignment in the status word

Bit	Name	Bit	Name
0	Ready to switch on	8	Manufacturer-specific (reserved)
1	Switched on	9	Remote (always 1)
2	Operation enabled	10	Target reached
3	Fault	11	Internal limit active
4	Voltage enabled	12	Operation mode specific (reserved)
5	Quick stop	13	Operation mode specific (reserved)
6	Switch on disabled	14	Manufacturer-specific (reserved)
7	Warning	15	Manufacturer-specific (reserved)

States of the status machine

State	Bit 6	Bit 5	Bit 3	Bit 2	Bit 1	Bit 0
	switch on	quick stop	fault	operation	switched	ready to
	disabled			enabled	on	switch on
Not ready to switch on	0	Х	0	0	0	0
Switch on disabled	1	Х	0	0	0	0
Ready to switch on	0	1	0	0	0	1
Switched on	0	1	0	0	1	1
Operation enabled	0	1	0	1	1	1
Fault	0	Х	1	0	0	0
Fault reaction active	0	Х	1	1	1	1
Quick stop active	0	0	0	1	1	1

Bits marked by X are irrelevant

Description of the remaining bits in the status word

Bit 4: voltage_enabled The DC-link voltage is present if this bit is set.

Bit 7: warning There are several possible reasons for Bit 7 being set and this warning being produced. The reason of a warning can be seen by the Error code of the Emergency message, which is sent on the bus caused by this warning.

Bit 9: remote is always set to 1, i.e. the drive can always communicate and be influenced via the RS232-interface.

Bit 10: target_reached This is set when the drive has reached the target position.

Bit 11: internal_limit_active This bit specifies that a movement was or is limited. In different modes, different warnings cause the bit to be set. The following assignments exist:

Mode of operation	Warnings which set Bit 11
all	n04, n06, n07, n10, n11, n14
0x1 (PP), 0x88	n03, n08, n09, n20

Object 6060h: Modes of Operation (DS402)

This object is used to set the mode, which can be read out by Object 6061h. Two types of operating mode are used:

- manufacturer-specific operating modes
- operating modes as per CANopen drive profile DS402

These operating modes are defined in the CANopen drive profile DS402. After the mode has been changed, the corresponding setpoint must be set once more (for instance, the homing velocity in the mode homing_setpoint). If the position or jogging mode is stored, then the Homing mode is set after a RESET of the drive.

NOTE WARNING

An operating mode only becomes valid when it can be read by Object 6061h.

Never change the mode while the motor is running! The drive could move unexpectedly. When the drive is enabled, a mode change is only permissible at zero speed. Set the speed setpoint to 0 before changing over.

Index	6060h
Name	mode of operation
Object code	VAR
Data type	INTEGER8
Category	mandatory
Access	R/W
PDO mapping	possible
Value range	1, 3, 4, 6, 7, 8
Default value	_

Supported modes (negative values are manufacturer specific modes):

Value (hex)	Mode
1	Profile position mode
3	Profile velocity mode
4	Profile torque mode
6	Homing mode
7	Interpolated position mode
8	Cyclic sync position mode

Object 6061h: Modes of Operation Display (DS402)

This object can be used to read the mode that is set by Object 6060h. An operating mode only becomes valid when it can be read by Object 6061h (see also Object 6060h).

Index	6061h
Name	mode of operation display
Object code	VAR
Data type	INTEGER8
Category	mandatory
Access	R/O
PDO mapping	possible
Value range	1, 3, 4, 6, 7, 8
Default value	_

22.6.5 Factor Groups (fg) (DS402)

The "factor groups" define the units of position-, velocity- and acceleration setpoints. These values are converted into drive-specific parameters.

Two types of scalings can be used depending on the configuration bit 4 in FBUS.PARAM05:

- 1. Scaling analog to Telnet. Then you should set the UNIT.PROTARY = 3, UNIT.VROTARY = 3 and UNIT.ACCROTARY = 3.
- 2. Scaling only with DS402 scaling factors independant of the scalings used via Telnet. Therefore use the settings via the objects 204C / 6092.

NOTE	The drive parameters for the unit definitions should be set as follows:
	UNIT.PROTARY= 3 (UNIT.PIN/UNIT.POUT)
	UNIT.VROTARY = 3 (UNIT.PIN/UNIT.POUT/s)
	UNIT.ACCROTARY = 3 (c UNIT.PIN/UNIT.POUT/s²)

22.6.5.1 General Information

Factors

You can convert between physical dimensions and sizes, and the internal units used in the device (increments). Several factors can be implemented. This chapter describes how these factors influence the system, how they are calculated and which data are necessary to build them.

Relationship between Physical and Internal Units

The factors defined in the factor group set up a relationship between device-internal units (increments) and physical units.

The factors are the result of the calculation of two parameters called dimension index and notation index. The dimension index indicates the physical dimension, the notation index indicates the physical unit and a decimal exponent for the values. These factors are directly used to normalize the physical values.

The notation index can be used in two ways:

- For a unit with decimal scaling and notation index < 64, the notation index defines the exponent/decimal place of the unit.
- For a unit with non-decimal scaling and notation index > 64, the notation index defines the subindex of the physical dimension of the unit.

22.6.5.2 Objects for velocity scaling

Object 204Ch: pv scaling factor

This object shall indicate the configured numerator and denominator of the pv scaling factor. The pv scaling factor serves to modify the resolution or directing range of the specified setpoint. It is aso included in calculation of the vI velocity demand, and vI velocity actual value. It does not influence the velocity limit function and the ramp function. The value shall have no physical unit and shall be given in the range from -32 768 to +32 767, but the value of 0 shall not be used.

Index	204Ch
Name	pv scaling factor
Object code	ARRAY
Data type	INTEGER32
Category	optional
	,
Subindex	0
Description	number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	2
Default value	no
Subindex	1
Subindex Description	1 pv scaling factor numerator
	•
Description	pv scaling factor numerator
Description Category	pv scaling factor numerator optinal R/W
Description Category Access	pv scaling factor numerator optinal R/W
Description Category Access PDO mapping	pv scaling factor numerator optinal R/W possible
Description Category Access PDO mapping Value range	pv scaling factor numerator optinal R/W possible INTEGER32
Description Category Access PDO mapping Value range Default value	pv scaling factor numerator optinal R/W possible INTEGER32 +1
Description Category Access PDO mapping Value range Default value Subindex	pv scaling factor numerator optinal R/W possible INTEGER32 +1
Description Category Access PDO mapping Value range Default value Subindex Description	pv scaling factor numerator optinal R/W possible INTEGER32 +1 2 pv scaling factor denominator
Description Category Access PDO mapping Value range Default value Subindex Description Category	pv scaling factor numerator optinal R/W possible INTEGER32 +1 2 pv scaling factor denominator optional R/W
Description Category Access PDO mapping Value range Default value Subindex Description Category Access	pv scaling factor numerator optinal R/W possible INTEGER32 +1 2 pv scaling factor denominator optional R/W

22.6.5.3 Objects for position calculation

Object 608Fh: Position encoder resolution (DS402)

The position encoder resolution defines the ratio of encoder increments per motor revolution.

Index	608Fh
Name	Position encoder resolution
Object Code	ARRAY
Data Type	UNSIGNED 32
Category	optional
Subindex	0
Name	number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO Mapping	not possible
Value Range	2
Default Value	2
Subindex	1
Name	Encoder increments
Category	mandatory
Access	R/W
PDO Mapping	possible
Value Range	UNSIGNED 32
Default Value	2^20
Subindex	2
Name	Motor revolutions
Category	mandatory
Access	R/W
PDO Mapping	possible
Value Range	UNSIGNED 32
Default Value	1

Object 6092h: Feed constant (DS402)

The feed constant defines the ratio of feed in position units per driving shaft revolutions. This includes the gear if present.

Index	6092h
Name	Feed constant
Object Code	ARRAY
Data Type	UNSIGNED 32
Category	optional
Subindex	0
Name	number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO Mapping	not possible
Value Range	2
Default Value	2
Subindex	1
Name	Feed
Category	mandatory
Access	R/W
PDO Mapping	possible
Value Range	UNSIGNED 32
Default Value	1
Subindex	2
Name	Shaft revolutions
Category	mandatory
Access	R/W
PDO Mapping	possible
Value Range	UNSIGNED 32
Value Italige	

22.6.6 Profile Velocity Mode (pv) (DS402)

22.6.6.1 General Information

The profile velocity mode enables the processing of velocity setpoints and the associated accelerations.

Objects that are defined in this section

Index	Object	Name	Туре	Access
606Ch	VAR	velocity actual value	INTEGER32	R/O
60FFh	VAR	target velocity	INTEGER32	R/W

Objects that are defined in other sections

Index	Object	Name	Туре	Section
6040h	VAR	control word	INTEGER16	dc (=> p. 195)
6041h	VAR	status word	UNSIGNED16	dc (=> p. 196)
6063h	VAR	position actual value*	INTEGER32	pc (=> p. 207)
6083h	VAR	profile acceleration	UNSIGNED32	pp (=> p. 220)
6084h	VAR	profile deceleration	UNSIGNED32	pp (=> p. 220)

22.6.6.2 Object description

Object 606Ch: velocity actual value (DS402)

The object velocity actual value represents the actual speed.

Index	606Ch
Name	velocity actual value, VL.FB
Object code	VAR
Data type	INTEGER32
Mode	pv
Access	R/O
PDO mapping	possible
Unit	velocity units (SDO is in user units and the PDO is in RPM
Value range	(-2 ³¹) to (2 ³¹ -1)
Default value	_
EEPROM	no

Object 60FFh: target velocity (DS402)

The speed setpoint (target velocity) represents the setpoint for the ramp generator.

Index	60FFh
Name	target velocity, VL.CMDU
Object code	VAR
Data type	INTEGER32
Mode	pv
Access	R/W
PDO mapping	possible
Unit	increments
Value range	(-2 ³¹) to (2 ³¹ -1)
Default value	_
EEPROM	no

22.6.7 Profile Torque Mode (tq) (DS402)

22.6.7.1 General Information

The profile torque mode enables the processing of torque setpoints and the associated current.

Objects that are defined in this section

Index	Object	Name	Туре	Access
6071h	VAR	Target torque	INTEGER16	R/W
6073h	VAR	Max current	UNSIGNED16	R/W
6077h	VAR	Torque actual value	INTEGER16	R/O

Objects that are defined in other sections

22.6.7.2 Object description

Object 6071h: Target torque (DS402)

This parameter is the input value for the torque controller in profile torque mode and the value is given per thousand (0.001%) of rated torque.

Index	6071h
Name	Target torque
Object code	VAR
Data type	INTEGER16
Category	conditional; mandatory, if tq supported
Access	R/W
PDO mapping	possible
Value range	INTEGER16
Default value	0

Object 6073h: Max current (DS402)

This value represents the maximum permissible torque creating current in the motor and is given per thousand (0.001%) of rated current.

Index	6073h
Name	Max current
Object code	VAR
Data type	UNSIGNED16
Category	optional
Access	R/W
PDO mapping	possible
Value range	UNSIGNED16
Default value	0

Object 6077h: Torque actual value (DS402)

The torque actual value corresponds to the instantaneous torque in the drive motor. The value is given per thousand (0.001%) of rated torque.

Index	6077h
Name	Torque actual value
Object code	VAR
Data type	INTEGER16
Category	optional
Access	R/O
PDO mapping	possible
Value range	INTEGER16
Default value	0

22.6.8 Position Control Function (pc) (DS402)

22.6.8.1 General Information

This section describes the actual position values that are associated with the position controller of the drive. They are used for the profile position mode.

Objects that are defined in this section

Index	Object	Name	Туре	Access
6063h	VAR	position actual value*	INTEGER32	r
6064h	VAR	position actual value	INTEGER32	r
6065h	VAR	following error window	UNSIGNED32	R/W

Objects that are defined in other sections

Index	Object	Name	Туре	Section
607Ah	VAR	target position	INTEGER32	pp (=> p. 219)
607Ch	VAR	home-offset	INTEGER32	hm (=> p. 214)
607Dh	ARRAY	software position limit	INTEGER32	pp (=> p. 219)
6040h	VAR	control word	INTEGER16	dc (=> p. 195)
6041h	VAR	status word	UNSIGNED16	dc (=> p. 196)

22.6.8.2 Object Description

Object 6063h: position actual value* (DS402)

The object position actual value provides the momentary actual position in increments. The resolution is defined with Object 608F as power-of-two number.

Index	6063h
Name	position actual value
Object code	VAR
Data type	INTEGER32
Mode	pc, pp
Access	R/W
PDO mapping	•
Unit	increments (1 turn = 2 ^{PRBASE})
Value range	(-2 ³¹) to (2 ³¹ -1)
Default value	2^{20}
EEPROM	no

Object 6064h: position actual value (DS402)

The object position actual value provides the actual position. The resolution can be altered by the gearing factors of the position controller (Object 6092).

Index	6064h
Name	position actual value, PL.FB
Object code	VAR
Data type	INTEGER32
Mode	pc, pp
Access	R/W
PDO mapping	possible
Unit	position units
Value range	(-2 ³¹) to (2 ³¹ -1)
Default value	_
EEPROM	no

Object 6065h: Following error window

The following error window defines a range of tolerated position values symmetrically to the position demand value. A following error might occur when a drive is blocked, unreachable profile velocity occurs, or at wrong closed loop coefficients. If the value of the following error window is 0, the following control is switched off.

Index	6065h
Name	Following error window
Object code	VAR
Data type	UNSIGNED32
Category	optional
Access	R/W
PDO mapping	no
Value range	UNSIGNED32
Default value	0

Object 60F4h: Following error actual value (DS402)

This object returns the current value of the following error in units defined by the user.

Index	60F4h
Name	Following error actual value
Object code	VAR
Data type	Integer32
Category	optional
Access	R/O
PDO mapping	possible
Value range	INTEGER32
Default value	0

22.6.9 Interpolated Position Mode (ip) (DS402)

22.6.9.1 General information

The interpolated position mode is implemented in a simple, straightforward way. Single position setpoints must be transmitted in the interpolation time period and are taken over on every defined SYNC - telegram sent. A linear interpolation is used between the setpoints.

Objects defined in this section

Index	Object	Name	Туре	Access
60C0h	VAR	Interpolation sub mode select	INTEGER16	R/W
60C1h	ARRAY	Interpolation data record	INTEGER32	R/W
60C2h	RECORD	Interpolation time period	Interpolation time period	R/W
60C4h	RECORD	Interpolation data configuration record	Interpolation data con-	R/W
			figuration record	

Objects defined in other sections

22.6.9.2 Object description

Object 60C0h: Interpolation sub mode select

In the AKD the linear interpolation between position setpoints is supported. The only allowed value is 0.

Index	60C0h
Name	Interpolation sub mode select
Object code	VAR
Data type	INTEGER16
Category	optional
Access	R/W
PDO mapping	possible
Value range	0
Default value	0

Object 60C1h: Interpolation data record

In the AKD a single setpoint is supported for the interpolated position mode. For the linear interpolation mode each interpolation data record simply can be regarded as a new position setpoint.

After the last item of an interpolation data record is written to the devices input buffer, the pointer of the buffer is automatically incremented to the next buffer position.

Index	60C1h
Name	Interpolation data record
Object code	ARRAY
Data type	INTEGER32
Category	optional
Subindex	0
Description	number of entries
Data type	UNSIGNED8
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	1
Default value	no
Subindex	1
Description	x1the first parameter of ip function fip(x1, xN)
Category	mandatory
Access	R/W
PDO mapping	possible
Value range	INTEGER32
Default value	no

Object 60C2h: Interpolation time period

The interpolation time period is used for the PLL (phase locked loop) synchronized position modes. The unit (sub-index 1) of the time is given in $10^{\text{interpolation time index}}$ seconds.

Only multiples of 1 ms are allowed. The two values define the internal ASCII - parameter PTBASE (given in multiples of 250 Mikroseconds). Both values must be written to fix a new interpolation time period. PTBASE will only be updated then.

Index	60C2h
Name	Interpolation time period
Object code	RECORD
Data type	Interpolation time period record (0080h)
Category	optional
Subindex	0
Description	number of entries, FBUS.SAMPLEPERIOD
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	2
Default value	2
Subindex	1
Description	Interpolation time units
Category	mandatory
Access	R/W
PDO mapping	possible
Value range	UNSIGNED8
Default value	1

Object 60C4h: Interpolation data configuration

Only a single position setpoint is supported in the AKD. Therefore only the value 1 in Subindex 5 is possible. All other subindices are set to 0.

Index	60C4h
Name	Interpolation data configuration
Object code	RECORD
Data type	Interpolation data configuration record (0081h)
Category	optional
Subindex	0
Description	number of entries
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	6
Default value	6
Subindex	1
Description	Maximum buffer size
Category	mandatory
Access	R/O
PDO mapping	not possible
Value range	UNSIGNED32
Default value	0
Subindex	2
Description	Actual buffer size
Category	mandatory
Access	R/W
PDO mapping	·
Value range	UNSIGNED32
Default value	0
Subindex	3
Description	Buffer organization
Category	mandatory
Access	R/W
PDO mapping	·
Value range	UNSIGND8
Default value	0

Subindex	4
Description	Buffer position
Category	mandatory
Access	R/W
PDO mapping	possible
Value range	UNSIGNED16
Default value	0
Subindex	5
Description	Size of data record
Category	mandatory
Access	W
PDO mapping	possible
Value range	1 to 254
Default value	1
Subindex	6
Description	Buffer clear
Category	mandatory
Access	W
PDO mapping	possible
Value range	UNSIGNED8
Default value	0

22.6.10 Homing Mode (hm) (DS402)

22.6.10.1 General information

This section describes the various parameters which are required to define a homing mode.

Objects that are defined in this section

Index	Object	Name	Туре	Access
607Ch	VAR	HOME.P: home offset	INTEGER32	R/W
6098h	VAR	HOME.MODE,	INTEGER8	R/W
		HOME.DIR:homing method		
6099h	ARRAY	HOME.V: homing speeds	UNSIGNED32	R/W
609Ah	VAR	HOME.ACC, HOME.DEC:	UNSIGNED32	R/W
		homing acceleration/deceleration		

Objects that are defined in other sections

Index	Object	Name	Туре	Section
6040h	VAR	control word	INTEGER16	dc (=> p. 195)
6041h	VAR	status word	UNSIGNED16	dc (=> p. 196)

22.6.10.2 Object Description

Object 607Ch: homing offset (DS402)

The reference offset (home offset) is the difference between the zero position for the application and the zero point of the machine. All subsequent absolute motion tasks take account of the reference offset.

Index	607Ch		
Name	home offset, HOME.P		
Object code	VAR		
Data type	INTEGER32		
Mode	hm		
Access	R/W		
PDO mapping	possible		
Unit	user-defined		
Value range	(-2 ³¹) to (2 ³¹ -1)		
Default value	0		

Object 6098h: homing method (DS402)

Index	6098h
Name	homing method, HOME.MODE, HOME.DIR
Object code	VAR
Data type	INTEGER8
Mode	hm
Access	R/W
PDO mapping	possible
Unit	position units
Value range	-128 to 127
Default value	0

Description of the homing methods

Choosing a homing method by writing a value to homing method (Object 6098h) will clearly establish:

- the homing signal (P-Stop, N-Stop, reference switch)
- the direction of actuation

and where appropriate

• the position of the index pulse.

The reference position is give by the reference offset (Object 607Ch).

A detailed description of the types of homing movement can be found in the description of WorkBench.

The following homing methods are supported:

Method as	Brief description: Homing	command
per DS402	oner accompliant risining	Sommana
-128 to -1	reserved	_
0	reserved	_
1	homing to negative limit switch, with zeroing, negative count direction	HOME.MODE=2, HOME.DIR=0
2	homing to positive limit switch, with zeroing, positive count direction	HOME.MODE=2, HOME.DIR=1
3 to 7	not supported	
8	homing to reference switch, with zeroing, positive count direction	HOME.MODE=5, HOME.DIR=1
9 to 11	not supported	
12	homing to reference switch, with zeroing, negative count direction	HOME.MODE=5, HOME.DIR=0
13 to 14	not supported	
15 to 16	reserved	_
17	homing to negative limit switch, without zeroing, negative count direction	HOME.MODE=1, HOME.DIR=0
18	homing to negative limit switch, without zeroing, positive count direction	HOME.MODE=1, HOME.DIR=1
19 to 23	not supported	_
24	homing to reference switch, without zeroing, positive count direction	HOME.MODE=4, HOME.DIR=1
25 to 27	not supported	_
28	homing to reference switch, without zeroing, negative count direction	HOME.MODE=4, HOME.DIR=0
29 to 30	not supported	
31 to 32	reserved	_
33	homing within a single turn, negative count direction	HOME.MODE=7, HOME.DIR=0
34	homing within a single turn, positive count direction	HOME.MODE=7, HOME.DIR=1
35	set reference point at present position	HOME.MODE=0, HOME.DIR=0
36 to 127	reserved	_

Object 6099h: homing speeds (DS402)

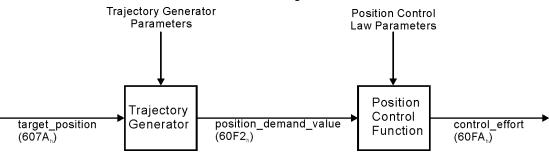
Index	6099h	
Name	homing speeds	
Object code	ARRAY	
Data type	UNSIGNED32	
Subindex	1	
Description	speed during search for switch, HOME.V	
Mode	hm	
Access	R/W	
PDO mapping	possible	
Unit	velocity units	
Value range	alue range 0 to (2 ³² -1)	
Default value	equivalent 60 rpm	
Subindex	2	
Description	speed during search for zero, HOME.FEEDRATE	
Mode	hm	
Access	R/W	
PDO mapping	not possible	
Unit	velocity units	
Value range	0 to (2 ³² -1)	
Default value	1/8 * Object 6099 sub 1	

Object 609Ah: homing acceleration (DS402)

Index	609Ah
Name	homing acceleration
Object code	VAR
Data type	UNSIGNED32
Mode	hm
Access	R/W
PDO mapping	possible
Unit	acceleration units
Value range	0 to (2 ³² -1)
Default value	0

Homing Mode Sequence

The homing movement is started by setting Bit 4 (positive edge). The successful conclusion is indicated by Bit 12 in the status word ("Object 6041h: Status word (DS402)" (=> p. 196)). Bit 13 indicates that an error occurred during the homing movement. In this case, the error code must be evaluated (error register: "Object 1001h: Error register (DS301)" (=> p. 164)," Object 1003h: Predefined Error Field (DS301)" (=> p. 166), manufacturer status: "Object 1002h: Manufacturer Status Register (DS301)" (=> p. 165)).


Bit 4	Meaning	
0	homing inactive	
0 => 1	start homing movement	
1	homing active	
1 => 0	interruption of homing movement	

Bit 13	Bit 12	Meaning
0	0	reference point not set, or homing movement not yet finished
0	1	reference point set, homing movement finished
1	0	homing movement could not be successfully concluded (lag error)
1	1	impermissible state

22.6.11 Profile Position Mode (pp)

22.6.11.1 General Information

The overall structure for this mode is shown in this figure:

The special handshake procedure for the control word and status word is described in "Functional Description" (=> p. 221)

Objects that are defined in this section

Index	Object	Name	Туре	Access
607Ah	VAR	target position	INTEGER32	R/W
607Dh	ARRAY	software position limit	INTEGER32	R/W
6081h	VAR	profile velocity	UNSIGNED32	R/W
6083h	VAR	profile acceleration	UNSIGNED32	R/W
6084h	VAR	profile deceleration	UNSIGNED32	R/W

Objects that are defined in other sections

Inde	ex	Object	Name	Туре	Section
604	0h	VAR	control word	INTEGER16	dc (=> p. 195)
604	·1h	VAR	status word	UNSIGNED16	dc (=> p. 196)

22.6.11.2 Object Description

Object 607Ah: target position (DS402)

The object target position defines the target position for the drive. The target position is interpreted as a relative distance or an absolute position, depending on Bit 6 of the control word. The type of relative movement can be further defined by the manufacturer-specific parameter 35B9h Subindex 0 and 1.

The mechanical resolution is set by the gearing factors Object 6093h Subindex 1 and 2.

Index	607Ah
Name	target position, MT.P
Object code	VAR
Data type	INTEGER32
Mode	рр
Access	R/W
PDO mapping	possible
Unit	user-defined
Value range	-(2 ³¹ -1) to (2 ³¹ -1)
Default value	_

Object 607Dh: Software position limit (DS402)

Software position limit contains the sub-parameters min position limit and max position limit. New target positions are checked against these limits. The limits are relative to the machine home position, which is the result of homing (including the home offset (Object 607Ch)). As default the software position limits are switched off. Changed values must be saved and the drive must be restarted to take enable the new the software limits.

Index	607Dh		
Name	Software position limit, SWLS.LIMIT0		
Object code	ARRAY		
Data type	INTEGER32		
Category	optional		
Subindex	0		
Description	number of entries		
Category	mandatory		
Access	R/O		
PDO mapping	not possible		
Value range	2		
Default value	2		
Subindex	1		
Description	min position limit, SWLS.LIMIT0		
Category	mandatory		
Access	R/W		
PDO mapping	possible		
Value range	INTEGER32		
Default value	0 (switched off)		

Object 6081h: profile velocity (DS402)

The profile velocity is the final velocity that should be reached after the acceleration phase of a motion task.

Index	6081h
Name	profile velocity, MT.V
Object code	VAR
Data type	UNSIGNED32
Mode	pp
Access	R/W
PDO mapping	possible
Unit	speed units
Value range	0 to (2 ³² -1)
Default value	10

Object 6083h: profile acceleration (DS402)

The acceleration ramp (profile acceleration) is given in units that are defined by the user (position units per s²). They can be transformed with the acceleration factor defined by Object 6097 sub1 & 2. The type of acceleration ramp can be selected as a linear ramp or a sin² ramp (see Object 6086h).

Index	6083h	
Name	ame profile acceleration, MT.ACC	
Object code	VAR	
Data type	UNSIGNED32	
Mode	рр	
Access	R/W	
PDO mapping	possible	
Unit	acceleration units	
Value range	0 to (2 ³² -1)	
Default value	0	

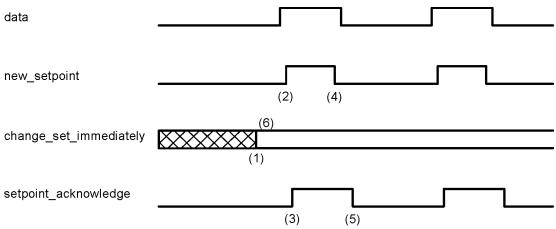
Object 6084h: profile deceleration (DS402)

The braking/deceleration ramp is handled in the same way as the acceleration ramp (" Object 6083h: profile acceleration (DS402)" (=> p. 220)).

Index	6084h	
Name	profile deceleration, MT.DEC	
Object code	VAR	
Data type	UNSIGNED32	
Mode	рр	
Access	R/W	
PDO mapping	possible	
Unit	deceleration units	
Value range	0 to (2 ³² -1)	
Default value	0	

Functional Description

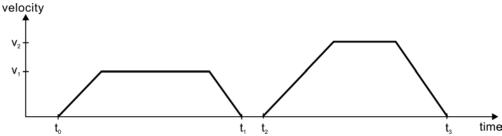
Two different ways to apply target positions to a drive are supported by this device profile.

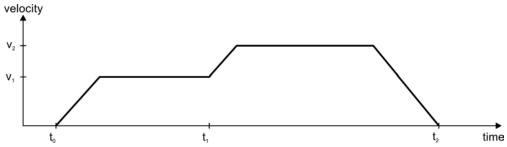

Set of setpoints:

After reaching the target_position, the drive device immediately processes the next target position, which results in a move where the velocity of the drive normally is not reduced to zero after achieving a setpoint. With AKD, this is only possible if trapezoidal ramps are used.

Single setpoints:

After reaching the target_position, the drive device signals this status to a host computer and then receives a new setpoint. After reaching a target_position, the velocity is normally reduced to zero before starting a move to the next setpoint.


The two modes are controlled by the timing of the bits for new_setpoint and change_set_immediately in the control word, and setpoint_acknowledge in the status word. These bits allow the setting up of a request-response mechanism in order to prepare a set of setpoints while another set is still being processed in the drive unit. This minimizes reaction times within a control program on a host computer.


The figures show the difference between the set_of_setpoints mode and the single setpoint mode. The initial status of the bit change_set_immediately in the control word determines which mode is used. To keep these examples simple, only trapezoidal moves are used.

If the bit change_set_immediately is "0" a single setpoint is expected by the drive (1). After data is applied to the drive, a host signals that the data is valid by changing the bit new_setpoint to "1" in the control word (2). The drive responds with setpoint_acknowledge set to "1" in the status word (3) after it has recognized and buffered the new valid data. Now the host can release new_setpoint (4) and subsequently the drive will signal through setpoint_acknowledge = "0" its ability to accept new data again (5).

In the figure below this mechanism results in a velocity of zero after ramping down to reach a target_position X1 at t1. After signaling to the host, that the setpoint has been reached as described above, the next target_position is processed at t2 and reached at t3.

With change_set_immediately set to "1" (6), the host instructs the drive to apply a new setpoint immediately after reaching the previous one. The relative timing of the other signals is unchanged. This behavior causes the drive to process the next setpoint X2 in advance, and to hold its velocity when it reaches the target_position X1 at t1. The drive then moves immediately to the next target_position X2 that has already been calculated.

Bits in the control word:		Bits in the status word:	
Bit 4	new_setpoint (positive edge!)	Bit 12	setpoint acknowledge
Bit 5	change_set_immediately	Bit 13	lag/following error
Bit 6	absolute/relative		

Notes on motion task type relative:

If Bit 6 is set, then the motion task type is relative, and activated according to the last target position or actual position. If other types of relative motion are required, these must be activated in advance through the manufacture specific object 35B9h Subindex 0 (MT.CNTL).

Notes on profile position mode:

Functional description for the profile position mode

The drive profile DS402 distinguishes between two methods of moving to a target position. These two methods are controlled by the bits for new_setpoint and change_set_immediately in the control word, and setpoint_ acknowledge in the status word. These bits can be used to prepare a motion task while another is still being carried out (handshake).

Moving to several target positions without an intermediate halt

After the target position has been reached, the drive moves immediately to the next target position. This requires that new setpoints are signaled to the drive. This is done through a positive transition of the new_setpoint bit. In this case, the setpoint_acknowledge bit must not be active (=1) in the status word (see also Handshake DS402). The velocity is not reduced to zero when the first setpoint is reached.

Moving to a single target position

The drive moves to the target position, whereby the velocity is reduced to zero. Reaching the target position is signaled by the bit for target_reached in the status word.

22.7 Appendix

22.7.1 Object Dictionary

The following table describes all objects reachable via SDO or PDO. (i.p. = in preparation).

Abbreviations:

U = UNSIGNED RO = Read only
INT = INTEGER RW = Read and Write
VisStr = Visible String WO = Write only
const = Constant

22.7.1.1 Float Scaling

The scaling applied to objects which match floating-point parameters in WorkBench/Telnet are listed in the column "Float Scaling."

For example, index 607Ah is listed as 1:1 - this means that commanding a value of 1000 in SDO 607Ah is equivalent to entering MT.P 1000.000 in Workbench. On the other hand, index 3598h is listed as 1000:1 - this means that commanding a value of 1000 in SDO 3598h is equivalent to entering IL.KP 1.000 in Workbench.

A few parameters are listed as variable (var), because the scaling depends on other settings.

22.7.1.2 Communication SDOs

Index	Sub- index	Data Type	Float Scaling	Access	PDO mapp.	Description	ASCII object
1000h	0	U32		RO	no	Device type	_
1001h	0	U8		RO	no	Error register	_
1002h	0	U32		RO	yes	Manufacturer-specific status register	_
1003h		ARRAY				Pre-defined error field	_
1003h	0	U8		RW	no	Number of errors	_
1003h	1 to 10	U32		RO	no	standard error field	_
1005h	0	U32		RW	no	COB—ID SYNC message	_
1006h	0	U32		RW	no	Communication cycle period	_
1008h	0	VisStr		const	no	Manufacturer device name	_
1009h	0	VisStr		const	no	Manufacturer hardware version	_
100Ah	0	VisStr		const	no	Manufacturer software version	_
100Ch	0	U16		RW	no	Guard time	_
100Dh	0	U8		RW	no	Lifetime factor	_
1010h		ARRAY				Number of entries	_
1010h	0	U8		RO	no	Number of entries	_
1010h	1	U32		RW	no	Saves the drive parameters from the RAM to the NV.	DRV.NVSAVE
1014h	0	U32		RW	no	COB—ID for the Emergency Object	_
1016h		RECORD				Consumer heartbeat time	
1016h	0	U8		RO	no	Number of entries	_
1016h	1	U32		RW	no	Consumer heartbeat time	_
1017h	0	U16		RW	no	Producer heartbeat time	_
1018h		RECORD				Identity Object	_
1018h	0	U8		RO	no	Number of entries	_
1018h	1	U32		RO	no	Vendor ID	

Index	Sub- index	Data Type	Float	Access	PDO	Description	ASCII object
1018h	2	U32	Scaling	RO	mapp.	Product Code	
1018h	3	U32		RO	no	Revision number	
1018h	4	U32		RO	no	Serial number	
1026h		ARRAY		110	110	OS prompt	
1026h	0	U8		RO	no	Number of entries	
1026h	1	U8		WO	no	StdIn	
1026h	2	U8		RO	no	StdOut	
1400h		RECORD				RXPDO1 communication parameter	
1400h	0	U8		RO	no	Number of entries	
1400h	1	U32		RW	no	RXPDO1 COB — ID	_
1400h	2	U8		RW	no	Transmission type RXPDO1	_
1401h		RECORD				RXPDO2 communication parameter	_
1401h	0	U8		RO	no	Number of entries	_
1401h	1	U32		RW	no	RXPDO2 COB—ID	_
1401h	2	U8		RW	no	Transmission type RXPDO2	_
1402h		RECORD				RXPDO3 communication parameter	_
1402h	0	U8		RO	no	Number of entries	_
1402h	1	U32		RW	no	RXPDO3 COB—ID	_
1402h	2	U8		RW	no	Transmission type RXPDO3	_
1403h		RECORD				RXPDO4 communication parameter	_
1403h	0	U8		RO	no	Number of entries	_
1403h	1	U32		RW	no	RXPDO4 COB—ID	_
1403h	2	U8		RW	no	Transmission type RXPDO4	
1600h		RECORD				RXPDO1 mapping parameter	_
1600h	0	U8		RO	no	Number of entries	_
1600h	1 to 8	U32		RW	no	Mapping for n—th application object	_
1601h		RECORD				RXPDO2 mapping parameter	_
1601h	0	U8		RO	no	Number of entries	_
1601h	1 to 8	U32		RW	no	Mapping for n—th application object	_
1602h		RECORD				RXPDO3 mapping parameter	_
1602h	0	U8		RO	no	Number of entries	_
1602h	1 to 8	U32		RW	no	Mapping for n—th application object	_
1603h		RECORD				RXPDO4 mapping parameter	_
1603h	0	U8		RO	no	Number of entries	_
1603h	1 to 8	U32		RW	no	Mapping for n—th application object	_
1800h		RECORD				TXPDO1 communication parameter	_
1800h	0	U8		RO	no	Number of entries	_
1800h	1	U32		RW	no	TXPDO1 COB—ID	_
1800h	2	U8		RW	no	Transmission type TXPDO1	_
1800h	3	U16		RW	no	Inhibit time	_
1800h	4	U8		const	no	reserved	_
1800h	5	U16		RW	no	Event timer	
1801h		RECORD				TXPDO2 communication parameter	
1801h	0	U8		RO	no	Number of entries	
1801h	1	U32		RW	no	TXPDO2 COB—ID	
1801h	2	U8		RW	no	Transmission type TXPDO2	
1801h	3	U16		RW	no	Inhibit time	
1801h	4	U8		const	no	reserved	

Index	Sub- index	Data Type	Float Scaling	Access	PDO	Description	ASCII object
1801h	5	U16	Scalling	RW	mapp.	Event timer	
1802h	<u> </u>	RECORD		IXVV	110	TXPDO3 communication parameter	
1802h	0	U8		RO	200	Number of entries	_
1802h		U32		RW	no	TXPDO3 COB—ID	_
	2	U8			no		_
1802h				RW	no	Transmission type TXPDO3	_
1802h	3	U16		RW	no	Inhibit time	_
1802h	4	U8		const	no	reserved	_
1802h	5	U16		RW	no	Event timer	_
1803h		RECORD				TXPDO4 communication parameter	_
1803h	0	U8		RO	no	Number of entries	_
1803h	1	U32		RW	no	TXPDO4 COB—ID	_
1803h	2	U8		RW	no	Transmission type TXPDO4	_
1803h	3	U16		RW	no	Inhibit time	_
1803h	4	U8		const	no	reserved	_
1803h	5	U16		RW	no	Event timer	_
1A00h		RECORD				Mapping parameter TXPDO1	_
1A00h	0	U8		RO	no	Number of entries	_
1A00h	1 to 8	U32		RW	no	Mapping for n—th application object	_
1A01h		RECORD				Mapping parameter TXPDO2	<u> </u>
1A01h	0	U8		RO	no	Number of entries	_
1A01h	1 to 8	U32		RW	no	Mapping for n—th application object	_
1A02h		RECORD				Mapping parameter TXPDO3	_
1A02h	0	U8		RO	no	Number of entries	_
1A02h	1 to 8	U32		RW	no	Mapping for n—th application object	_
1A03h		RECORD				Mapping parameter TXPDO4	_
1A03h	0	U8		RO	no	Number of entries	_
1A03h	1 to 8	U32		RW	no	Mapping for n—the application object	_

22.7.1.3 Manufacturer specific SDOs

Index	Sub-	Data	Float	Access	PDO	Description	ASCII object
masx		Туре	Scaling		mapp.	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
2014h		ARRAY				Mask TxPDO Channel 1	_
2014h	1	U32		RW	no	Mask (Byte 03)	_
2014h	2	U32		RW	no	Mask (Byte 47)	_
2015h		ARRAY				Mask TxPDO Channel 2	_
2015h	1	U32		RW	no	Mask (Byte 03)	_
2015h	2	U32		RW	no	Mask (Byte 47)	_
2016h		ARRAY				Mask TxPDO Channel 3	_
2016h	1	U32		RW	no	Mask (Byte 03)	_
2016h	2	U32		RW	no	Mask (Byte 47)	_
2017h		ARRAY				Mask TxPDO Channel 4	_
2017h	1	U32		RW	no	Mask (Byte 03)	_
2017h	2	U32		RW	no	Mask (Byte 47)	_
2018h		ARRAY				Firmware version	_
2018h	0	U16		const	no	Number of entries	_
2018h	1	U16		const	no	Major version	_
2018h	2	U16		const	no	Minor version	_
2018h	3	U16		const	no	Revision	_
2018h	4	U16		const	no	Branch version	_
204Ch		ARRAY				pv scaling factor	_
204Ch	0	U8		RO	no	Number of entries	_
204Ch	1	INT32		RW	yes	pv scaling factor numerator	_
204Ch	2	INT32		RW	yes	pv scaling factor denominator	_
2050h	0	INT32	1:1	RO	no	Position, secondary feedback	DRV.HANDWHEEL
20A0h	0	INT32	var	RO	yes	Latch position 1, positive edge	CAP0.PLFB, CAP0.T
20A1h	0	INT32	var	RO	yes	Latch position 1, negative edge	CAP0.PLFB, CAP0.T
20A2h	0	INT32	var	RO	yes	Latch position 2, positive edge	CAP1.PLFB, CAP1.T
20A3h	0	INT32	var	RO	yes	Latch position 2, negative edge	CAP1.PLFB, CAP1.T
20A4h	0	U16		RW	yes	Latch control register	_
20A5h	0	U16		RW	yes	Latch status register	_
20A6h	0	INT32	var	RO	yes	Sets captured position value	CAP0.PLFB
20B8h	0	U16		RW	no	Clear changed digital input information	_
3405h		ARRAY				VL.ARTYPE	_
3405h	0	U8		RO	no	Number of entries	_
3405h	1	U8		RW	no	Calculation method for BiQuad filter 1	VL.ARTYPE1
3405h	2	U8		RW	no	Calculation method for BiQuad filter 2	VL.ARTYPE2
3405h	3	U8		RW	no	Calculation method for BiQuad filter 3	VL.ARTYPE3
3405h	4	U8		RW	no	Calculation method for BiQuad filter 4	VL.ARTYPE4
3406h		ARRAY				VL BiQuad	_
3406h	0	U8		RO	no	Number of entries	_
3406h	1	U32	1000:1	RW	no	Natural frequency of pole of anti- resonance (AR) filter 1	VL.ARPF1

Index	Sub-	Data	Float	Access	PDO	Description	ASCII object
	index	Туре	Scaling		тарр.		
3406h	2	U32	1000:1	RW	no	Natural frequency of pole of anti- resonance (AR) filter 2	VL.ARPF2
3406h	3	U32	1000:1	RW	no	Natural frequency of pole of anti- resonance (AR) filter 3	VL.ARPF3
3406h	4	U32	1000:1	RW	no	Natural frequency of pole of anti- resonance (AR) filter 4	VL.ARPF4
3406h	5	U32	1000:1	RW	no	Q of pole of anti-resonance (AR) filter 1	VL.ARPQ1
3406h	6	U32	1000:1	RW	no	Q of pole of anti-resonance (AR) filter 2	VL.ARPQ2
3406h	7	U32	1000:1	RW	no	Q of pole of anti-resonance (AR) filter 3	VL.ARPQ3
3406h	8	U32	1000:1	RW	no	Q of pole of anti-resonance (AR) filter 4	VL.ARPQ4
3406h	9	U32	1000:1	RW	no	Natural frequency of zero of anti- resonance (AR)filter 1	VL.ARZF1
3406h	Α	U32	1000:1	RW	no	Natural frequency of zero of anti- resonance (AR)filter 2	VL.ARZF2
3406h	В	U32	1000:1	RW	no	Natural frequency of zero of anti- resonance (AR)filter 3	VL.ARZF3
3406h	С	U32	1000:1	RW	no	Natural frequency of zero of anti- resonance (AR)filter 4	VL.ARZF4
3406h	D	U32	1000:1	RW	no	Q of zero of anti-resonance filter 1	VL.ARZQ1
3406h	E	U32	1000:1	RW	no	Q of zero of anti-resonance filter 2	VL.ARZQ2
3406h	F	U32	1000:1	RW	no	Q of zero of anti-resonance filter 3	
3406h	10	U32	1000:1	RW	no	Q of zero of anti-resonance filter 4	VL.ARZQ4
3407h		STRUCT				Velocity Filter	_
3407h	0	U8		RO	no	Number of entries	_
3407h	1	INT32	1000:1	RW	no	10 Hz filtered VL.FB	VL.FBFILTER
3407h	2	U32	1000:1	RW	no	Gain for the velocity feedforward	VL.KVFF
3407h	3	U32		RW	no	Gain for the acceleration feed- forward	VL.KBUSFF
3407h	4	U32	1:1	RW	no	Sets the velocity error	VL.ERR
3412h	0	INT8		RW	no	Type of regen resistor	REGEN.TYPE
3414h	0	U8		RW		Returns and sets the regen resistor fault level temperature.	REGEN.WATTEXT REGEN.WATTEXT
3415h	0	U32	1000:1	RO	no	Thermal regen resistor time constant	REGEN.TEXT
3416h	0	U32		RO	no	Gets regen resistor's calculated power	REGEN.POWER
3420h	0	U16	1000:1	RW	no	Sets the foldback fault level.	IL.FOLDFTHRESH
3421h	0	U32	1000:1	RW	no	Sets the user value for the fold-back fault level.	IL.FOLDFTHRESHU
3422h	0	U32	1000:1		no	Sets friction compensation value.	IL.FRICTION
3423h	0	INT32	1000:1		no	A constant current command added to compensate for gravity.	IL.OFFSET
3424h	0	U16			no	Enables/disables the integrator part of the PI loop.	IL.INTEN (Password Protected)
3425h	0	U32	1000:1	RO	no	Reads the overall foldback cur- rent limit	IL.IFOLD

Index	Sub-	Data	Float	Access	PDO	Description	ASCII object
	index	Туре	Scaling		тарр.		
3426h	0	U32	1000:1	RW	no	Sets current loop acceleration feedforward gain value	IL.KACCFF
3430h	0	U8		RW	no	Sets the direction for absolute motion tasks.	PL.MODPDIR
3431h	0	U16		RW	no	Sets the motion task in the drive	MT.SET
3440h		ARRAY				Controlled stop parameters	_
3440h	0	U8		RO	no	Number of entries	_
3440h	1	U32	1:1	RW	no	Sets the deceleration value for a controlled stop.	CS.DEC
3440h	2	U32	1:1	RW	no	Sets the velocity threshold for a controlled stop.	CS.VTHRESH
3440h	3	U32		RW	no	Sets the time value for the drive velocity to be within CS.VTHRESH.	CS.TO
3441h	0	U8		RO	no	Controlled stop state	CS.STATE
3443h	0	U16		RO	no	Returns the possible reason for a drive disable	DRV.DIS
3444h	0	U16	1000:1	RO	no	Maximum current for dynamic braking	DRV.DBILIMIT
3445h	0	U32		RO	no	Emergency timeout for braking	DRV.DISTO
3450h	0	U8		WO	no	Release or enable brake	MOTOR.BRAKERLS
3451h	0	U8		RW	no	Determines which drive parameters are calculated automatically.	MOTOR.AUTOSET
3452h	0	U16		RW	no	Sets the motor maximum voltage	MOTOR.VOLTMAX
3453h	0	U32		RW	no	Sets the motor temperature warning level	MOTOR.TEMPWARN
3454h	0	U32	1000:1	RW	no	Sets the thermal constant of the motor coil	MOTOR.CTF0
3455h	0	U32	1000:1	RW	no	Sets the line-to-line motor Lq	MOTOR.LQLL
3456h	0	U32	1000:1	RW	no	Sets the stator winding resistance phase-phase in ohms	MOTOR.R
3457h		RECORD				Induction Motor parameter	_
3457h	0	U8		RO	no	Number of entries	_
3457h	1	INT32	1000:1	RW	no	Configuration of induction motor's rated velocity.	MOTOR.VRATED
3457h	2	U16		RW	no	Configuration of induction motor's rated voltage.	MOTOR.VOLTRATED
3457h	3	U16		RW	no	Sets the minimum voltage for V/f Control.	MOTOR.VOLTMIN
3460h		RECORD				Capture engines parameters	_
3460h	0	U8		RO	no	Number of entries	_
3460h	1	U8		RW	no	Specifies the trigger source for the position capture.	CAP0.TRIGGER
3460h	2	U8		RW	no	Specifies the trigger source for the position capture.	CAP1.TRIGGER
3460h	3	U8		RW	no	Selects the captured value.	CAP0.MODE
3460h	4	U8		RW	no	Selects the captured value.	CAP1.MODE
3460h	5	U8		RW	no	Controls the precondition logic.	CAP0.EVENT

Index	Sub-	Data	Float	Access		Description	ASCII object
3460h	index 6	Type U8	Scaling	RW	mapp. no	Controls the precondition logic.	CAP1.EVENT
3460h	7	U8		RW	no	Selects the capture precondition edge.	CAP0.PREEDGE
3460h	8	U8		RW	no	Selects the capture precondition edge.	CAP1.PREEDGE
3460h	9	U8		RW	no	Sets the precondition trigger.	CAP0.PRESELECT
3460h	Α	U8		RW	no	Sets the precondition trigger.	CAP1.PRESELECT
3470h		RECORD					_
3470h	0	U8		RO	no	Number of entries	_
3470h	1	INT8		RW	no	Sets the analog output mode.	AOUT.MODE
3470h	2	INT16	1000:1	RW	yes	Reads the analog output value.	AOUT.VALUE
3470h	3	INT16	1000:1	RW	yes	Reads and writes the analog output value.	AOUT.VALUEU
3470h	4	INT16	1000:1	RO	yes	Reads the value of the analog input signal.	AIN.VALUE
3470h	5	U32	1000:1	RW	no	Sets velocity scale factor for analog output	AOUT.VSCALE
3471h	0	U32	1:1	RW	no	Sets the analog position scale factor	"AOUT.PSCALE" (=> p. 300)
3472h	0	U32	1:1	RW	no	Sets analog pscale factor	"AIN.PSCALE" (=> p. 287)
3480h	0	U32	1000:1	RW	no	Integral gain of position regulator PID loop	PL.KI
3481h		ARRAY				PL.INTMAX	_
3481h	0	U8		RO	no	Number of entries	_
3481h	1	U32	1:1	RW	no	Input saturation	PL.INTINMAX
3481h	2	U32	1:1	RW	no	Output saturation	PL.INTOUTMAX
3482h	0	INT32	1:1	RO	no	Maximum value of following error in homing	HOME.PERRTHRESH
3483h	0	INT32	1:1	RW	no	Sets the position error warning level	PL.ERRWTHRESH
3490h	0	INT32	1:1	RO	no	Position feedback offset	FB1.OFFSET
3491h	0	U32		RO	no	Location of index pulse on EEO	DRV.EMUEMTURN
3492h	0	U32		RO	no	Motion status of the drive	DRV.MOTIONSTAT
3493h	0	U8		RO	no	Direction of EEO (emulated encoder output)	DRV.EMUEDIR DRV.EMUEDIR
3494h		RECORD				WS parameters	_
3494h	0	U8		RO	no	Number of entries	_
3494h	1	INT16	1000:1	RW	no	Sets maximum current used for wake and shake	WS.IMAX
3494h	2	INT32	1:1	RW	no	Sets the maximum movement required for wake and shake	WS.DISTMAX
3494h	3	U16		RW	no	Sets the delay for wake and shake between loops in mode 0	WS.TDELAY3
3494h	4	INT32	1:1	RW	no	Defines the maximum allowed velocity for Wake & Shake	WS.VTHRESH
3494h	5	U8		RO	no	Reads wake and shake status	WS.STATE
3494h	6	U8		RW	no	Arm Wake and Shake to start	WS.ARM
34A0h		ARRAY				PLS Position	

Index	Sub- index	Data Type	Float Scaling	Access	PDO mapp.	Description	ASCII object
34A0h	0	U8		RO	no	Number of entries	_
34A0h	1	INT32	1:1	RW	no	Limit switch 1 compare value	PLS.P1
34A0h	2	INT32	1:1	RW	no	Limit switch 2 compare value	PLS.P2
34A0h	3	INT32	1:1	RW	no	Limit switch 3 compare value	PLS.P3
34A0h	4	INT32	1:1	RW	no	Limit switch 4 compare value	PLS.P4
34A0h	5	INT32	1:1	RW	no	Limit switch 5 compare value	PLS.P5
34A0h	6	INT32	1:1	RW	no	Limit switch 6 compare value	PLS.P6
34A0h	7	INT32	1:1	RW	no	Limit switch 7 compare value	PLS.P7
34A0h	8	INT32	1:1	RW	no	Limit switch 8 compare value	PLS.P8
34A1h		ARRAY				PLS Width	_
34A1h	0	U8		RO	no	Number of entries	_
34A1h	1	INT32	1:1	RW	no	Sets Limit Switch1 Width	PLS.WIDTH1
34A1h	2	INT32	1:1	RW	no	Sets Limit Switch 2 Width	PLS.WIDTH2
34A1h	3	INT32	1:1	RW	no	Sets Limit Switch 3 Width	PLS.WIDTH3
34A1h	4	INT32	1:1	RW	no	Sets Limit Switch 4 Width	PLS.WIDTH4
34A1h	5	INT32	1:1	RW	no	Sets Limit Switch 5 Width	PLS.WIDTH5
34A1h	6	INT32	1:1	RW	no	Sets Limit Switch 6 Width	PLS.WIDTH6
34A1h	7	INT32	1:1	RW	no	Sets Limit Switch 7 Width	PLS.WIDTH7
34A1h	8	INT32	1:1	RW	no	Sets Limit Switch 8 Width	PLS.WIDTH8
34A2h		ARRAY				PLS Time	_
34A2h	0	U8		RO	no	Number of entries	_
34A2h	1	U16		RW	no	Sets limit switch 1 time	PLS.T1
34A2h	2	U16		RW	no	Sets limit switch 2 time	PLS.T2
34A2h	3	U16		RW	no	Sets limit switch 3 time	PLS.T3
34A2h	4	U16		RW	no	Sets limit switch 4 time	PLS.T4
34A2h	5	U16		RW	no	Sets limit switch 5 time	PLS.T5
34A2h	6	U16		RW	no	Sets limit switch 6 time	PLS.T6
34A2h	7	U16		RW	no	Sets limit switch 7 time	PLS.T7
34A2h	8	U16		RW	no	Sets limit switch 8 time	PLS.T8
34A3h		ARRAY				PLS Configuration	_
34A3h	0	U8		RO	no	Number of entries	_
34A3h	1	U16		RW	no	Enables the limit switches	PLS.EN
34A3h	2	U16		RW	no	Resets limit switches	PLS.RESET
34A3h	3	U16		RW	no	Selects limit switch mode	PLS.MODE
34A3h	4	U16		RW	no	Reads the limit switch state	PLS.STATE
34A4h	0	U8		RW	no	Sets limit switch units	PLS.UNITS
3501h	0	INT32	1:1	RW	no	Acceleration ramp	DRV.ACC
3502h	0	INT32	1:1	RW	no	Acceleration ramp for homing/jog	HOME.ACC
	_					modes	
3506h	0	INTEGER			no	Action that hardware enable digital input will perform.	DRV.HWENMODE
3509h	0	INT32	1000:1	RO	no	Analog input voltage	AIN.VALUE
3522h	0	INT32	1:1	RW	no	Deceleration rate	DRV.DEC
3524h	0	INT32	1:1	RW	no	Deceleration ramp for homing/jog modes	HOME.DEC
352Ah	0	INT32		RW	no	Direction of movements	DRV.DIR
3533h	0	U32		RO	no	Resolution of motor encoder	FB1.ENCRES

Index	Sub- index	Data Type	Float Scaling	Access	PDO mapp.	Description	ASCII object
3534h	0	U32		RO	no	Mode of EEO connector	DRV.EMUEMODE
3535h	0	U32		RO	no	Resolution of EEO	DRV.EMUERES
3537h	0	U32		RO	no	Location of EEO index pulse	DRV.EMUEZOFFSET
353Bh	0	INT32		RO	no	Selection of the feedback type	FB1.SELECT
3542h	0	U32	1000:1	RW	no	Position Control Loop: Proportional Gain	PL.KP
3548h	0	U32	1000:1	RW	no	Velocity Control Loop: Proportional Gain	VL.KP
354Bh	0	INT32	1000:1	RW	no	Sets the velocity loop velocity feedforward gain value	VL.KVFF
354Dh	0	INT32	1000:1	RW	no	Velocity Control Loop: I-Integration Time	VL.KI
3558h	0	INT32	1000:1	RO	no	Current Monitor	IL.FB
3559h	0	INT32	1000:1	RO	no	Drive Ifold	IL.DIFOLD
355Ah	0	INT32	1000:1	RW	no	I2T Warning	IL.FOLDWTHRESH
3562h	0	INT32		RW	no	Function of Digital Input 1	DIN1.MODE
3565h	0	INT32		RW	no	Function of Digital Input 2	DIN2.MODE
3568h	0	INT32		RW	no	Function of Digital Input 3	DIN3.MODE
356Bh	0	INT32		RW	no	Function of Digital Input 4	DIN4.MODE
356Eh	0	INT32	1000:1	RW	no	Application Peak Current, positive direction	IL.LIMITP
356Fh	0	INT32	1000:1	RW	no	Application Peak Current, negative direction	IL.LIMITN
3586h	0	U32		RW	no	Sets the motor temperature fault level	MOTOR.TEMPFAULT
3587h	0	INT32		RW	no	Select Motor Holding Brake	MOTOR.BRAKE
358Eh	0	U32	1000:1	RW	no	Motor Continuous Current Rating	MOTOR.ICONT
358Fh	0	U32	1000:1	RW	no	Motor Peak Current Rating	MOTOR.IPEAK
3593h	0	U32	1000:1	RW	no	Sets the torque constant of the motor	MOTOR.KT
3596h	0	U32	1000:1	RO	no	Sets the proportional gain of the d-component current PI-regulator as a percentage of IL.KP	IL.KPDRATIO
3598h	0	INT32	1000:1	RW	no	Absolute Gain of Current Control loop	IL.KP
359Ch	0	U32		RW	no	Sets the motor phase.	MOTOR.PHASE
359Dh	0	U32		RW	no	Sets the number of motor poles	MOTOR.POLES
35A3h	0	U32		RW	no	Sets the maximum motor speed	MOTOR.VMAX
35A4h	0	INT32	1000:1	RW	no	Maximum motor current	IL.MIFOLD
35ABh	0	U32	1000:1	RW	no	Sets the motor inertia	MOTOR.INERTIA
35AFh	0	U32		RW	no	Sets the digital output 1 mode	MT.CNTL
35B2h	0	U32		RW	no	Sets the digital output 2 mode	MT.MTNEXT
35B4h	0	INT32		RW	no	Operating Mode	DRV.OPMODE
35BCh	0	INT32		RW	no	Next Task Number for Motion Task 0	MT.MTNEXT
35C2h	0	INT32		RW	no	Select regen resistor	REGEN.REXT
35C5h	0	INT32	1:1	RO	no	Actual Following Error	PL.ERR
35C6h	0	INT32	1:1	RW	no	In-Position Window	MT.TPOSWND

Index	Sub- index	Data Type	Float Scaling	Access	PDO mapp.	Description	ASCII object
35C7h	0	INT32	1:1	RW	no	Max. Following Error	PL.ERRFTHRESH
35CAh	0	INT32		RW	no	Position Resolution (Numerator)	UNIT.PIN
35CBh	0	INT32		RW	no	Position Resolution (Denominator)	UNIT.POUT
35CFh	0	INT32		RW	no	reserved	PL.MODPEN
35E2h	0	U32	1:1	RW	no	Sets the current limit during hom- ing procedure to a mechanical stop	HOME.IPEAK
35EBh	0	INT32		WO	no	Save Data in EEPROM	DRV.NVSAVE
35F0h	0	INT32		WO	no	Set Reference Point	HOME.SET
35FEh	0	INT32		WO	no	Stop Motion Task	DRV.STOP
35FFh	0	U32		RW	no	Selects between disable immediately or stop and then disable	DRV.DISMODE
3610h	0	INT32		RO	no	Ambient Temperature	DRV.TEMPERATURES
3611h	0	INT32		RO	no	Heat Sink Temperature	DRV.TEMPERATURES
3612h	0	INT32		RO	no	Motor Temperature	MOTOR.TEMP
3618h	0	INT32	1:1	RO	no	Actual Velocity	VL.FB
361Ah	0	INT32		RO	no	DC-bus voltage	VBUS.VALUE
3622h	0	INT32	1:1	RW	no	Max. Velocity	VL.LIMITP
3623h	0	INT32	1:1	RW	no	Max. Negative Velocity	VL.LIMITN
3627h	0	INT32	1:1	RW	no	Overspeed	VL.THRESH
3629h	0	INT32	1000:1	RW	no	SW1 Velocity Scaling Factor	AIN.VSCALE
3637h	0	INT32	1:1	RW	no	reserved	PL.MODP1
3638h	0	INT32	1:1	RW	no	reserved	PL.MODP2
3656h	0	U64	1:1	RW	no	Initial feedback position	FB1.ORIGIN
3659h	0	INT32		RW	no	Type of acceleration setpoint for the system	UNIT.ACCROTARY
365Bh	0	INT32		RW	no	Presetting for motion task that is processed later	MT.NUM
365Fh	0	INT32		RW	no	Systemwide Definition of Velocity/Speed	UNIT.VROTARY
3660h	0	INT32		RW	no	Set Resolution of the Position	UNIT.PROTARY
366Eh	0	INT32		RW	no	Disable Delaytime with Holding Brake	MOTOR.TBRAKEAPP
366Fh	0	INT32		RW	no	Enable Delaytime with Holding Brake	MOTOR.TBRAKERLS
3683h	0	U16		RW	no	Delay for wake and shake timing	WS.TDELAY1
3685h	0	U16		RW	no	Sets delay for wake and shake timing	WS.TDELAY2
36D0h	0	U16		RW	no	Sets wake and shake current-vector appliance time	WS.T
36D1h	0	U32	1:1	RW	no	Sets the minimum movement required for wake and shake	WS.DISTMIN
36E2h	0	U8		RW	no	Sets the number of repetitions for wake and shake	WS.NUMLOOPS
36E5h	0	U32		RW	no	CAN baud rate selection	FBUS.PARAM01
36E6h	0	U32		RW	no	pll synchronization	FBUS.PARAM02
36E7h	0	U32		RW	no	-	FBUS.PARAM03

Index		Data		Access	PDO	Description	ASCII object
	index	Type	Scaling		mapp.		
36E8h	0	U32		RW	no	SYNC surveillance	FBUS.PARAM04
36E9h	0	U32		RW	no	-	FBUS.PARAM05
36EAh	0	U32		RW	no	-	FBUS.PARAM06
36EBh	0	U32		RW	no	-	FBUS.PARAM07
36ECh	0	U32		RW	no	-	FBUS.PARAM08
36EDh	0	U32		RW	no	-	FBUS.PARAM09
36EEh	0	U32		RW	no	-	FBUS.PARAM10
36F6h	0	INT32		RW	no	Function of Digital Input 5	DIN5.MODE
36F9h	0	INT32		RW	no	Function of Digital Input 6	DIN6.MODE
36FCh	0	U32		RW	no	Function of Digital Input 7	DIN7.MODE
3856h	0	INT32	1:1	RW	no	velocity window for profile position mode	MT.TVELWND

22.7.1.4 Profile specific SDOs

Index	Sub- index	DataType	Float Scaling	Access	PDO mapp.	Description	ASCII object
6040h	0	U16		WO	yes	Control word	_
6041h	0	U16		RO	yes	Status word	_
6060h	0	INT8		RW	yes	Modes of Operation	_
6061h	0	INT8		RO	yes	Modes of Operation Display	_
6063h	0	INT32		RO	yes	Position actual value (increments)	_
6064h	0	INT32	1:1	RO	yes	Position actual value (position units)	PL.FB
6064h							
6065h	0	U32	1:1	RW	no	Following error window	PL.ERRFTHRESH
606Bh	0	INT32	1:1	RO	yes	Velocity demand value	VL.CMD
606Ch	0	INT32	1000:1	RO	yes	Velocity actual value (PDO in RPM)	VL.FB
606Dh	0	U16		RW	yes	Velocity window	
606Eh	0	U16		RW	yes	Velocity window time	
6071h	0	INT16		RW	yes	Target torque	_
6072h	0	U16		RW	yes	Max torque	
6073h	0	U16		RW	no	Max current	
6077h	0	INT16		RO	yes	Torque actual value	_
607Ah	0	INT32	1:1	RW	yes	Target position	MT.P
607Ch	0	INT32	1:1	RW	no	Reference offset	HOME.P
607Dh		ARRAY				Software position limit	
607Dh	0	U8		RO	no	Number of entries	
607Dh	1	INT32	1:1	RW	no	Software position limit 1	SWLS.LIMIT0
607Dh	2	INT32	1:1	RW	no	Software position limit 2	SWLS.LIMIT1
6081h	0	U32	1:1	RW	yes	Profile Velocity	MT.V
6081h							
6083h	0	U32	1:1	RW	yes	Profile Acceleration	MT.ACC
6084h	0	U32	1:1	RW	yes	Profile Deceleration	MT.DEC
6086h	0	INT16		RW	yes	Motion profile type	MT.CNTL
608Fh		ARRAY				Position encoder resolution	_
608Fh	0	U8		RO	no	Number of entries	
608Fh	1	U32		RW	no	Encoder increments	_
608Fh	2	U32		RW	no	Motor revolutions	
6092h		ARRAY				Feed constant	_
6092h	0	U8		RO	no	Number of entries	
6092h	1	U32		RW	no	Feed	UNIT.PIN
6092h	2	U32		RW	no	Shaft revolutions	UNIT.POUT
6098h	0	INT8		RW	no	Homing type	HOME.MODE
6098h							HOME.DIR
6099h		ARRAY				Homing velocity	_
6099h	0	U8		RO	no	Number of entries	_
6099h	1	U32	1:1	RW	no	Speed while searching for limit switch	HOME.V
6099h	2	U32		RW	no	Speed while searching for zero mark	HOME.FEEDRATE
609Ah	0	U32	1:1	RW	no	Homing acceleration	HOME.ACC
							HOME.DEC
60B1h	0	INT32	1:1	RW	yes	Velocity offset	"VL.BUSFF" (=> p. 663)
60B2h	0	INT16		RW	yes	Torque offset (PDO only)	

Index	Sub-	DataType	Float	Access	PDO	Description	ASCII object
	index		Scaling		тарр.		
60C0h	0	INT8		RW	no	Interpolation submode select	_
60C1h		ARRAY				Interpolation data record	_
60C1h	0	U8		RO	no	Number of entries	_
60C1h	1	INT32		RW	yes	x1, first parameter of ip function	_
60C2h		RECORD				Interpolation time period	_
60C2h	0	U8		RO	no	Number of entries	FBUS.SAMPLEPERIOD
60C2h	1	U8		RW	no	Interpolation time units	_
60C2h	2	INT16		RW	no	Interpolation time index	_
60C4h		RECORD				Interpolation data configuration	_
60C4h	0	U8		RO	no	Number of entries	_
60C4h	1	U32		RO	no	Maximum buffer size	_
60C4h	2	U32		RW	no	Actual buffer size	_
60C4h	3	U8		RW	no	Buffer organization	_
60C4h	4	U16		RW	no	Buffer position	_
60C4h	5	U8		WO	no	Siza of data record	_
60C4h	6	U8		WO	no	Buffer clear	_
60F4h	0	INT32		RO	yes	Following error actual value	PL.ERR
60FDh	0	U32		RO	yes	Digital inputs	DIN1.MODE TO DIN7.MODE
60FEh		ARRAY				Digital outputs	
60FEh	0	U8		RO	no	Number of entries	
60FEh	1	U32		RW	yes	Physical outputs	
60FEh	2	U32		RW	no	Bit mask	
60FFh	0	INT32		RW	yes	Target velocity	VL.CMDU
6502h	0	U32		RO	no	Supported drive modes	_

22.7.2 Examples

22.7.2.1 Examples, setup

All examples are valid for the AKD. All values are hexadecimal.

Basic testing of the connection to the AKD controls

When the AKD is switched on, a boot-up message is transmitted over the bus. The telegram continues to be transmitted, as long as it has not yet found a suitable receiver in the bus system.

If a CAN master is unable to recognize this message, then the following measures can be taken to test communication:

- Check the bus cable: correct characteristic impedance, correct termination resistors at both ends?
- With a multimeter: check the quiescent level of the bus cables CAN-H and CAN-L against CAN-GND (approx. 2.5 V).
- With an oscilloscope: check the output signals on CAN-H and CAN-L at the AKD. Are signals being transmitted on the bus? The voltage difference between CAN-H and CAN-L for a logical "0" is approx. 2-3 V.
- Does signal transmission stop if the master is connected?
- Check the master hardware.
- Check the master software!

Example: Operating the Status Machine

The status machine must be used sequentially during boot-up period. Leaving out a state (except for state "switched on") is not possible.

When the AKD is switched on and the boot-up message has been detected, communication via SDOs can be initiated. For example: all the parameters can be read out or written to, or the status machine for the drive can be controlled.

The state of the status machine can be obtained through the query of Object 6041h Sub 0.

Directly after switch-on, a value will be returned, such as 0240h. This corresponds to the status "Switch on disabled". The following data would then be visible on the CAN bus:

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	40	41	60	00h	40 00 00 00	
583	4B	41	60	00h	40 02 00 00	response telegram
	2 bytes of data			status		

If the supply power is present and the hardware enable is at the High level (24 V to DGND) then you can try to switch the drive to the state "Switched on" by writing the Control word (Object 6040 Sub 0). If this is successful, there will be a positive acknowledgement in the SDO reply (control byte 0 in the data field = 60h).

Switch on

The messages then appear as follows:

COB-ID	Control	Inc	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2B	40	60	00h	06 00 00 00	Shut down
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	07 00 00 00	Switch on
583	60	40	60	00h	00 00 00 00	response telegram

control word = 0x0007 meaning:

Bit 0, Bit 1, Bit 2 set => Switch On,

Disable Voltage off, Quick Stop off

Status query 2

The new status can then be queried again, and returns the following result:

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	40	41	60	00h	_	query status
583	4B	41	60	00h	33 02 00 00	response telegram

Status = 0x0233 meaning:

Bit 0, Bit 1, Bit 5 set => ready to Switch On,

Bit 9 set => remote, operation possible via RS232

Example: Jog Mode via SDO

The motor shall work with constant velocity.

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	60	60	00h	03 00 00 00	Mode of operation "Profile Velocity"
583	60	60	60	00h	00 00 00 00	response telegram
603	23	FF	60	00h	00 00 00 00	setpoint=0
583	60	FF	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	06 00 00 00	shutdown
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	07 00 00 00	switch on
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	0F 00 00 00	enable operation
583	60	40	60	00h	00 00 00 00	response telegram
603	23	FF	60	00h	00 41 00 00	velocity setpoint
583	60	FF	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	0F 01 00 00	Intermediate Stop
583	60	40	60	00h	00 00 00 00	response telegram

Example: Torque Mode via SDO

The motor shall work with constant torque. CAN data:

COB-ID	Control	Ind	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	60	60	00h	04 00 00 00	Mode of operation "Torque"
583	60	60	60	00h	00 00 00 00	response telegram
603	2B	71	60	00h	00 00 00 00	setpoint=0
583	60	71	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	06 00 00 00	shutdown
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	07 00 00 00	switch on
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	0F 00 00 00	enable operation
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	71	60	00h	90 01 00 00	setpoint 400 mA
583	60	71	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	0F 01 00 00	intermediate Stop
583	60	40	60	00h	00 00 00 00	response telegram

Example: Jog Mode via PDO

It is useful to disable unused PDOs. In Operation Mode "Digital Velocity" a digital speed setpoint is transmitted via RXPDO. Actual position and actual speed is read via a TXPDO triggered by SYNC.

COB-ID	Control	Inc	dex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	60	60	00h	03 00 00 00	mode of operation "Profile Velocity"
583	60	60	60	00h	00 00 00 00	response telegram
603	2F	00	16	00h	00 00 00 00	delete entries for the first RXPDO
583	60	00	16	00h	00 00 00 00	response telegram
603	23	00	16	01h	20 00 FF 60	mapping RXPDO1, Object 60FF, Subindex 0
						speed setpoint, data length 32bit
583	60	00	16	01h	00 00 00 00	response telegram
603	2F	00	16	00h	01 00 00 00	confirm number of mapped objects
583	60	00	16	00h	00 00 00 00	response telegram
603	2F	00	1A	00h	00 00 00 00	delete entries for the first TXPDO
583	60	00	1A	00h	00 00 00 00	response telegram
603	23	00	1A	01h	20 00 64 60	mapping TXPDO1/1, Object6064, Subindex 0 cur-
						rent position value in SI units, data length 32bit
583	60	00	1A	01h	00 00 00 00	response telegram
603	23	00	1A	02h	20 00 6C 60	mapping TXPDO1/2, Object606C, Subindex 0 cur-
500	00	00	4.0	001-	00 00 00 00	rent speed value, data length 32bit
583	60	00	1A	02h	00 00 00 00	response telegram
603	2F	00	1A	00h	02 00 00 00	check number of mapped objects
583	60	00	1A	00h	00 00 00 00	response telegram
603	2F	00	18	02h	01 00 00 00	set TXPDO1 to synchronous, transmission with
583	60	00	18	02h	00 00 00 00	every SYNC
603	23	01	18	02H	83 02 00 80	response telegram disable TPDO2, set bit 31 (80h)
583	60	01	18	01h	00 00 00 00	• • •
603	23	02	18	01h	83 03 00 80	response telegram disable TPDO3
583	60	02	18	01h	00 00 00 00	
603	23	03	18	01h	83 04 00 80	response telegram disabled TPDO4
583	60	03	18	01h	00 00 00 00	response telegram
603	23	01	14	01h	03 03 00 80	disabled RPDO2
583	60	01	14	01h		response telegram
603	23	02	14	01h		disabled RPDO3
583	60	02	14	01h	00 00 00 00	
603	23	03	14	01h		
583	60	03	14	01h	00 00 00 00	response telegram
000	00	00	17	0111	01 03	enable NMT
603	2B	40	60	00h	06 00 00 00	shutdown
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	07 00 00 00	switch on
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	0F 00 00 00	enable operation
583	60	40	60	00h	00 00 00 00	response telegram
				3011	00 40	
					30 10	
203 080					00 40	velocity setpoint send SYNC

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte High byte		index		
183					FE 45 01 00	response
					A6 AB 1A 00	
603	2B	40	60	00h	0F 01 00 00	intermediate stop
583	60	40	60	00h	00 00 00 00	response telegram

Example: Torque Mode via PDO

It is useful to disable unused PDOs. The first TX_PDO shall transmit the actual current value with every SYNC.

COB-ID	Control	Ind	dex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	60	60	00h	04 00 00 00	Mode of operation "Torque"
583	60	60	60	00h	00 00 00 00	response telegram
603	2F	00	16	00h	00 00 00 00	delete entry for the first RXPDO
583	60	00	16	00h	00 00 00 00	response telegram
603	23	00	16	01h	10 00 71 60	mapping RXPDO1, Object6071, Subindex 0
						current setpoint, data length 16bit
583	60	00	16	01h	00 00 00 00	response telegram
603	2F	00	16	00h	01 00 00 00	check number of mapped objects
583	60	00	16	00h	00 00 00 00	response telegram
603	2F	00	1A	00h	00 00 00 00	delete entry for TXPDO1
583	60	00	1A	00h	00 00 00 00	response telegram
603	23	00	1A	01h	10 00 77 60	mapping TXPDO1, Object6077, Subindex 0
						actual current value, Data length16bit
583	60	00	1A	01h	00 00 00 00	response telegram
603	2F	00	1A	00h	01 00 00 00	number of mapped objects
583	60	00	1A	00h	00 00 00 00	response telegram
603	2F	00	18	02h	01 00 00 00	set TXPDO1 to synchronous, transmission
						with every SYNC
583	60	00	18	02h	00 00 00 00	response telegram
603	23	01	18	01h	83 02 00 80	disable TPDO2, set bit 31 (80h)
583	60	01	18	01h	00 00 00 00	response telegram
603	23	02	18	01h	83 03 00 80	disable TPDO3
583	60	02	18	01h	00 00 00 00	response telegram
603	23	03	18	01h	83 04 00 80	disabled TPDO4
583	60	03	18	01h	00 00 00 00	response telegram
603	23	01	14	01h	03 03 00 80	disabled RPDO2
583	60	01	14	01h	00 00 00 00	response telegram
603	23	02	14	01h	03 04 00 80	disabled RPDO3
583	60	02	14	01h	00 00 00 00	response telegram
603	23	03	14	01h	03 05 00 80	disabled RPDO4
583	60	03	14	01h	00 00 00 00	response telegram
000					01 03	enable NMT
603	2B	40	60	00h	06 00 00 00	shutdown
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	07 00 00 00	switch on
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	0F 00 00 00	enable operation
583	60	40	60	00h	00 00 00 00	response telegram
203					12 02	setpoint 530 mA
080						send SYNC
183					19 02	actual value 537 mA
603	2B	40	60	00h	0F 01 00 00	intermediate stop
583	60	40	60	00h	00 00 00 00	response telegram

Example: Homing via SDO

When the AKD is operated as a linear axis, a reference/homing point must be defined before positioning tasks can be executed. This must be done by executing a homing run in the Homing mode (0x6).

This example shows the procedure in the Homing mode.

Now some of the parameters that affect the homing movement are set via the bus. If you can be absolutely certain that no-one has altered the parameters in the servoamplifier, then this part can be omitted, since the servoamplifier save the data in non-volatile memory. The inputs must be configured as limit switches.

Because the dimension parameters are not finally defined in DS402, you must select these units:

UNIT.PROTARY = 3 UNIT.VROTARY = 3 UNIT.ACCROTARY = 3

The basic setup of the servoamplifier must be done with the help of the setup software before starting the homing run. The resolution has been set to $10000 \mu m/t$ urn in this example.

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
703	00					boot-up message
603	40	41	60	00h	00 00 00 00	read profile status
583	4B	41	60	00h	40 02 00 00	response: 0240h
603	23	99	60	01h	10 27 00 00	v _{ref} =10000 counts/s until limit switch is reached
583	60	99	60	01h	00 00 00 00	response telegram
603	23	99	60	02h	88 13 00 00	v _{ref} =5000 counts/s from limit switch to zero mark
583	60	99	60	02h	00 00 00 00	response telegram
603	23	9A	60	00h	10 27 00 00	Decel. and Accel. ramp 1000counts/s ²
583	60	9A	60	00h	00 00 00 00	response telegram
603	23	7C	60	00h	A8 61 00 00	Reference offset 25000counts
583	60	7C	60	00h	00 00 00 00	response telegram

Homing type (6098h)

COB-ID	Control	Ind	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	60	60	00h	06 00 00 00	mode of operation = homing
583	60	60	60	00h	00 00 00 00	response telegram
603	40	41	60	00h	00 00 00 00	read profile status, response: 0250h Voltage Enabled
583	4B	41	60	00h	40 02 00 00	response : 0240h
603	2B	40	60	00h	06 00 00 00	· ·
603	ZD	40	60	OON	06 00 00 00	Control word Transition_2,"ready to switch on". Shutdown
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	07 00 00 00	Transition_3, "switch on". switch on
583	60	40	60	00h	00 00 00 00	response telegram
603	2B	40	60	00h	0F 00 00 00	Transition_4,"operation enable"
583	60	40	60	00h	00 00 00 00	response telegram
603	40	41	60	00h	00 00 00 00	read profile status
583	4B	41	60	00h	37 02 00 00	response telegram
603	2B	40	60	00h	1F 00 00 00	Homing_operation_start
583	60	40	60	00h	00 00 00 00	response telegram
603	40	41	60	00h	00 00 00 00	read profile status, response: homing not finished
583	4B	41	60	00h	37 02 00 00	response: homing not finished
603	40	41	60	00h	00 00 00 00	read profile status, response: homing finished
583	4B	41	60	00h	37 16 00 00	response:homing finished

Bit 12 in SDO 6041 indicates, whether homing is finished. Reading of the profile status is not necessary.

Example: Using the Profile Position Mode

This example shows the operation of the Profile position mode. For this, the PDOs are set as follows: First RPDO. No special mapping necessary, because the default mapping enters the controlword RXPDO1. Second RPDO

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	01	16	00h	00 00 00 01	RPDO2: delete mapping
583	60	01	16	00h	00 00 00 00	response telegram
603	23	01	16	01h	20 00 7A 60	RPDO2, entry 1:
						target_position
583	60	01	16	01h	00 00 00 00	response telegram
603	23	01	16	02h	20 00 81 60	RPDO2, entry 2:
						profile_velocity
583	60	01	16	02h	00 00 00 00	response telegram
603	2F	01	16	00h	02 00 00 00	enter number of mapped objects
583	60	01	16	00h	00 00 00 00	response telegram

First TPDO

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	00	1A	00h	00 00 00 01	TPDO1: delete mapping
583	60	00	1A	00h	00 00 00 00	response telegram
603	23	00	1A	01h	10 00 41 60	TPDO1, entry 1:
						profile statusword
583	60	00	1A	01h	00 00 00 00	response telegram
603	2F	00	1A	00h	01 00 00 00	enter number of mapped objects
583	60	00	1A	00h	00 00 00 00	response telegram

Second TPDO

COB-ID	Control	Ind	dex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	01	1A	00h	00 00 00 01	TPDO2: delete mapping
583	60	01	1A	00h	00 00 00 00	response telegram
603	23	01	1A	01h	20 00 64 60	TPDO2, entry 1:
						position_actual_value
583	60	01	1A	01h	00 00 00 00	response telegram
603	23	01	1A	02h	20 00 6C 60	TPDO2, entry 2:
						velocity_actual_value
583	60	01	1A	02h	00 00 00 00	response telegram
603	2F	01	1A	00h	02 00 00 00	enter number of mapped objects
583	60	01	1A	00h	00 00 00 00	response telegram

The second TPDO should be sent with every SYNC by the servoamplifier.

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	01	18	02h	01 00 00 00	TPDO2 with every SYNC
583	60	01	18	02h	00 00 00 00	response telegram

Disable unused TPDOs

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	23	02	18	01h	83 03 00 80	disable TPDO3
583	60	02	18	01h	00 00 00 00	response telegram
603	23	03	18	01h	83 04 00 80	disable TPDO4
583	60	03	18	01h	00 00 00 00	response telegram

Disable unused RPDOs

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	23	02	14	01h	03 04 00 80	disable RPDO3
583	60	02	14	01h	00 00 00 00	response telegram
603	23	03	14	01h	03 05 00 80	disable RPDO4
583	60	03	14	01h	00 00 00 00	response telegram

Define mechanical resolution via Object 6092h, Subindex 01h and 02h. Default values are the motion specific factors PGEARI and PGEARO:

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	23	93	60	01h	00 00 10 00	2E20 increments
583	60	93	60	01h	00 00 00 00	response telegram
603	23	93	60	02h	A0 8C 00 00	3600 user units
583	60	93	60	02h	00 00 00 00	response telegram

After defining the PDOs they can be released with the NMT:

COB-ID	Data	Comment
000	01 03	enable NMT
183	40 02	profile status

Now the homing can be set and started.

COB-ID	Control	Ind	dex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	60	60	00h	06 00 00 00	Operation mode = homing
583	60	60	60	00h	00 00 00 00	response telegram
603	2F	98	60	00h	0C 00 00 00	homing type 12, negative direction (DS402)
583	60	98	60	00h	00 00 00 00	response telegram
603	23	99	60	01h	40 19 01 00	homing speed
						72000 units/s=2s-1
583	80	99	60	01h	31 00 09 06	response telegram
603	2B	40	60	00h	06 00 00 00	Transition_2,"ready to switch on".Shutdown
583	60	40	60	00h	00 00 00 00	response telegram
183					21 02	response telegram
603	2B	40	60	00h	07 00 00 00	Transition_3,"switch on".Switch on
583	60	40	60	00h	00 00 00 00	response telegram
183					33 02	response telegram
603	2B	40	60	00h	0F 00 00 00	Control word: Operation Enable
583	60	40	60	00h	00 00 00 00	response telegram
183				,	37 02	response telegram
603	2B	40	60	00h	1F 00 00 00	start homing
						response telegram
						response: target reached
						response: homing attained
583	60	40	60	00h	00 00 00 00	response telegram
183					37 06	
183					37 16	

Finish homing with Control word 1_RPDO

COB-ID	Data	Comment
203	0F 00	

Switch to Profile Position Mode and set ramps for positioning

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	60	60	00h	01 00 00 00	Profile Positioning Mode
583	60	60	60	00h	00 00 00 00	response telegram
603	23	83	60	00h	32 00 00 00	50ms acceleration time
583	60	83	60	00h	00 00 00 00	response telegram
603	23	84	60	00h	32 00 00 00	50ms deceleration time
583	60	84	60	00h	00 00 00 00	response telegram

Setpoint

COB-ID	Data	Comment
303	20 4E 00 00	Pos 8CA0 =36000μm ; V= 20000 μm/s
080		send a SYNC
283	BB F8 FF FF	response telegram

Set controlword with "new setpoint" by bit (bit 4)

COB-ID	Data	Comment
203	1F 00	

Wait

COB-ID	Data	Comment
183	37 12	setpoint acknowledge

Reset controlword with "new setpoint" by bit (bit 4) reset

COB-ID	Data	Comment
203	0F 00	
183	37 02	reset Setpoint acknowledge

Wait

COB-ID	Data	Comment
183	37 06	response: target reached
080		SYNC
283	92 FC FF FF	response: 92 FC position , FF FF speed

Example: ASCII Communication

The following example reads the active faults from the drive (ASCII command DRV.FAULTS).

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
601	23	26	20	01h	44 52 56 2E	send ASCII code "DRV."
581	60	26	20	01h	00 00 00 00	response telegram
601	23	26	20	01h	46 41 55 4C	send ASCII code "FAUL"
581	60	26	20	01h	00 00 00 00	response telegram
601	23	26	20	01h	54 53 0D 0A	send ASCII code "TS\r\n"
581	60	26	20	01h	00 00 00 00	response telegram
601	40	26	20	02h	00 00 00 00	read response
581	43	26	20	02h	3E 4E 6F 20	read ASCII code ">No"
601	40	26	20	02h	00 00 00 00	read response
581	43	26	20	02h	66 61 75 6C	read ASCII code "FAUL"
601	40	26	20	02h	00 00 00 00	read response
581	43	26	20	02h	74 73 20 61	read ASCII code "ts a"
601	40	26	20	02h	00 00 00 00	read response
581	43	26	20	02h	63 64 69 76	read ASCII code "ctiv"
601	40	26	20	02h	00 00 00 00	read response
581	43	26	20	02h	66 0A 0D 0A	read ASCII code "e\n\r\n"

Test for SYNC telegrams

Configuration

- Assign Target Position and Profile Velocity to a PDO (2nd receive-PDO)
- Assign Actual Position to a PDO (1st transmit-PDO), generated with every 2nd SYNC.
- Assign Status word and Manufacturer Status to a PDO (2nd transmit-PDO), generated with every 3rd SYNC.

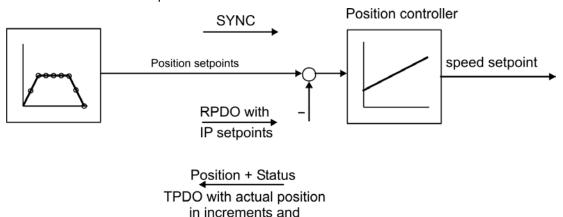
Telegrams with the corresponding responses:

COB-ID	Control			Sub-	Data	Comment
	byte	Low byte	High byte	index		
603	2F	01	16	00h	00 00 00 00	RPDO2: delete mapping
583	60	01	16	00h	00 00 00 00	
603	23	01	16	01h	20 00 7A 60	RPDO2, entry 1: target position
583	60	01	16	01h	00 00 00 00	
603	23	01	16	02h	20 00 81 60	RPDO2, entry 2: profile velocity
583	60	01	16	02h	00 00 00 00	
603	2F	01	16	00h	02 00 00 00	RPDO2: enter number of mapped objects
583	60	01	16	00h	00 00 00 00	
603	2F	00	1A	00h	00 00 00 00	TPDO1: delete mapping
583	60	00	1A	00h	00 00 00 00	
603	23	00	1A	01h	20 00 64 60	TPDO1: entry 1: Actual Position
583	60	00	1A	01h	00 00 00 00	
603	2F	00	1A	00h	01 00 00 00	TPDO1: enter number of mapped objects
583	60	00	1A	00h	00 00 00 00	
603	2F	00	18	02h	02 00 00 00	TPDO1: send with every 2nd SYNC
583	60	00	18	02h	00 00 00 00	
603	2F	01	1A	00h	00 00 00 00	TPDO2: delete mapping
583	60	01	1A	00h	00 00 00 00	
603	23	01	1A	01h	10 00 41 60	TPDO2: entry 1: Status word
583	60	01	1A	01h	00 00 00 00	
603	23	01	1A	02h	20 00 02 10	TPDO2: entry 2: Manufacturer Status
583	60	01	1A	02h	00 00 00 00	
603	2F	01	16	00h	02 00 00 00	TPDO2: enter number of mapped objects
583	60	01	16	00h	00 00 00 00	
603	2F	01	18	02h	03 00 00 00	TPDO2: send with every 3rd SYNC
583	60	01	18	02h	00 00 00 00	

SYNC-Object

COB-ID	Comment
080	Object 181 (TPDO 1) appears at every 2 nd SYNC
	Object 281 (TPDO 2) appears at every 3 rd SYNC

Emergency-Object


If, for instance, the resolver connector is disconnected, a serious error will be caused in the controller. This results in an Emergency telegram.

COB-ID	Emerge	ncy error	Error		
	Low	High	register		
081	10	43	08	00 00 00 00	motor temperature, temperature, manufacturer specific
081	00	00	88	00 00 00 00	

22.7.2.2 Examples, special applications

Example: External Trajectory with Interpolated Position Mode

This example shows the possible application for giving two axes position setpoints within one PDO. Controller structure for the position controller within the drive:

manufacturer status

All data are hexadecimal. In the example, the two axes in the system have the station addresses 1 and 2. Before you begin this procedure, the axes should be homed (just for this example).

The common PDO contains 2 IP (interpolated position) – setpoints and can be transmitted simultaneously to two stations, whereby each station can extract the relevant data. The other data can be made ignored by using dummy entries (Object 2100 sub 0). For this purpose both axes must react on the same RPDO-COB-ID.

Action

Do the RPDO2-mapping for both axis:

Axis 1:

COB-ID	Control	Ind	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
601	2F	01	16	00h	00 00 00 00	RPDO2: delete mapping
581	60	01	16	00h	00 00 00 00	
601	23	01	16	01h	20 01 C1 60	RPDO2, entry 1:
						IP setpoint axis 1
581	60	01	16	01h	00 00 00 00	
601	23	01	16	02h	20 00 00 21	RPDO2, entry 2:
						Dummy entry 4 bytes
581	60	01	16	02h	00 00 00 00	
601	2F	01	16	00h	02 00 00 00	RPDO2, enter number of
						mapped objects
581	60	01	16	00h	00 00 00 00	

Axis 2:

COB-ID	Control	Ind	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
602	2F	01	16	00h	00 00 00 00	RPDO2: delete mapping
582	60	01	16	00h	00 00 00 00	
602	23	01	16	02h	20 00 00 21	RPDO2, entry 1:
						Dummy entry 4 bytes
582	60	01	16	02h	00 00 00 00	
602	23	01	16	01h	20 01 C1 60	RPDO2, entry 2:
						IP setpoint axis 2
582	60	01	16	01h	00 00 00 00	
602	2F	01	16	00h	02 00 00 00	RPDO2, enter number of
						mapped objects
582	60	01	16	00h	00 00 00 00	
602	23	01	16	01h	01 03 00 00	RPDO2: Set COB-ID identical to
						axis 1
582	60	01	16	01h	00 00 00 00	

Now both axis react to the same COB-identifier 0x301, axis 1 takes byte 0 to 3 as IP setpoint, axis 2 takes byte 4 to 7. The second TPDOs shall contain the actual position in increments and the manufacturer status.

Mapping configuration for axis 1:

COB-ID	Control	Inc	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
601	2F	01	1A	00h	00 00 00 00	TPDO2: delete mapping
581	60	01	1A	00h	00 00 00 00	
601	23	01	1A	01h	20 00 63 60	TPDO2, entry 1:
						actual position in increments
581	60	01	1A	01h	00 00 00 00	
601	23	01	1A	02h	20 00 02 10	TPDO2, entry 2:
						Dummy entry 4 bytes
581	60	01	1A	02h	00 00 00 00	
601	2F	01	1A	00h	02 00 00 00	TPDO2, enter number of
						mapped objects
581	60	01	1A	00h	00 00 00 00	

The same must be done for axis 2.

Here it is assumed that both drives accept new trajectory values with every SYNC command, and must return their incremental position and manufacturer status values. The communication parameters must be set accordingly.

Axis 1:

COB-ID	Control	Inc	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
601	2F	01	14	02h	01 00 00 00	RPDO2 axis 1, reaction on every
						sync
581	60	01	14	02h	00 00 00 00	
602	2F	01	14	02h	01 00 00 00	RPDO2 axis 2, reaction on every
						sync
582	60	01	14	02h	00 00 00 00	
601	2F	01	18	02h	01 00 00 00	TPDO2 axis 1, reaction on every
						sync
581	60	01	18	02h	00 00 00 00	
602	2F	01	18	02h	01 00 00 00	TPDO2 axis 2, reaction on every
						sync
582	60	01	18	02h	00 00 00 00	

The other Tx-PDOs 3 and 4 should be switched off to minimize bus-load:

COB-ID	Control	Index		Sub-	Data	Comment
	byte	Low byte	High byte	index		
601	23	02	18	01h	81 03 00 80	Switch off TPDO3
581	60	02	18	01h	00 00 00 00	
601	23	03	18	01h	81 04 00 80	Switch off TPDO4
581	60	03	18	01h	00 00 00 00	

The same must be done for axis 2.

In order to be able to make trajectory movements, both drives must be operating in the appropriate mode. This is set through Index 6060h:

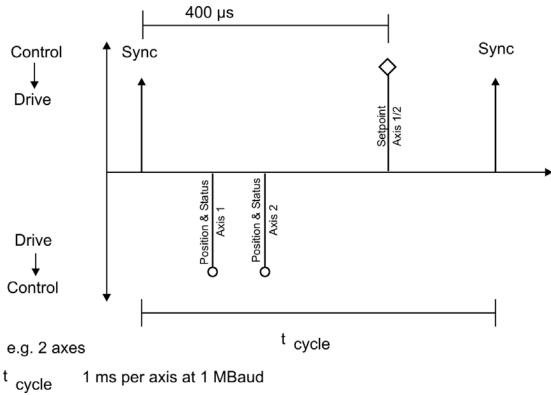
COB-ID	Control	Inc	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
601	2F	60	60	00h	07 00 00 00	Set IP mode for axis 1
581	60	60	60	00h	00 00 00 00	
602	2F	60	60	00h	07 00 00 00	Set IP mode for axis 2
582	60	60	60	00h	00 00 00 00	

The cycle interval for the IP-mode shall be 1 ms. This must be defined with Object 60C1 sub 1 and 2:

COB-ID	Control	Inc	lex	Sub-	Data	Comment
	byte	Low byte	High byte	index		
601	2F	C2	60	01h	01 00 00 00	Interpolation time unit 1
581	60	C2	60	01h	00 00 00 00	
601	2F	C2	60	02h	FD 00 00 00	Interpolation time index -3 ->
						Cycle time = 1 * 10 ⁻³ s
581	60	C2	60	02h	00 00 00 00	

The same must be done for axis 2.

To start up the axes, the drives must be put into the operational status (operation enable) and the network management functions must be started.


The network management functions enable the application of the Process Data Objects (PDOs) and are initial lized by the following telegram for both axes:

Switch the NMT (Network Management) status machine to operation enable:

COB-ID	Command specifier (CS)	Node-ID	Comment
0	1	1	NMT enable for all axes

Next, power is applied to each drive, and they are put into the operation enable condition. This should be done in steps with waiting for the appropriate reaction of the drive (e.g. axis 1):

COB-ID	Data	Comment
201	06 00	Shutdown command
181	31 02	State Ready_to_switch_on
201	07 00	Switch_on command
181	33 02	State Switched_on
201	0F 00	Enable_operation command
181	37 02	State Operation_enabled
201	1F 00	Enable IP-mode
181	37 12	IP-mode enable

The configuration above now enables a cyclical sequence, as shown in the diagram:

RPDO 2 can now be used to supply trajectory data for both axes, e.g.:

COB-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
301	F4	01	00	00	E8	03	00	00

In this example, the first axis receives a trajectory value of 500 increments (Bytes 0 to 3) and the second axis receives a trajectory value of 1000 increments.

The axes accept these values, and the positioning is made when the next SYNC telegram is received.

SYNC telegram

Afterwards, both axes send back their incremental positions and the contents of their status registers when the SYNC Object with the COB-ID for the 2^{nd} TPDO is received.

COB-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Comment
181	23	01	00	00	00	00	03	44	position + manufacturer
									status register for axis1
182	A5	02	00	00	00	00	03	44	position + manufacturer
									status register for axis2

 $If an error occurs during operation, the axis concerned transmits an {\sf Emergency message}, which could appear like this:$

Emergency Object

COB-ID	Emerge	ncy error	Error register	Category		
	Low	High				
081	10	43	08	01		motor temperature, temperature, manufacturer-specific
081	00	00	80	00	00 00 00 00	

		-	
22.8 Index		607Dh 6081h	219 220
		6083h	220
1		6084h	220
•		608Fh	201
1000h	163	6092h	202
1001h	164	6098h	214
1002h	165	6099h	216
1003h	166	609Ah	216
1005h	167	60C0h	209
1006h	167	60C1h	210
1008h	168	60C2h	211
1009h	168	60C4h	212
100Ah	168	60F4h	208
100Ch	169	60FDh	182
100Dh	169	60FEh	182
1010h	170	60FFh	
1014h	171		204 183
1014H	171	6502h	103
101011 1017h	171	A	
101711 1018h	172	A	
1016H 1026h	172	Abbreviations	60, 137
1400-1403h	185	Acceleration ramp	359
1600-1603h	186	AL Event	80
1800-1803h	188	Analog inputs	275
1A00-1A03h	190	Analog inputs Analog output	103
1400-140311	190	Analog output Analog setpoints	275
2		Anti-resonance filter	662
2		And-resonance inter	267
2014-2017h	175	Aux. Supply 24v, Interface	201
2018h	176	В	
2026h	177	5	
204Ch	200	Basic data types	147
20A0h	178	Basic drive setup	34
20A1h	178	Basic testing	236
20A1h	178	Blink	362
20A3h	179	Block diagrams	002
20A4h	179	current loop	282
20A5h	180	position and velocity loops	282
20A6h	180	Brake view	80
20B8h	181	Diane view	00
	101	C	
6		CANopen over EtherCAT	84
6040h	195	Capture	81
6041h	196	Check communications	40, 43
6060h	198	Command buffer	96
6061h	199	Command source	366
6063h	207	Communication Objects	149
6064h	208	Connect to another drive	40
6065h	208	Connected and disconnected states	38
606Ch	203	Connection diagram	
6071h	205	AKD-x00306 to x00606	264
6073h	205	AKD-x01206	265
6077h	206	AKD-x01206 & AKD-xzzz07	266
607Ah	219	Connection Diagrams	263
607Ch	214	Control word	195

Control Word Commands	85	Foldback	77
Controlled Stop	115		
current loop	121	G	
Current loop gain scheduling	122		
Cycle Time		General definitions	163
Adjust	89	General objects	163
Max.Values	89		
Cyclical Values	88	Н	
D		Heartbeat	158
		Homing	134
Data types	147	Homing Mode	214
DC bus link, interface	270		
deceleration	369	I	
Device control	192	I/O Connection	404 272
Device Not Shown	38, 46	I/O-Connection Inputs	104, 273
Dig. Encoder emulation, interface	277	Analog	275
Digital inputs	99	Digital	99
Digital Inputs and Outputs	88	Enable	102
Direct DC mains	56	Programmable	102
Disable	373	Interpolated position mode	209
Disconnected state	38	Interpolated position mode Interrupt Event	209 80
Display Codes	34	Invalid Firmware	259
Downloading Firmware	259	ilivalia i ililiwale	209
Drive Motion Status	153	J	
Dynamic Braking	117	•	
E		Jog Move	153
Electronic gearing	106	K	
Emergency Messages	253, 160	1/4 O IDE	
Emergency Object	151	KAS IDE	77
emergency timeout	375	L	
Emulated Encoder Output	277	L .	
ENABLE	102	Latch Words	91
Enable/Disable	111	Editori Words	01
encoder emulation	74	M	
Error Messages			
parameter and command	250	Macros	219
EtherCAT onboard	65	Mailbox	92
EtherCAT Proflie	78	Mains supply, interface	271
Examples	236	Manufacturer specific objects	175
Examples, setup	236	master/slave	74
Examples, special applications	249	Mixed data types	148
Extended data types	149	Modbus	6
_		Modbus Dynamic Mapping	9
F		Modulo position	127
Faster Orange	400	Motion Tasks	144
Factor Groups	199 240	Motor	64
Faulto	240 264	Motor interface	268
Faults	364	N.	
clearing	249 66	N	
Feedback 1	66 73	Nonvoyle Managamant Obicat	450
Feedback 2 Feedback Connection	73 279	Network Management Object	150
Fieldbus	279 96	Nodeguard Non-Plug and Play Feedback Devices	157 76
Fieldhus Parameters	96 96	Non-Flug and Flag Feedback Devices	10

0		Settings	52
		Setup	66
Object Dictionary	223	Signed Integer	148 79
Operating mode	198	Slave Register	160
parameters and commands active in	225,	Slider Tuning Status machine	192
	265	Status Machine	84
Operation Modes	88	Status wachine Status word	196
Outputs	07.4	Status Word	86
Analog	274	Synchronization	90
Overview	50	Synchronization Object	150
P		Т	
Parameter Comparer	221	•	
Parameter Load/Save	221	Target group	59, 136
PDO configuration	184	TCP/IP	[′] 48
PDO Mapping	87	Terminal	218
Performance Servo Tuner	160	Time Stamp Object	150
advanced	164	Transmission modes	156
Phase run-up	82	Transmit PDOs	188
Position Control Function	207	Trigger modes	156
	126	Trouble Shooting	257
Position Loop Power	56	Tuning	189
	155	TwinCAT	66
Process Data Object			
Profile Position Mode	218	U	
Profile specific objects	182		
Profile torque mode	205	Units	84
Profile Velocity Mode	203	Unsigned Integer	147
Programmable Limit Switch	109	Up/Down Input	278
Prohibited Use	62, 139	Use as directed	62, 139
Pulse Direction, interface	278		,
R		V	
Receive PDOs	185	Velocity Loop	124
Regen resistor, interface	269		
Regeneration	58	W	
Registration moves	149		
Response monitoring	169	Wake and shake (WS)	68
Response monitoring	109	Warnings	240
S		Watch	52
3		Wizard	35
Safe Torque Off (STO) Safety Instructions	118	Workbench over TwinCAT	71
Electrical Installation	64, 141		
General	62, 139		
Save On Disconnect	157		
Save On Disconnect Save On Exit	156		
	158		
Save On Firmware Download	156 156		
Save Options	156 205		
scope	20 5 205		
channels	205 212		
settings and presets			
time-base	205		
SDO abort codes	154 452		
Service Data Object	152 452		
Service Motion	152		

AKD User Guide |

This page intentionally left blank.

This page intentionally left blank.

Sales and Service

We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance.

If you are unaware of your local sales representative, please contact us.

Europe

Kollmorgen Customer Support Europe

 Internet
 www.kollmorgen.com

 E-Mail
 technik@kollmorgen.com

 Tel.:
 +49(0)2102 - 9394 - 0

 Fax:
 +49(0)2102 - 9394 - 3155

North America

Kollmorgen Customer Support North America

 Internet
 www.kollmorgen.com

 E-Mail
 support@kollmorgen.com

 Tel.:
 +1 - 540 - 633 - 3545

 Fax:
 +1 - 540 - 639 - 4162

Appendix B

Parameter and Command Reference Guide

AKD User Guide |

About the Parameter and Command Reference Guide

This reference guide provides descriptive information about each parameter and command used in the drive firmware. Parameters and commands are used to configure the drive or to return status information from the drive using the WorkBench terminal screen. The use of these parameters and commands to perform various drive functions is detailed in related sections of the AKD User Guide.

Drive parameters and commands include the following:

AIN Parameters	FB2 Parameters	PLS Parameters and Commands
AIO Parameters	FBUS Parameters	REC Parameters and Commands
AOUT Parameters	GEAR Parameters	REGEN Parameters
BODE Parameters	GUI Parameters	SM Parameters
CAP Parameters	HOME Parameters	STO Parameters
CS Parameters	HWLS Parameters	SWLS Parameters
DIN Parameters	IL Parameters	UNIT Parameters
DOUT Parameters	MOTOR Parameters	VBUS Parameters
DRV Parameters and Commands	MT Parameters and Commands	VL Parameters
FB1 Parameters	PL Parameters	WS Parameters

A summary table of basic information for all parameters and commands is also available:

Summary of Parameters and Commands

For each parameter or command, this reference guide presents the following tables of information, followed by a description of the command, examples, and links to related information in the User Guide, as appropriate.

General Information		
Туре	One of four types: Command: Action or W/O command. NV Parameter: R/W and stored in nonvolatile (NV) memory R/W Parameter: Can be either read from or written to the drive. R/O Parameter. Can only be read from the drive	
Description	Brief description of the parameter or command and notes if the parameter or command is not active in all opmodes.	
Units	Appropriate units (see Table of Units for unit descriptions)	
Range	Permissible range; multiple ranges are sometimes present.	
Default Value	Determined at setup process time or motor ID; otherwise set to 0.010.	
Data Type	Integer, Boolean, Float, or String	
See Also	Links to related information such as other parameters, block diagrams, schematics, or other sections of the product manual.	
Start Version	The minimum firmware version number required to use the parameter or command	

Fieldbus	Index/Subindex	Object Start Version
Fieldbus type, such as EtherCAT COE and CAN- open or Modbus.	Index/subindex values for the parameter or command. The index value may be linked to the Object Dictionary for each fieldbus, if the object dictionary contains more detailed information about the object.	The minimum firmware version number required to use the fieldbus.

Additional data types may include the following:

Туре	Description	
Error	Illegal type=0	
b	Boolean	
U8	8 x unsigned numbers	
S8	8 x signed numbers	
U16	16 x unsigned numbers	
S16	16 x signed numbers	
U32	32 x unsigned numbers	
S32	32 x signed numbers	
U64	64 x unsigned numbers	
S64	64 x signed numbers	

Parameter and Command Naming Conventions

Abbreviation	Term
ACC	Acceleration
APP	Apply
CLR	Clear
CS	Controlled Stop
I.	Current
D	Current d-component
DEC	Deceleration
DIR	Direction
DIS	Disable
DIST	Distance
EMUE	Emulated encoder
EN	Enable
ERR	Error
F	Fault
FB	Feedback
FF	Feedforward
K	Gain
INT	Integrator
LIM	Limit
L	Loop
MAX	Maximum
MIN	Minimum
N	Negative
NV	Nonvolatile
Р	Position, Proportional, Positive
RLS	Release
R	Resistance
STATE	Status, State, Stat
THRESH	Threshold
Т	Time
TMAX	Timeout
U V	User
V	Velocity, Volt
W	Warning

Summary of Parameters and Commands

This table contains an alphabetical list of parameters and commands, with a brief description for each. The parameter name and description are linked to the parameter tables. The description field also notes if a parameter is not active in all opmodes. Generally speaking, all parameters and commands are active in all opmodes, with the following exceptions:

Parameter or Command	Active in Opmodes
GEAR (all parameters and commands)	2 (position) only
HOME (all parameters and commands)	2 (position) only
MT (all parameters and commands)	2 (position) only

Parameter or Command	Active in Opmodes
SM.I1, SM.I	0 (torque) only
SM.V1, SM.V2	1 (velocity) only
SM.VPM1, SM.VPM2	2 (position) only
VL (all parameters and commands)	1 (velocity) and 2 (position) only

Parameter or Command	Type	Description
Analog Input (AIN)		
AIN.CUTOFF	NV	Sets the analog input low-pass filter cutoff frequency.
AIN.DEADBAND	NV	Sets the analog input signal deadband.
AIN.DEADBANDMODE	NV	Sets the analog input deadband mode.
AIN.ISCALE	NV	Sets the analog current scale factor.
AIN.OFFSET	NV	Sets the analog input offset.
AIN.PSCALE	NV	Sets the analog position scale factor.
AIN.VALUE	R/O	Reads the value of the analog input signal.
AIN.VSCALE	NV	Sets analog velocity scale factor.
AIN.ZERO	Command	Zeroes the analog input signal.
Analog Input/Output (AIO)		
AIO.ISCALE	NV	Sets the analog current scale factor.
AIO.VSCALE	NV	Sets velocity scale factor.
AIO.PSCALE	NV	Sets position scale factor.
Analog Output (AOUT)		
AOUT.DEBUGADDR	NV	Sets the memory address to debug.
AOUT.DEBUGDATATYPE	NV	Sets the data type of the value to be debugged.
AOUT.DEBUGSCALE	NV	Sets the scale to be used for debug.
AOUT.ISCALE	NV	Sets the analog current scale factor.
AOUT.MODE	NV	Sets the analog output mode.
AOUT.OFFSET	NV	Sets the analog input offset.
AOUT.PSCALE	NV	Sets the analog position scale factor.
AOUT.VALUE	NV	Reads the analog output value.
AOUT.VALUEU	R/W	Sets the analog output value.
AOUT.VSCALE	NV	Sets velocity scale factor for analog output.
Bode plot (BODE)		
BODE.EXCITEGAP	R/W	Controls how often the excitation is updated.
BODE.FREQ	R/W	Sets the frequency of the sine excitation source.
BODE.IAMP	R/W	Sets current command value used during the Bode procedure.
BODE.IFLIMIT		Sets the current fault duration limit in seconds for the BODE.MODE 5 stability test.
BODE.IFTHRESH		Sets the current fault threshold for the BODE.MODE 5 stability test.
BODE.INJECTPOINT	R/W	Sets whether the excitation uses current or velocity excitation type.
BODE.MODE	R/W	Sets the mode of the excitation.
BODE.MODETIMER	R/W	Sets the watchdog timer of the excitation.
BODE.PRBDEPTH	R/W	Sets the length of the PRB signal before it repeats.
BODE.VAMP	R/W	Sets the amplitude of the excitation when in velocity mode.

Parameter or Command	Type	Description
BODE.VFLIMIT		Sets the velocity fault duration limit (seconds) for
BODE.VFLIWIT		the BODE.MODE 5 stability test
BODE.VETHRESH		Sets the current fault threshold for the
		BODE.MODE 5 stability test.
Capture (CAP)		
CAP0.EDGE, CAP1.EDGE	R/W	Selects the capture edge.
CAP0.EN, CAP1.EN	R/W	Enables or disables the related capture engine.
CAP0.EVENT, CAP1.EVENT		Controls the precondition logic.
CAP0.FILTER, CAP1.FILTER	R/W	Controls the precondition logic.
CAP0.MODE, CAP1.MODE	NV	Selects the captured value.
CAP0.PLFB, CAP1.PLFB	R/O	Reads captured position value.
CAP0.PREEDGE, CAP1.PREEDGE		Selects the capture precondition edge.
CAP0.PREFILTER, CAP1.P- REFILTER	R/W	Sets the filter for the precondition input source.
CAP0.PRESELECT, CAP1.PRE- SELECT	R/W	Sets the precondition trigger.
CAP0.STATE, CAP1.STATE	R/O	Indicates whether or not trigger source was captured.
CAP0.T, CAP1.T	R/O	Reads time capture (if time capture was configured).
CAP0.TRIGGER, CAP1.TRIGGER	R/W	Specifies the trigger source for the position capture.
Controlled Stop (CS)		
CS.DEC	NV	Sets the deceleration value for the controlled stop process.
CS.STATE	NV	Returns the internal status of the controlled stop process.
CS.TO	NV	Sets the time value for the drive velocity to be within CS.VTHRESH.
CS.VTHRESH	NV	Sets the velocity threshold for the controlled stop.
Digital Input (DIN)		
DIN.ROTARY	R/O	Reads the rotary knob value.
DIN.STATES	R/O	Reads the digital input states.
DIN1.FILTER TO DIN7.FILTER	R/W	Filter mode for digital inputs 1 to 7.
DIN1.INV TO DIN7.INV	R/W	Sets the indicated the polarity of a digital input mode.
DIN1.MODE TO DIN7.MODE	NV	Sets the digital input modes.
DIN1.PARAM TO DIN7.PARAM	R/W	Sets a value used as an extra parameter for digital inputs nodes.
DIN1.STATE TO DIN7.STATE	R/O	Reads a specific digital input state.
Digital Output (DOUT)		
DOUT.CTRL	NV	Sets the source of digital outputs (firmware or fieldbus).
DOUT.RELAYMODE	R/W	Indicates faults relay mode.
DOUT.STATES	R/O	Reads the state of the two digital outputs.
DOUT1.MODE AND DOUT2.MODE	NV	Sets the digital output mode.

Parameter or Command	Type	Description
DOUT1.PARAM AND DOUT2.PARAM	NV	Sets extra parameters for the digital outputs.
DOUT1.STATE AND DOUT2.STATE	R/O	Reads the digital output state.
DOUT1.STATEU AND DOUT2.STATEU	R/W	Sets the state of the digital output node.
Drive (DRV)		
DRV.ACC	NV	Describes the acceleration ramp for the velocity central loop.
DRV.ACTIVE	R/O	Reads the enable status of an axis.
DRV.BLINKDISPLAY	Command	Causes the display to blink for 10 seconds.
DRV.BURNINOFFT (Password Protected)	R/W	Sets the burn-in test mode off time.
DRV.CLRFAULTHIST	Command	Clears the fault history log in the NV.
DRV.CLRFAULTS	Command	Tries to clear all active faults in the drive.
DRV.CMDDELAY	R/W	Issues a delay before next command is executed.
DRV.CMDSOURCE	NV	Sets the command source (service, fieldbus, analog input, gearing, digital, or Bode).
DRV.CRASHDUMP	Command	Retrieves diagnostic information after the drive crashes.
DRV.DBILIMIT	NV	Sets the maximum amplitude of the current for dynamic braking.
DRV.DEC	NV	Sets the deceleration value for the velocity loop.
DRV.DIR	R/W	Changes drive direction.
DRV.DIS	Command	Disables the axis (software).
DRV.DISMODE	NV	Selects among disable immediately or stop and then disable options.
DRV.DISSOURCES	R/O	Returns the possible reason for a drive disable.
DRV.DISTO	R/W	Sets the emergency timeout
DRV.EMUEDIR	R/W	Sets the direction of the emulated encoder output (EEO) signal.
DRV.EMUEMODE	R/W	Sets the mode of the emulated encoder output (EEO) connector.
DRV.EMUEMTURN	R/W	Defines the location of the index pulse on the EEO (emulated encoder output) when DRV.EMU-EMODE=2.
DRV.EMUERES	R/W	Sets the resolution of the EEO (emulated encoder output).
DRV.EMUEZOFFSET	R/W	Sets the location of the EEO (emulated encoder output) index pulse (when DRV.EMU-EMODE=1).
DRV.EN	Command	,
DRV.ENDEFAULT	R/W	Sets the default state of the software enable.
DRV.FAULTHIST	R/O	Reads the last 10 faults from NV memory.
DRV.FAULTS	R/O	Reads the active faults.
DRV.FLASHREAD (Password Protected)	R/O	Reads a value from the serial flash memory.
DRV.HANDWHEEL	R/O	Reads the EEO input value.

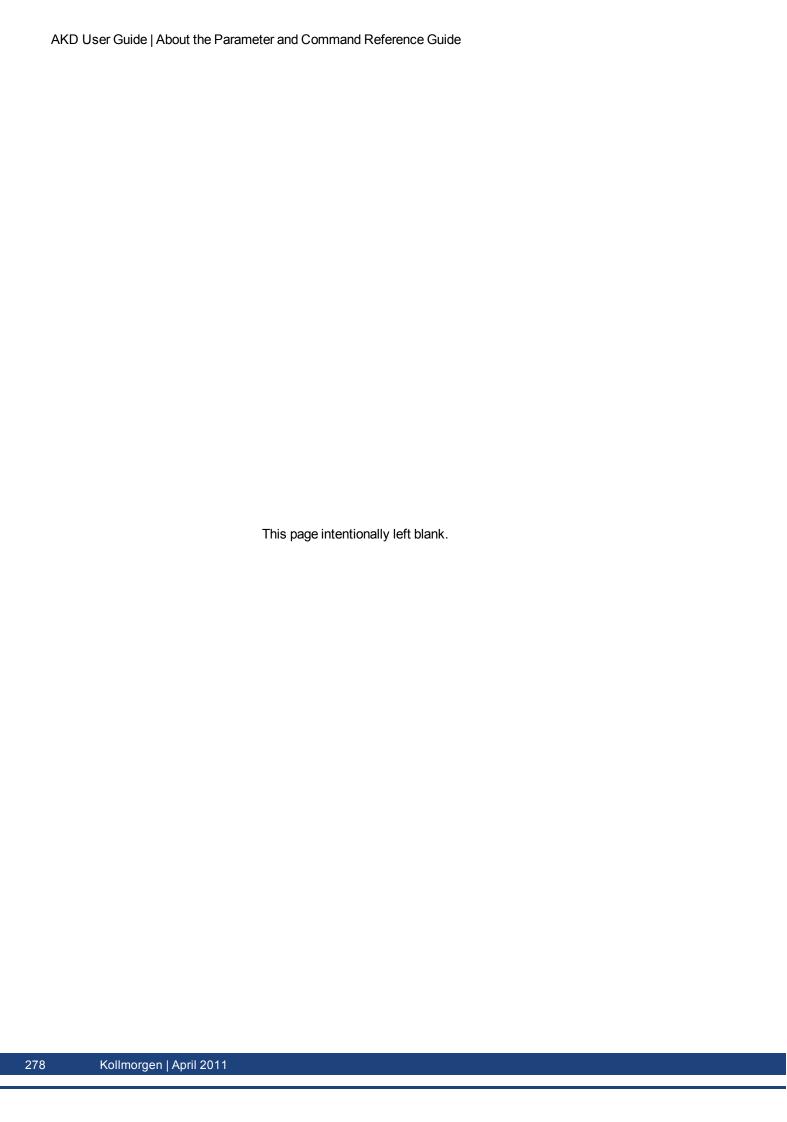
Parameter or Command	Type	Description
DRV.HELP	R/O	Reads the minimum, maximum, and default
DRV.HELP	R/O	values for a specific parameter or command.
		Retrieves the minimum, maximum, default, and
DRV.HELPALL	R/O	actual values for all available parameters and
		commands.
DRV.ICONT	R/O	Reads the continuous rated current value.
DRV.INFO	R/O	Reads general information about the drive.
DRV.IPEAK	R/O	Reads the peak rated current value.
DRV.IZERO	R/W	Sets the current that will be used during the DRV.ZERO procedure.
DRV.LIST	R/O	Reads the list of available parameters and commands.
DRV.LOGICVOLTS		Reads the logic voltages.
DRV.NAME	NV	Sets and reads the name of the drive.
DRV.NVLIST	R/O	Lists the NV parameters and values from the RAM.
DRV.NVLOAD	W/O	Loads all data from the NV memory of the drive into the RAM parameters.
DRV.NVSAVE	Command	Saves the drive parameters from the RAM to the NV memory.
DRV.ONTIME	R/O	Returns how long the drive has been running since last power up.
DRV.OPMODE	NV	Sets the drive operation mode (current, velocity, or position).
DRV.READFORMAT	R/W	Sets the value returned to either decimal or hexadecimal.
DRV.RSTVAR	Command	Sets default values in the drive without re-booting the drive and without resetting the NV memory.
DRV.RUNTIME	R/O	Returns how long the drive has been running since first activated.
DRV.SETUPREQBITS	R/O	Reads the bitwise set status of parameters that must be set before the drive can be enabled
DRV.SETUPREQLIST	R/O	Reads the list of parameters that must be set before the drive can be enabled.
DRV.STOP	Command	This command stops all drive motion.
DRV.TEMPERATURES	R/O	Reads the temperature of drive components.
DRV.VER	R/O	Reads the drive version.
DRV.VERIMAGE	R/O	Returns the version data from each image.
DRV.TEMPERATURES	R/O	Reads the temperature of drive components.
DRV.WARNINGS	R/O	Reads the active warnings.
DRV.ZERO	R/W	Sets the zero mode. The procedure is activated when the drive is enabled.
Feedback 1 (FB1)		
FB1.ENCRES	NV	Sets the resolution of the motor encoder.
FB1.HALLSTATE	R/O	Reads the Hall switch values (encoder feedback
FB1.HALLSTATEU	R/O	Reads the state of Hall switch U.
FB1.HALLSTATEV	R/O	Reads the state of Hall switch V.
FB1.HALLSTATEW	R/O	Reads the state of Hall switch W.

Parameter or Command	Type	Description
FB1.IDENTIFIED	R/O	Reads the type of feedback device used by the drive/motor.
FB1.INITSIGNED	NV	Sets initial feedback value as signed or unsigned.
FB1.LDLL	R/O	Reads the motor line-to-line inductance from the FPGA.
FB1.LQLL	R/O	Reads the motor line-to-line inductance in the back EMF axis (q axis) from the SFD memory from the FPGA.
FB1.MECHPOS	R/O	Reads the mechanical position.
FB1.MEMDUMP	W/O	Dumps the memory ID data values of a feedback with memory
FB1.MEMVER	R/O	Returns the memory feedback version.
FB1.OFFSET	NV	Sets position feedback offset.
FB1.POLES	R/O	Reads the number of feedback poles.
FB1.OFFSET	NV	Sets position feedback offset.
FB1.POLES	R/O	Reads the number of feedback poles.
FB1.SELECT	NV	Sets user entered type or identified type (–1).
Feedback 2 (FB2)		
FB2.ENCRES	NV	Sets the secondary feedback (FB2) resolution.
FB2.MODE	R/W	Sets the mode for the second feedback inputs, EEO connector (X9) and high speed opto inputs (pins 9 and 10 on X7).
FB2.SOURCE	R/W	Sets the source for the second feedback input. Choices are the EEO connectors (X9) which are RS485 inputs, or the X7 connector's high speed opto inputs (pins 9 and 10).
Fieldbus (FBUS)		
FBUS.PARAM1 TO FBUS.PARAM20	NV	Set fieldbus specific meanings.
FBUS.PLLSTATE	R/O	Returns the status of the PLL
FBUS.PLLTHRESH	NV	Sets number of successful synchronized cycles needed to lock the PLL.
FBUS.SAMPLEPERIOD	NV	Sets fieldbus sample period.
FBUS.SYNCACT	R/O	Reads actual distance from the desired sync distance.
FBUS.SYNCDIST	NV	Sets time target for synchronization.
FBUS.SYNCWND	NV	Sets symmetrically arranged window around the desired sync distance.
FBUS.TYPE	R/O	Shows the active fieldbus type.
Gearing (GEAR)		
GEAR.ACCMAX	R/W	Sets the maximum allowed acceleration value; active in opmode 2 (position) only.
GEAR.DECMAX	R/W	Sets the maximum allowed deceleration value; active in opmode 2 (position) only.
GEAR.IN	R/W	Sets the denominator of the electronic gearing ratio; active in opmode 2 (position) only.
GEAR.MODE	R/W	Selects electronic gearing mode; active in opmode 2 (position) only.

Parameter or Command	Туре	Description
GEAR.MOVE	Command	Starts the electronic gearing; active in opmode 2 (position) only.
GEAR.OUT	R/W	Sets the numerator of the electronic gearing ratio; active in opmode 2 (position) only.
GEAR.VMAX	R/W	Reads the maximum allowed velocity value; active in opmode 2 (position) only.
Homing (HOME)		
HOME.ACC	R/W	Sets homing acceleration; active in opmode 2 (position) only.
HOME.AUTOMOVE	R/W	Sets homing auto move flag.
HOME.DEC	R/W	Sets homing deceleration; active in opmode 2 (position) only.
HOME.DIR	NV	Sets homing direction; active in opmode 2 (position) only.
HOME.DIST	R/W	Sets homing distance; active in opmode 2 (position) only.
HOME.FEEDRATE	R/W	Sets homing velocity factor; active in opmode 2 (position) only.
HOME.IPEAKHOME.IPEAK	R/W	Sets the current limit during homing procedure to a mechanical stop; active in opmode 2 (position) only.
HOME.MODEHOME.MODE	R/W	Selects the homing mode; active in opmode 2 (position) only.
HOME.MOVEHOME.MOVE	Command	Starts a homing procedure; active in opmode 2 (position) only.
HOME.PHOME.P	R/W	Sets home position; active in opmode 2 (position) only.
HOME.PERRTHRESH HOME.PERRTHRESH	R/W	Sets the position lag threshold; active in opmode 2 (position) only.
HOME.REQUIRE	NV	Defines if the axis must be homed before a motion task can be executed.
HOME.SETHOME.SET	Command	Immediately sets the home position; active in opmode 2 (position) only.
HOME.VHOME.V	R/W	Sets homing velocity; active in opmode 2 (position) only.
Hardware Limit Switch (HWLS)		
HWLS.NEGSTATE	R/O	Reads the status of the negative hardware limit switch.
HWLS.POSSTATE	R/O	Reads the status of the positive hardware limit switch.
Current Loop (IL)		
IL.BUSFF	R/O	Displays the current feedforward value injected by the fieldbus.
IL.CMD	R/O	Reads the value of the q-component current controller inside the FPGA.
IL.CMDU	R/W	Sets the user current command.
IL.DCMD (Password Protected)	R/O	Reads the value of the d-component current controller inside the FPGA.
IL.DCMD (Password Protected)	R/O	Reads the value of the d-component current controller inside the FPGA.
IL.DCMDU (Password Protected)	R/W	Sets user d-component current command.

Parameter or Command	Туре	Description
IL.DEADBAND (Password Pro-	R/O	Reads the deadband of two IGBTs in series con-
tected)	20	nection.
IL.FB	R/O	Reads the actual value of the d-component cur-
TE.I B	100	rent.
IL.DFOLDD (Password Protected)	R/O	Reads the motor foldback maximum time at
,		motor peak current.
IL.DFOLDR (Password Protected)	R/O	Reads the motor foldback recovery time.
IL.DFOLDT	R/O	Reads the motor foldback time constant of the exponential current drop (foldback).
IL.DIFOLD	R/O	Reads the drive foldback current limit.
IL.DLIMITN	R/W	Sets the negative user (application-specific) d-component current limit.
IL.DLIMITP	R/W	Sets the positive user (application-specific) d-component current limit.
IL.FB	R/O	Reads the actual value of the d-component current.
IL.FOLDFTHRESH	NV	Reads the foldback fault level.
IL.FOLDWTHRESH	NV	Sets the foldback warning level.
IL.IFOLD	R/O	Reads the overall foldback current limit.
		Enables/disables the integrator part of the PI
IL.INTEN (Password Protected)	NV	loop.
IL.IUOFFSET (Password Pro-	5.047	Sets the offset added to the sigma-delta meas-
tected)	R/W	ured current value in the u-winding.
II IIIED	D/O	Reads the sigma-delta measured current in the u-
IL.IUFB	R/O	winding of the motor.
IL.IVFB	R/W	Sets the sigma-delta measured current in the u-
	1000	winding of the motor.
IL.IVOFFSET (Password Pro-	R/W	Sets the offset added to the sigma-delta meas-
tected)		ured current value in the v-winding.
IL.KP	NV	Sets the proportional gain of the q-component of the PI regulator.
IL.KPDRATIO	NV	Sets the proportional gain of the d-component cur-
Line Brottie	.,,,	rent PI-regulator as a percentage of IL.KP
IL.KPLOOKUPINDEX	R/W	Sets the index into the Current Loop Gain Scheduling Table.
IL.KPLOOKUPVALUE	R/W	Sets the value of the current loop gain scheduling index.
IL.KPLOOKUPVALUES	R/W	Gets the Current Loop Gain Scheduling Table.
IL.KVFF	R/W	Current loop velocity feed-forward gain.
IL.LIMITN	NV	Sets the negative user (application-specific) current limit.
IL.LIMITP	NV	Sets the positive user (application-specific) current limit.
IL.MFOLDD	NV	Sets the motor foldback maximum time at motor peak current.
IL.MFOLDR	R/O	Sets the motor foldback recovery time.
IL.MFOLDT	NV	Sets the motor foldback time constant of the
		exponential current drop (foldback).
IL.MIFOLD	R/O	Sets the motor foldback current limit.

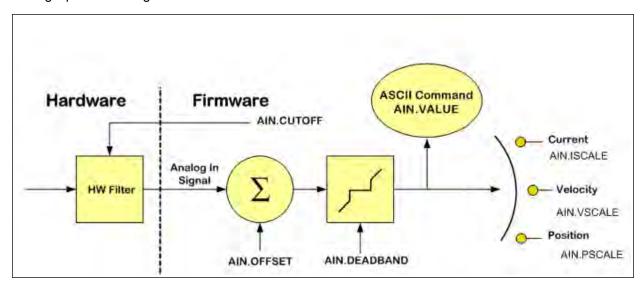
Parameter or Command	Type	Description
IL.PWMFREQ (Password Pro-	NV	Reads and sets the PWM frequency of the
tected)	INV	IGBTs.
IL.VDCMD	R/O	Sets the output of the d-component PI-regulator.
IL.VCMD	R/O	Sets the output of the q-component PI regulator.
IL.VUFB	R/O	Reads the measured voltage on the u-winding of
IL. VOFB	NO.	the motor.
IL.VVFB	R/O	Reads the measured voltage on the v-winding of
IL. V VI B	100	the motor.
IL.DLIMITN	R/W	Sets the negative user (application-specific) d-
IL.DEIWITTY	1777	component current limit.
IL.DLIMITP	R/W	Sets the positive user (application-specific) d-
IL.DEIWITT	10/00	component current limit.
IL.FB	R/O	Reads the actual value of the d-component cur-
12.1 0	100	rent.
LOAD.INERTIA	NV	Sets the load inertia.


Motor (MOTOR) Parameters		
MOTOR.AUTOSET	NV	Determines which drive parameters are cal-
		culated automatically.
MOTOR.BRAKE	NV	Sets the presence or absence of a motor brake.
MOTOR.ICONT	NV	Sets the motor continuous current.
MOTOR.INERTIA	NV	Sets the motor inertia.
MOTOR.IPEAK	NV	Sets the motor peak current.
MOTOR.KE		Sets the motor back EMF constant.
MOTOR.KT	NV	Sets the torque constant of the motor.
MOTOR.LQLL	NV	Sets the line-to-line motor Lq.
MOTOR.VMAX	NV	Sets the maximum motor speed.
MOTOR.NAME	NV	Sets the motor name.
MOTOR.PHASE	NV	Sets the motor phase.
MOTOR.PITCH	NV	Sets the motor pitch.
MOTOR.POLES	NV	Sets the number of motor poles.
MOTOR.R	NV	Sets the stator winding resistance phase-phase in ohms.
MOTOR.TBRAKEAPP	NV	The delay time used for applying the motor brake.
MOTOR.TBRAKERLS	NV	The delay time used for releasing the motor brake.
MOTOR.TEMP	R/O	Reads the motor temperature represented as the resistance of the motor PTC.
MOTOR.TEMPFAULT	NV	Sets the motor temperature fault level.
MOTOR.TEMPWARN	NV	Sets the motor temperature warning level.
MOTOR.TYPE	NV	Sets the motor type.
MOTOR.VOLTMAX	NV	Sets the motor maximum voltage.
Motion Task (MT)		
MT.ACC	R/W	Specifies motion task acceleration; active in opmode 2 (position) only.
MT.CLEAR	Command	Clears motion tasks from the drive; active in opmode 2 (position) only.

MT.CNTL	R/W	Sets motion task control word; active in opmode 2 (position) only.
MT.CONTINUE	Command	Continues a stopped motion task; active in opmode 2 (position) only.
MT.DEC	R/W	Sets motion task deceleration; active in opmode 2 (position) only.
MT.EMERGMT	R/W	Selects a motion task to be triggered after an emergency stop procedure; active in opmode 2 (position) only.
MT.HOMEREQUIRE	NV	Defines if the axis is required to be homed before a motion task can be executed.
MT.LIST	Command	Lists all initialized motion tasks in the drive; active in opmode 2 (position) only.
MT.MTNEXT	R/W	Specifies following motion task number; active in opmode 2 (position) only.
MT.TNEXT	R/W	Specifies following motion task time; active in opmode 2 (position) only.
MT.LIST	Command	Lists all initialized motion tasks in the drive; active in opmode 2 (position) only.
MT.LOAD	Command	Reads/loads a motion task number from the drive; active in opmode 2 (position) only.
MT.MOVE	Command	Starts a motion task; active in opmode 2 (position) only.
MT.NUM	R/W	Sets the motion task number; active in opmode 2 (position) only.
MT.PARAMS	Command	Shows a motion task; active in opmode 2 (position) only.
MT.P	R/W	Sets the motion task position; active in opmode 2 (position) only.
MT.SET	Command	Sets the motion task in the drive; active in opmode 2 (position) only.
MT.TNUM	R/W	Motion task customer table number.
MT.V	R/W	Sets the motion task velocity; active in opmode 2 (position) only.
Position Loop (PL)		
PL.CMD	NV	Reads the position command directly from the entry to the position loop.
PL.ERR	NV	Reads the position error present when the drive is controlling the position loop.
PL.ERRFTHRESH	NV	Sets the maximum position error.
PL.ERRWTHRESH	NV	Sets the position error warning level.
PL.FB	R/O	Reads the position feedback value.
PL.FBSOURCE	NV	Sets the feedback source for the position loop.
PL.INTINMAX	NV	Limits the input of the position loop integrator by setting the input saturation.
PL.INTOUTMAX	NV	Limits the output of the position loop integrator by setting the output saturation.
PL.KI	NV	Sets the integral gain of the position loop.
PL.KP	NV	Sets the proportional gain of the position regulator PID loop.

Programmable Limit Switch			
(PLS)	DAA	Enghles are represented limit switch (DLC)	
PLS.EN	R/W	Enables programmable limit switch (PLS).	
PLS.MODE	NV	Selects programmable limit switch mode.	
PLS.P1 TO PLS.P8	NV	Sets the trigger point for programmable limit switches.	
PLS.STATE	R/O	Reads the programmable limit switch state.	
Recorder (REC)			
REC.ACTIVE	R/O	Indicates if data recording is in progress (active).	
REC.CH1 to REC.CH6	R/W	Sets recording channels 1 to 6.	
REC.DONE	R/O	Checks whether or not the recorder has finished recording.	
REC.GAP	R/W	Specifies the gap between consecutive samples.	
REC.NUMPOINTS	R/W	Sets the number of points to record.	
REC.OFF	R/W	Turns the recorder OFF.	
REC.RETRIEVE	R/O	Transfers all the recorded data to the communication channel.	
REC.STOPTYPE	R/W	Sets the recorder stop type.	
REC.TRIG	Command	Triggers the recorder.	
REC.TRIGSLOPE	R/W	Sets the trigger slope.	
REC.TRIGTYPE	R/W	Sets the trigger type.	
REC.TRIGVAL	R/W	Sets the trigger value.	
Regen Resistor (REGEN)			
REGEN.POWER	R/O	READS REGEN RESISTOR'S CALCULATED POWER.	
REGEN.REXT	N/V	SETS THE EXTERNAL, USER-DEFINED REGEN RESISTOR RESISTANCE.	
REGEN.TEXT	R/W	Sets the external regen resistor thermal protection time constant.	
REGEN.TYPE	N/V	SETS THE REGEN RESISTOR TYPE.	
REGEN.WATTEXT	R/W	SETS THE REGEN RESISTOR'S POWER FAULT LEVEL FOR AN EXTERNAL REGEN RESISTOR.	
Service Motion (SM)			
SM.11	R/W	Sets service motion current 1; active in opmode 0 (torque) only.	
SM.12	R/W	Sets service motion current 2; active in opmode 0 (torque) only.	
SM.MODE	R/W	Sets the service motion mode.	
SM.MOVE	Command	Starts the service motion.	
SM.T1	R/W	Sets the service motion time 1.	
SM.T2	R/W	Sets the service motion time 2.	
SM.V1	R/W	Sets service motion velocity 1; active in opmode 1 (velocity) and 2 (position).	
SM.V2	R/W	Sets service motion velocity 2; active in opmode 1 (velocity) and 2 (position).	
Units (UNIT)			
UNIT.ACCLINEAR	NV	Sets the linear acceleration/deceleration units.	
UNIT.ACCROTARY	NV	Sets the rotary acceleration/deceleration units.	

UNIT.LABEL	NV	Sets user-defined name for user-defined position units.
UNIT.PIN	NV	Sets gear IN for the unit conversion.
UNIT.PLINEAR	NV	Sets the linear position units.
UNIT.POUT	NV	Sets gear out for the unit conversion.
UNIT.PROTARY	NV	Sets the position units when the motor type (MOTOR.TYPE) is rotary.
UNIT.VLINEAR	NV	Sets the linear velocity units.
UNIT.VROTARY	NV	Sets the velocity units when the motor type (MOTOR.TYPE) is rotary.
Bus voltage (VBUS)		
VBUS.OVFTHRESH	R/O	Reads the over voltage fault level.
VBUS.OVWTHRESH	N/V	Sets voltage level for over voltage warning.
VBUS.RMSLIMIT	R/O	Reads the limit for the bus capacitors load.
VBUS.UVFTHRESH	R/O	Sets the under voltage fault level.
VBUS.UVMODE		Indicates undervoltage (UV) mode.
VBUS.UVWTHRESH	NV	Sets voltage level for undervoltage warning.
VBUS.VALUE	R/O	Reads DC bus voltage.
Velocity Loop (VL)		
VL.ARPF1 TO VL.ARPF4	R/W	Sets the natural frequency of the pole (denominator) of anti-resonance (AR) filters 1, 2, 3, and 4; active in opmodes 1 (velocity) and 2 (position) only.
VL.ARPQ1 TO VL.ARPQ4	R/W	Sets the Q of the pole (denominator) of anti-resonance (AR) filter 1; active in opmodes 1 (velocity) and 2 (position) only.
VL.ARTYPE1 TO VL.ARTYPE4	NV	Indicates the method used to calculate BiQuad coefficients; active in opmodes 1 (velocity) and 2 (position) only.
VL.ARZF1 TO VL.ARZF4	R/W	Sets the natural frequency of the zero (numerator) of anti-resonance (AR)filter 1; active in opmodes 1 (velocity) and 2 (position) only.
VL.ARZQ1 TO VL.ARZQ4	R/W	Sets the Q of the zero (numerator) of anti-resonance filter #1; active in opmodes 1 (velocity) and 2 (position) only.
VL.BUSFF	R/O	Displays the velocity loop feedforward value injected by the field-bus; active in opmodes 1 (velocity) and 2 (position) only.
VL.CMD	R/O	Reads the actual velocity command; active in opmodes 1 (velocity) and 2 (position) only.
VL.CMDU	R/W	Sets the user velocity command; active in opmodes 1 (velocity) and 2 (position) only.
VL.ERR	R/O	Sets the velocity error; active in opmodes 1 (velocity) and 2 (position) only.
VL.FB	R/O	Reads the velocity feedback; active in opmodes 1 (velocity) and 2 (position) only.
VL.FBFILTER	R/O	Filters VL.FB value; active in opmodes 1 (velocity) and 2 (position) only.
VL.FBSOURCE	NV	Sets feedback source for the velocity loop; active in opmodes 1 (velocity) and 2 (position) only.
VL.FBUNFILTERED	R/O	Reads the velocity feedback.


VL.FF	R/O	Displays the velocity loop overall feedforward value; active in opmodes 1 (velocity) and 2 (position) only.
VL.GENMODE	NV	Selects mode of velocity generation (Observer, d/dt); active in opmodes 1 (velocity) and 2 (position) only.
VL.KBUSFF	R/W	Sets the velocity loop acceleration feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.
VL.KI	NV	Sets the velocity loop integral gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.
VL.KP	NV	Sets velocity loop proportional gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.
VL.KVFF	R/W	Sets the velocity loop velocity feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.
VL.LIMITN	NV	Sets the velocity lower limit; active in opmodes 1 (velocity) and 2 (position) only.
VL.LIMITP	NV	Sets the velocity high limit; active in opmodes 1 (velocity) and 2 (position) only.
VL.LMJR	R/W	Sets the ratio of the estimated load moment of inertia relative to the motor moment of inertia; active in opmodes 1 (velocity) and 2 (position) only.
VL.THRESH	NV	Sets the over speed fault value; active in opmodes 1 (velocity) and 2 (position) only.
Wake and Shake (WS)		
WS.ARM	Command	Sets wake and shake to start at the next drive enable.
WS.DISTMIN	R/W	Sets the minimum movement required for wake and shake.
WS.IMAX	R/W	Sets maximum current used for wake and shake.
WS.MODE	R/W	Sets the method used for wake and shake.
WS.DISTMAX	R/W	Sets maximum movement allowed for wake and shake.
WS.NUMLOOPS	R/W	Sets the number of repetitions for wake and shake.
WS.STATE	R/O	Reads wake and shake status
WS.T	R/W	Sets wake and shake current-vector appliance time
WS.TDELAY1	NV	Delay for wake and shake timing
WS.TDELAY2	NV	Sets the delay for wake and shake timing.
WS.TDELAY3	NV	Sets the delay for wake and shake between loops in mode 0.
WS.VTHRESH	NV	Defines the maximum allowed velocity for Wake & Shake

AIN Parameters

This section describes the analog input (AIN) parameters. AIN parameters function as shown in the block diagram below:

Analog Input Block Diagram

AIN.CUTOFF

General Information	
Туре	NV Parameter
Description	Sets the analog input low-pass filter cutoff frequency.
Units	Hz
Range	0 to 10,000 Hz
Default Value	5,000 Hz
Data Type	Float
See Also	Analog Input Block Diagram
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	0	M_01-03-00-000

Description

AIN.CUTOFF sets the break frequency in Hz for two cascaded single-pole low-pass filters on the hardware command input. Since the two poles are cascaded at the same frequency, the -3 dB frequency is 0.64*AIN.CUTOFF in hertz and the 10% to 90% step response rise time is 0.53/AIN.CUTOFF in seconds.

Suggested operating values are as follows:

Analog torque opmode: 5 kHzAnalog velocity opmode: 2.5 kHz

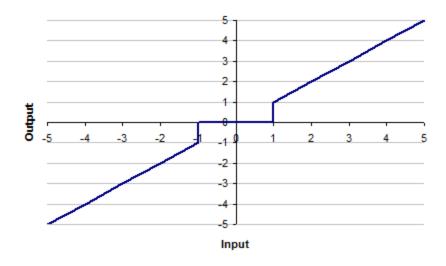
• General purpose analog input high resolution: 500 Hz

Related Topics

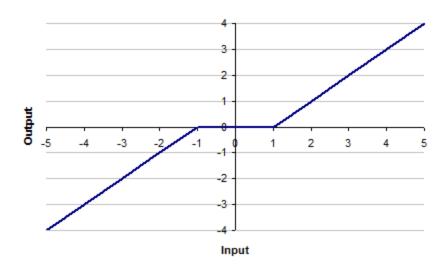
10.4 Analog Input

AIN.DEADBAND

General Information	
Туре	NV Parameter
Description	Sets the analog input signal deadband.
Units	V
Range	0 to 12.5 V
Default Value	0 V
Data Type	Float
See Also	Analog Input Block Diagram
Start Version	M_01-00-000


Fieldbus	Index/Subindex	Object Start Version
Modbus	2	M_01-03-00-000

Description


AIN.DEADBAND sets the deadband of the analog input signal. When AIN.DEADBANDMODE is set to 0, and the value of the analog input is less than the value of AIN.DEADBAND, the analog command will be 0. When the analog input is greater or equal to the AIN.DEADBAND, then the analog command will be generated using the scaling specified.

When AIN.DEADBANDMODE is set to 1, the analog command is 0 if the input is less than the deadband value. When the input is greater than the deadband, the output is equal to (Input - Deadband) * Scaling. Below are illustrations of this behavior.

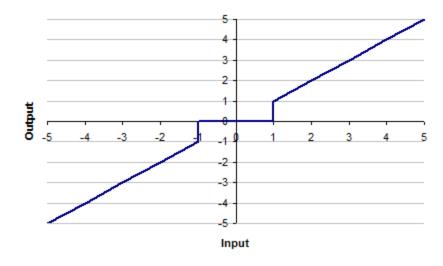
Ain.Deadbandmode= 0 | Ain.Deadband= 1V

Ain.Deadbandmode= 1 | Ain.Deadband= 1V

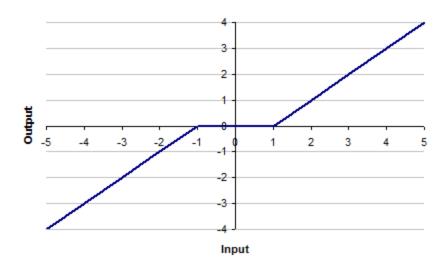
Related Topics

10.4 Analog Input

AIN.DEADBANDMODE


General Information	
Туре	NV Parameter
Description	Sets the analog input deadband mode.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	AIN.DEADBAND
Start Version	M_01-03-06-000

Description


When AIN.DEADBANDMODE is set to 0, and the value of the analog input is less than the value of AIN.DEADBAND, the analog command will be 0. When the analog input is greater or equal to the AIN.DEADBAND, then the analog command will be generated using the scaling specified.

When AIN.DEADBANDMODE is set to 1, the analog command is 0 if the input is less than the deadband value. When the input is greater than the deadband, the output is equal to (Input - Deadband) * Scaling. Below are illustrations of this behavior.

Ain.Deadbandmode= 0 | Ain.Deadband= 1V

Ain.Deadbandmode= 1 | Ain.Deadband= 1V

Related Topics

10.4 Analog Input

AIN.ISCALE

General Information	
Туре	NV Parameter
Description	Sets the analog current scale factor.
Units	A/V
Range	0.001 to 22.4 A/V
Default Value	0.001 A/V
Data Type	Float
See Also	Analog Input Block Diagram
Start Version	M_01-01-01-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	4	M_01-03-00-000

Description

AIN.ISCALE sets the analog current scale factor that scales the analog input (AIN.VALUE) for DRV.OPMODE = 1 (analog torque mode).

The value entered is the motor current per 10 V of analog input. This value may be either higher or lower than 100%, but the actual analog input will be limited by the application current limit (IL.LIMITN and IL.LIMITP).

Related Topics

10.4 Analog Input

AIN.OFFSET

General Information	
Туре	NV Parameter
Description	Sets the analog input offset.
Units	V
Range	–10 to +10 V
Default Value	0 V
Data Type	Float
See Also	Analog Input Block Diagram, AIN.ZERO
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	6	M_01-03-00-000

Description

AIN.OFFSET sets the analog offset, which is added to the analog input command to the drive. This value compensates for the analog input signal (AIN.VALUE) offset or drift.

Related Topics

10.4 Analog Input

AIN.PSCALE

General Information			
Туре	NV Parameter		
Description	Sets the analog position scale factor.		
	Depends on UNIT.PROTARY or UNIT.PLINEAR		
Units	Rotary: counts/V,rad/V, deg/V, (custom units)/V, 16-bit counts/V		
	Linear: counts/V, mm/V, μm/V, (custom units)/V, 16-bit counts/V		
	Rotary:		
	1 to 9,223,372,036,854,775 counts/V		
	0 to 13,493,026.816 rad/V		
	0.06 to 179.0 deg/V		
	0 to 10,737,418.240 (PIN/POUT)/V		
Bongo	0 to 140,737,488,355.327 16-bit counts/V		
Range	Linear:		
	1 to 9,223,372,036,854,775 counts/V		
	0 to 2,147,483.648 mm/V		
	0 to 2,147,483,648.000 µm/V		
	0 to 10,737,418.240 (PIN/POUT)/V		
	0 to 140,737,488,355.327 16-bit counts/V		
	Rotary:		
	1 counts/V		
	0 rad/V		
	0 deg/V		
	0 (PIN/POUT)/V		
Default Value	0 16-bit counts/V		
Default Value	Linear:		
	1 count/V		
	0 rad/V		
	0 deg/V		
	0 (PIN/POUT)/V		
	0 16-bit counts/V		
Data Type	Float		
See Also	N/A		
Start Version	M_01-01-01-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3472h/0	M_01-00-00-000
Modbus	8 (64-bit)	M_01-03-00-000

Description

AIN.PSCALE is an analog position scale factor that scales the analog input (AIN.VALUE) for DRV.OPMODE = 2, DRV.CMDSOURCE = 3 (analog position mode).

Related Topics

10.4 Analog Input

AIN.VALUE

General Information	
Туре	R/O Parameter
Description	Reads the value of the analog input signal.
Units	V
Range	-12.5 to +12.5 V
Default Value	N/A
Data Type	Float
See Also	AIN.OFFSET, AIN.ZERO, Analog Input Block Diagram
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3470h/4	M 01-00-00-000
and CANopen	3509h	INI_01-00-00-000
Modbus	12	M_01-03-00-000

Description

AIN.VALUE reads the analog input value after the value is filtered (as shown in the Analog Input Block Diagram).

Related Topics

10.4 Analog Input

AIN.VSCALE

General Information		
Туре	NV Parameter	
Description	Sets analog velocity scale factor.	
	Depends on UNIT.VROTARY or UNIT.ACCLINEAR	
Units	Rotary: rpm/V, rps/V, (deg/s)/V, [(custom units)/s]/V, (rad/s)/V	
	Linear: counts/s/V, (mm/s)/V, (µm/s)/V, [(custom units)/s]/V	
	Rotary:	
	0.060 to 60,000 rpm/V	
	0.001 to 1,000 rps/V	
	0.359 to 360,000 (deg/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	
Range	0.006 to 6,283.186 (rad/s)/V	
	Linear:	
	0.001 to 1.000 counts/s/V	
	0.001*MOTOR.PITCH to 1,000.000*MOTOR.PITCH (mm/s)/V	
	0.998*MOTOR.PITCH to 1,000,000.000*MOTOR.PITCH (µm/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	
	Rotary:	
	0.060 rpm/V	
	0.001 rps/V	
	0.359 (deg/s)/V	
	0.005 [(custom units)/s]/V	
Default Value	0.006 (rad/s)/V	
	Linear:	
	0.001 counts/s/V	
	0.001*MOTOR.PITCH (mm/s)/V	
	0.998*MOTOR.PITCH (µm/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	
Data Type	Float	
See Also	N/A	
Start Version	M_01-02-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3629h/0	M_01-00-00-000
Modbus	14	M_01-03-00-000

Description

AIN.VSCALE is an analog velocity scale factor that scales the analog input AIN.VALUE) for DRV.OPMODE = 1 (analog velocity mode).

The value entered is the motor velocity per 10 V of analog input. This value may be either higher or lower than the application velocity limit (VL.LIMITP orVL.LIMITN), but the actual analog I/O will be limited by VL.LIMITP or VL.LIMITN.

Related Topics

10.4 Analog Input

AIN.ZERO

General Information		
Туре	Command	
Description	Zeroes the analog input signal.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	AIN.VALUE, AIN.OFFSET	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	N/A	M_01-00-00-000
Modbus	16	M_01-03-00-000

Description

AIN.ZERO causes the drive to zero the analog input signal (AIN.VALUE). You may need to execute this command more than once to achieve zero offset, and AIN.OFFSET is modified in this process.

Related Topics

10.4 Analog Input

AIO Parameters

AIO.ISCALE

General Information		
Туре	NV Parameter	
Description	Sets the analog current scale factor.	
Units	A/V	
Range	0.001 to 22.4 A/V	
Default Value	0.001 A/V	
Data Type	Float	
See Also	Analog Input Block Diagram	
Start Version	M_01-00-00-000	
End Version	M_01-01-01-000	

Description

AIO.ISCALE sets the analog current scale factor that scales the following:

- The analog input (AIN.VALUE) for DRV.OPMODE = 0 (analog torque mode), DRV.CMDSOURCE = 3 (analog).
- The analog output (AOUT.VALUE) for AOUT.MODE = 5 or 6. The value entered is the motor current per 1 V of analog input or output. This value may be either higher or lower than 100%, but the actual analog I/O will be limited by the application current limit (IL.LIMITN and IL.LIMITP).

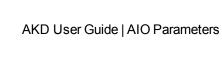
AIO.PSCALE

General Information		
Туре	NV Parameter	
Description	Sets position scale factor.	
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR	
	Rotary: counts/V, rad/V, deg/V, (custom units)/V, 16-bit counts/V	
	Linear: counts/V, mm/V, um/V, (custom units)/V, 16-bit counts/V	
Range	Rotary:	
	1 to 9,223,372,036,854,775 counts/V	
	0 to 13,493,026.816 rad/V	
	0 to 773,094,113.280 deg/V	
	0 to 10,737,418.240 (custom units)/V	
	0 to 140,737,488,355.327 16-bit counts/V	
	Linear:	
	1 to 9,223,372,036,854,775 counts/V	
	0 to 2147483.648 mm/V	
	0 to 2147483648.000 um/V	
	0 to 10737418.240 (custom units)/V	
	0 to 140737488355.327 16-bit counts/V	
	Rotary:	
	1 counts/V	
	0 rad/V	
	0 deg/V	
	0 (custom units)/V	
Default Value	0 16-bit counts/V	
Default Value	Linear:	
	1 count/V	
	0 rad/V	
	0 deg/V	
	0 (custom units)/V	
	0 counts16 bit/V	
Data Type	Float	
See Also	Analog Input Block Diagram	
Start Version	M_01-00-000	
End Version	M_01-01-0100	

Description

AIO.PSCALE is an analog position scale factor that scales:

- 1. The analog input (AIN.VALUE) for DRV.OPMODE = 2, DRV.CMDSOURCE = 3 (analog position mode)
- 2. The analog output (AOUT.VALUE) for AOUT.MODE = 6, or 7. (actual position or position error) per 10 V of analog input or output.


AIO.VSCALE

General Informatio	n	
Туре	NV Parameter	
Description	Sets velocity scale factor.	
	Depends on UNIT.VROTARY or UNIT.ACCLINEAR	
Units	Rotary: rpm/V, rps/V, (deg/s)/V, [(custom units)/s]/V, (rad/s)/V	
	Linear: counts/s/V, (mm/s)/V, (um/s)/V, [(custom units)/s]/V	
	Rotary:	
	0.060 to 60,000 rpm/V	
	0.001 to 1,000 rps/V	
Range	0.359 to 360,000 (deg/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	
	0.006 to 6,283.186 (rad/s)/V	
	Linear:	
	0.001 to 1.000 counts/s/V	
	0.001*MOTOR.PITCH to 1,000.000*MOTOR.PITCH (mm/s)/V	
	0.998*MOTOR.PITCH to 1,000,000.000*MOTOR.PITCH (um/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	
Default Value	Rotary:	
	0.060 rpm/V	
	0.001 rps/V	
	0.359 (deg/s)/V	
	0.005 [(custom units)/s]/V	
	0.006 (rad/s)/V	
	Linear:	
	0.001 counts/s/V	
	0.001*MOTOR.PITCH (mm/s)/V	
	0.998*MOTOR.PITCH (um/s)/V	
	0.005 to 5,000 [(custom units)/s]/V	
Data Type	Float	
See Also	Analog Input Block Diagram	
Start Version	M_01-00-00-000	
End Version	M_01-01-01-000	

Description

AIO.VSCALE is an analog velocity scale factor that scales:

- 1. The analog input (AIN.VALUE) for DRV.OPMODE = 2 (analog velocity mode)
- 2. The analog output (AOUT.VALUE) for AOUT.MODE = 1, 3, or 7. The value entered is the motor velocity per 10 V of analog input or output. This value may be either higher or lower than the application velocity limit (VL.LIMITP or VL.LIMITN), but the actual analog I/O will be limited by VL.LIMITP or VL.LIMITN.

This page intentionally left blank.

AOUT Parameters

AOUT.DEBUGADDR

General Information		
Туре	NV Parameter	
Description	Sets the memory address to debug.	
Units	N/A	
Range	4 to 4,292,870,142	
Default Value	4	
Data Type	Integer	
See Also	AOUT.MODE	
Start Version	M_01-01-0100	

Description

 ${\tt AOUT.DEBUGADDR\ sets\ the\ memory\ address\ to\ debug\ when\ AOUT.MODE\ =\ 9\ (debug\ mode)}.$

Related Topics

AOUT.DEBUGSCALE

General Information		
Туре	NV Parameter	
Description	Sets the scale to be used for debug.	
Units	N/A	
Range	0.001 to 9,223,372,036,854,775.000	
Default Value	1	
Data Type	Float	
See Also	AOUT.MODE	
Start Version	M_01-01-01-000	

Description

 ${\tt AOUT.DEBUGSCALE\ sets\ the\ scale\ to\ be\ used\ for\ debug\ when\ AOUT.MODE\ =\ 9\ (debug\ mode)}.$

Related Topics

AOUT.ISCALE

General Information		
Туре	NV Parameter	
Description	Sets the analog current scale factor.	
Units	A/V	
Range	0.001 to 22.4 A/V	
Default Value	0.001 to 22.4 A/V	
Data Type	Float	
See Also	AOUT.VALUE	
Start Version	M_01-01-01-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	18	M_01-03-00-000

Description

AOUT.ISCALE sets the analog current scale factor that scales the analog output (AOUT.VALUE) for AOUT.MODE = 4 or 5. The value entered is the motor current per 10 V of analog input or output. This value may be either higher or lower than 100%, but the actual analog I/O will be limited by the application current limit (IL.LI-MITN and IL.LIMITP).

Related Topics

AOUT.MODE

General Information		
Туре	NV Parameter	
Description	Sets the analog output mode.	
Units	N/A	
Range	0 to 11	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3470h/1	M_01-00-00-000
Modbus	20	M_01-03-00-000

Description

AOUT.MODE sets the analog output functionality.

AOUTx.MODE	Description
0	User variable. The analog output signal is determined by the user (using
- O	AOUT.VALUEU).
1	Actual velocity. The analog signal describes the current velocity value (VL.FB).
2	Velocity error. The analog signal describes the velocity error value.
3	Velocity command. The analog signal describes the velocity command value.
4	Actual current. The analog signal describes the actual current value.
5	Current command. The analog signal describes the current command value.
6	Actual position. The analog signal describes the current position value.
7	Position error. The analog signal describes the position error value.
8	Triangle wave. The analog signal is a triangle wave (sawtooth pattern).
9	Debug mode. In this mode the user can define a drive variable to monitor via
	the analog output (AOUT.VALUEU).
10	Unfiltered Velocity (VL.FBUNFILTERED)
11	Filtered Velocity - 10Hz Lowpass (VL.FBFILTER)

Example

You can use AOUT.MODE and AOUT.VALUEU to configure an output signal as follows:

```
-->AOUT.MODE 0
-->AOUT.VALUEU 5
-->AOUT.VALUEU 4.33
```

Related Topics

AOUT.OFFSET

General Information		
Туре	NV Parameter	
Description	Sets the analog input offset.	
Units	V	
Range	-10 to +10 V	
Default Value	0 V	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	22	M_01-03-00-000

Description

This parameter sets the analog input offset.

Related Topics

AOUT.PSCALE

General Informatio	n	
Туре	NV Parameter	
Description	Sets the analog position scale factor.	
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR	
	Rotary: counts/V,rad/V, deg/V, (custom units)/V, 16-bit counts/V	
	Linear: counts/V, mm/V, µm/V, (custom units)/V, 16-bit counts/V	
	Rotary:	
	1 to 9,223,372,036,854,775 counts/V	
	0 to 13,493,026.816 rad/V	
	0 to 773,094,113.280 deg/V	
	0 to 10,737,418.240 (custom units)/V	
D	0 to 140,737,488,355.327 16-bit counts/V	
Range	Linear:	
	1 to 9,223,372,036,854,775 counts/V	
	0 to 2,147,483.648 mm/V	
	0 to 2,147,483,648.000 μm/V	
	0 to 10,737,418.240 (custom units)/V	
	0 to 140,737,488,355.327 16-bit counts/V	
	Rotary:	
	1 counts/V	
	0 rad/V	
	0 deg/V	
	0 (custom units)/V	
Default Value	0 16-bit counts/V	
Default Value	Linear:	
	1 counts/V	
	0 rad/V	
	0 deg/V	
	0 (custom units)/V	
	0 counts16 bit/V	
Data Type	Float	
See Also	AOUT.VALUE	
Start Version	M_01-01-01-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3471h/0	M_01-00-00-000
Modbus	24 (64-bit)	M_01-03-00-000

Description

AOUT.PSCALE is an analog position scale factor that scales the analog output (AOUT.VALUE) for AOUT.MODE = 6, or 7 (actual position or position error) per 10 V of analog input or output.

Related Topics

AOUT.VALUE

General Information		
Туре	N/V Parameter	
Description	Reads the analog output value.	
Units	V	
Range	–10 to +10 V	
Default Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3470h/2	M_01-00-00-000
Modbus	28 (64-bit)	M_01-03-00-000

Description

AOUT.VALUE reads the analog output value. This parameter can also be used to set the value of the analog output when AOUT.MODE = 0 (analog output signal is determined by the user).

Related Topics

AOUT.VALUEU

General Information	
Туре	R/W Parameter
Description	Sets the analog output value.
Units	V
Range	-10 to +10 V
Default Value	0
Data Type	Float
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3470h/3	M_01-00-00-000
Modbus	32 (64-bit)	M_01-03-00-000

Description

AOUT.VALUEU reads/writes the analog output value when AOUT.MODE = 0 (analog output signal is determined by the user).

Related Topics

AOUT.VSCALE

General Informatio	n
Туре	NV Parameter
Description	Sets velocity scale factor for analog output.
	Depends on UNIT.VROTARY or UNIT.ACCLINEAR
Units	Rotary: rpm/V, rps/V, (deg/s)/V, [(custom units)/s]/V, (rad/s)/V
	Linear: counts/s/V, (mm/s)/V, (µm/s)/V, [(custom units)/s]/V
	Rotary:
	0.060 to 60,000 rpm/V
	0.001 to 1,000 rps/V
	0.359 to 360,000 (deg/s)/V
	0.005 to 5,000 [(custom units)/s]/V
Range	0.006 to 6,283.186 (rad/s)/V
	Linear:
	0.001 to 1.000 counts/s/V
	0.001*MOTOR.PITCH to 1,000.000*MOTOR.PITCH (mm/s)/V
	0.998*MOTOR.PITCH to 1,000,000.000*MOTOR.PITCH (µm/s)/V
	0.005 to 5,000 [(custom units)/s]/V
	Rotary:
	0.060 rpm/V
	0.001 rps/V
	0.359 (deg/s)/V
	0.005 [(custom units)/s]/V
Default Value	0.006 (rad/s)/V
	Linear:
	0.001 counts/s/V
	0.001*MOTOR.PITCH (mm/s)/V
	0.998*MOTOR.PITCH (µm/s)/V
	0.005 [(custom units)/s]/V
Data Type	Float
See Also	AOUT.VALUE
Start Version	M_01-01-0100

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3470h/5	M_01-00-00-000
Modbus	36	M_01-03-00-000

Description

AOUT.VSCALE is an analog velocity scale factor that scales the analog output (AOUT.VALUE) for AOUT.MODE = 1, 2, or 3. The value entered is the motor velocity per 10 V of analog output. This value may be either higher or lower than the application velocity limit (VL.LIMITP or VL.LIMITN), but the actual analog I/O will be limited by VL.LIMITP or VL.LIMITN.

BODE Parameters

BODE.EXCITEGAP

General Information	
Туре	R/W Parameter
Description	Controls how often the excitation is updated.
Units	Drive samples
Range	1 to 255 drive samples
Default Value	2 drive samples
Data Type	N/A
See Also	BODE.MODE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	38	M_01-03-00-000

Description

BODE.EXCITEGAP controls how often the excitation is updated. The excitation is updated every n drive samples, where n is BODE.EXCITEGAP. For example, if BODE.EXCITEGAP = 2, then the excitation is updated every 2/(16,000 Hz) = 1/8,000 Hz = 0.000125 sec. When measuring a system, update the excitation only as often as the data is recorded.

Example

Set excitation update rate to 8,000 Hz:

-->BODE.EXCITEGAP 2

Set excitation update rate to 4,000 Hz:

-->BODE.EXCITEGAP 4

Get excitation update rate (already set to 8000 Hz):

-->BODE.EXCITEGAP 2

Related Topics

- 14.3 Using the Performance Servo Tuner
- 14.3.4 Using the Performance Servo Tuner: Advanced
- 15 Scope
- 1.2.1.5 Bode (set command source)
- 6.5 Settings

F126

BODE.FREQ

General Information	
Туре	R/W Parameter
Description	Sets the frequency of the sine excitation source.
Units	Hz
Range	0 to 8,000 Hz
Default Value	0 Hz
Data Type	Float
See Also	BODE.MODE BODE.INJECTPOINT, BODE.IAMP, BODE.VAMP
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	40	M_01-03-00-000

Description

BODE.FREQ sets the frequency of the sine excitation source in Hz. The sine excitation source is used to take frequency response measurements of a system.

Example

Setting up a sine excitation source of 0.2 A at 50 Hz:

```
-->BODE.INJECTPOINT 1
-->BODE.IAMP 0.2
-->BODE.FREQ 50.0
-->BODE.MODE 2
```

Related Topics

- 14.3 Using the Performance Servo Tuner
- 14.3.4 Using the Performance Servo Tuner: Advanced
- 15 Scope
- 1.2.1.5 Bode (set command source)
- 6.5 Settings

F126

BODE.IAMP

General Information	
Туре	R/W Parameter
Description	Sets current command value used during the Bode procedure.
Units	A
Range	+/- Combined drive and motor current limit
Default Value	0.2 A
Data Type	Float
See Also	BODE.INJECTPOINT, BODE.FREQ
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	42	M_01-03-00-000

Description

BODE.IAMP sets the amplitude of the excitation when in current mode as set in BODE.INJECTPOINT. When using BODE.MODE = 1 and BODE.INJECTPOINT = 1, this parameter will determine the level of noise injected to commanded current value.

Example

Set the excitation current to 0.2 A:

-->BODE.IAMP 0.2

Get the excitation current (already set to 0.2 A):

-->BODE.IAMP 0.200 [A]

Related Topics

- 14.3 Using the Performance Servo Tuner
- 14.3.4 Using the Performance Servo Tuner: Advanced
- 15 Scope
- 1.2.1.5 Bode (set command source)
- 6.5 Settings

F126

BODE.IFLIMIT

General Information	
Туре	R/W Parameter
Description	Sets the current fault duration limit in seconds for the BODE.MODE 5 stability test.
Units	s
Range	0.001 to 60.000
Default Value	0
Data Type	Decimal
See Also	BODE.MODE,BODE.MODETIMER, BODE.IFTHRESH, BODE.VFLI-MIT, BODE.VFTHRESH
Start Version	M_01-02-10-000

Description

When BODE.MODE is set to 5, the firmware monitors the drive current (IL.CMD). When IL.CMD goes above BODE.IFTHRESH, an internal counter records the length of time IL.CMD was above BODE.IFTHRESH. If the internal counter reaches BODE.IFLIMIT, Fault 133 – Instability during Autotune will be generated.

The smaller BODE.IFLIMIT, the quicker Fault 133 will be generated when IL.CMD exceeds BODE.IFLIMIT.

Example

Set BODE.IFTHRESH to 6 Amps:

-->BODE.IFTHRESH 6

Set BODE.IFLIMIT to 0.500 seconds:

-->BODE.IFLIMIT 0.5

Set BODE.MODE to 5 to enable stability detection:

BODE.MODE 5

Related Topics

14.3 Using the Performance Servo Tuner

14.3.4 Using the Performance Servo Tuner: Advanced

F133

BODE.IFTHRESH

General Information		
Туре	R/W Parameter	
Description	Sets the current fault threshold for the BODE.MODE 5 stability test.	
Units	A	
Range	0.001 to DRV.IPEAK or MOTOR.IPEAK (whichever is lowest) A	
Default Value	0 A	
Data Type	Decimal	
See Also	BODE.MODE,BODE.MODETIMER, BODE.VFLIMIT, BODE.VFTHRESH, BODE.IFLIMIT	
Start Version	M_01-02-10-000	

Description

When BODE.MODE is set to 5, the firmware monitors the drive current (IL.CMD). When IL.CMD goes above BODE.IFTHRESH, an internal counter records the length of time IL.CMD was above BODE.IFTHRESH. If the internal counter reaches BODE.IFLIMIT, Fault 133 (Instability during Autotune) is generated.

Example

Set BODE.IFTHRESH to 6 Amps:

-->BODE.IFTHRESH 6

Set BODE.IFLIMIT to 0.500 seconds:

-->BODE.IFLIMIT 0.5

Set BODE.MODE to 5 to enable stability detection:

BODE.MODE 5

Related Topics

14.3 Using the Performance Servo Tuner

14.3.4 Using the Performance Servo Tuner: Advanced

F133

BODE.INJECTPOINT

General Information		
Туре	R/W Parameter	
Description	Sets whether the excitation uses current or velocity excitation type.	
Units	N/A	
Range	0 to 2	
Default Value	0	
Data Type	Integer	
See Also	BODE.IAMP, BODE.MODE, BODE.VAMP	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	44	M_01-03-00-000

Description

BODE.INJECTPOINT sets whether the excitation uses current or velocity excitation type.

BODE.INJECTPOINT	Description
0	None
1	Current
2	Velocity

Example

Set BODE.INJECTPOINT to current:

-->BODE.INJECTPOINT 1

Get BODE.INJECTPOINT (already set to current):

-->BODE.INJECTPOINT 1

Related Topics

- 14.3 Using the Performance Servo Tuner
- 14.3.4 Using the Performance Servo Tuner: Advanced
- 15 Scope
- 1.2.1.5 Bode (set command source)
- 6.5 Settings

F126

BODE.MODE

General Information		
Туре	R/W Parameter	
Description	Sets the mode of the excitation.	
Units	N/A	
Range	0 to 4	
Default Value	0	
Data Type	Integer	
See Also	BODE.INJECTPOINTBODE.VAMP	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	46	M_01-03-00-000

Description

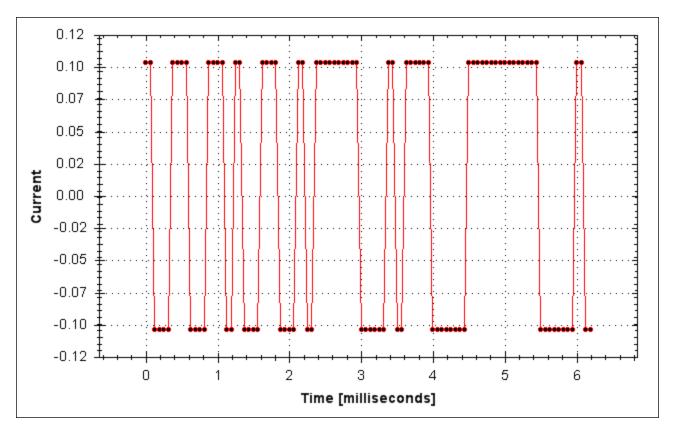
BODE.MODE sets the mode of the excitation. The excitation can be set to the modes shown in the table below. BODE.MODE is always set to **None** when Ethernet communication is disconnected. The peak amplitude of the excitation is set by either BODE.IAMP or BODE.VAMP (depending on BODE.INJECTPOINT).

BODE.MODE is subject to a watchdog timer (BODE.MODETIMER) as follows:

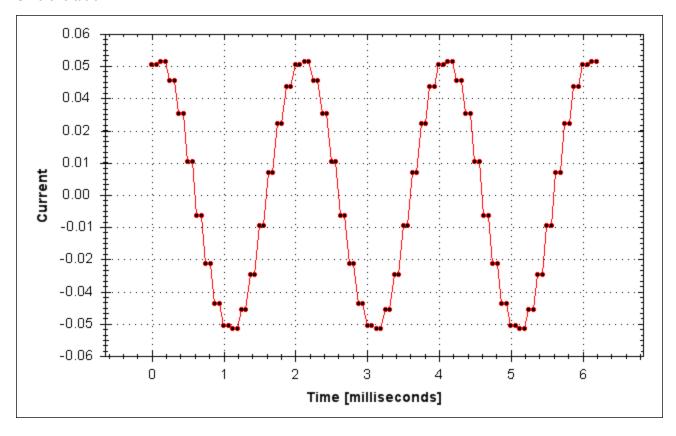
- If BODE.MODETIMER is 0, then BODE.MODE is not affected.
- If BODE.MODETIMER is set to a value greater than 0, then BODE.MODE will be set to 0 (None) after the BODE.MODETIMER time milliseconds.
- If BODE.MODE is a nonzero value, and you reset BODE.MODE to another nonzero value, you will reset the watchdog timer. This mechanism is intended to turn off the excitation signal if you lose communication with the drive.

BODE.MODE	Description	Comments
0	None	Turns all excitation off
1	PRB	Uses Pseudo Random Binary (PRB) excitation. PRB is a signal that is always +/- peak amplitude, varying only in phase. PRB excitation results in a flat excitation frequency spectrum. PRB results in a high peak excitation amplitude, which can help minimize friction in a frequency response test. PRB excitation repeats every (2^BODE.PRBDEPTH) / BODE.EXCITEGAP drive samples. This repetition can be used to reveal the effects of friction.
2	Sine	Uses Sine excitation
3	Noise	Uses random noise excitation. Noise is a random number generator that varies between +/- peak amplitude.
4	Offset	Sets a torque offset equal to BODE.IAMP

Example


Set BODE.MODE to PRB:

-->BODE.MODE 1


Get BODE.MODE (already set to PRB):

-->BODE.MODE 1

PRB excitation:

Sine excitation:

Noise excitation:

Related Topics

- 14.3 Using the Performance Servo Tuner
- 14.3.4 Using the Performance Servo Tuner: Advanced
- 15 Scope
- 1.2.1.5 Bode (set command source)
- 6.5 Settings

F126

BODE.MODETIMER

General Information		
Туре	R/W Parameter	
Description	Sets the watchdog timer of the excitation.	
Units	ms	
Range	0 to 268,435,456	
Default Value	0	
Data Type	Integer	
See Also	BODE.MODE	
Start Version	M_1-03-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	48	M_01-03-00-000

Description

BODE.MODETIMER sets the watchdog timer for the excitation. This watchdog is used to automatically turn off the excitation of the system if communication is lost. It is highly recommended that you use the watchdog for any excitation measurements. The WorkBench Performance Servo Tuner and Bode tool automatically use these values, requiring no action from you.

If the BODE.MODETIMER is a nonzero value, the Bode watchdog is enabled. BODE.MODE will be set to 0 (None) after the BODE.MODETIMER value elapses. To reset the watchdog timer, reset BODE.MODE to a nonzero value.

BODE.MODETIMER	Comments
0	BODE.MODE is left at the value you set it to.
	Uses pseudo random binary (PRB) excitation. PRB is a signal that is always +/- peak amplitude, varying only in phase.
> 0	PRB excitation results in a flat excitation frequency spectrum. PRB also results in a high peak excitation amplitude, which can help minimize friction in a frequency response test.
	PRB excitation repeats every (2^BODE.PRBDEPTH)/BODE.EXCITEGAP drive samples. This repetition can be used to reveal the effects of friction.

Example

Disable BODE.MODETIMER:

-->BODE.MODETIMER //

Set to 0 to disable the watchdog

0

-->BODE.MODE // Observe starting state of the Bode mode

0

-->BODE.MODE 1 // Set Bode mode to PRB

-->BODE.MODE // Observe Bode mode state is the same after 0.5 seconds

1

-->BODE.MODE // Observe Bode mode state is the same after 10 seconds

1

Enable BODE.MODETIMER:

- -->BODE.MODETIMER 1000 // Set watchdog to 1 second
- -->BODE.MODE 1 // Set Bode mode to PRB
- -->BODE.MODE // Observe Bode mode state is the same after 0.5 seconds

1

-->BODE.MODE // Observe Bode mode state has been set to zero after 1.0 seconds

0

Enable and reenable BODE.MODETIMER:

- -->BODE.MODETIMER 2500 // Set watchdog to 2.5 seconds
- -->BODE.MODE 1 // Set Bode mode to PRB
- -->BODE.MODE // Observe Bode mode state is the same after 1.5 seconds

1

- -->BODE.MODE 1 // Set Bode mode to PRB, resetting the watchdog timer to the original 2.5 second value set above.
- -->BODE.MODE // Observe Bode mode state is the same after 3.0 seconds after the original enabling of BODE.MODE 1
- -->BODE.MODE // Observe Bode mode state has been set to zero after 4.0 seconds after the original enabling of BODE.MODE

0

Related Topics

- 14.3 Using the Performance Servo Tuner
- 14.3.4 Using the Performance Servo Tuner: Advanced
- 15 Scope
- 1.2.1.5 Bode (set command source)
- 6.5 Settings

F126

BODE.PRBDEPTH

General Information	
Туре	R/W Parameter
Description	Sets the length of the PRB signal before it repeats.
Units	NA
Range	4 to 19
Default Value	19
Data Type	Integer
See Also	BODE.MODE, BODE.INJECTPOINT, BODE.IAMP, BODE.VAMP
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	50	M_01-03-00-000

Description

BODE.PRBDEPTH sets the length of the PRB signal before it repeats. This applies only when BODE.MODE = PRB. The PRB excitation will repeat after (2^BODE.PRBDEPTH) / BODE.EXCITEGAP drive samples.

Example

Set BODE.PRBDEPTH to 19:

-->BODE.PRBDEPTH 19

Get BODE.PRBDEPTH (already set to 19):

-->BODE.PRBDEPTH 19

Related Topics

14.3 Using the Performance Servo Tuner

14.3.4 Using the Performance Servo Tuner: Advanced

15 Scope

1.2.1.5 Bode (set command source)

6.5 Settings

F126

BODE.VAMP

General Information			
Туре	R/W Parameter		
Description	Sets the amplitude of the excitation when in velocity mode.		
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR		
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s		
	Linear: counts/s, mm/s, µm/s, custom units/s		
	Rotary:		
	0.000 to 15,000.000 rpm		
	0.000 to 250.000 rps		
	0.000 to 90,000.000 degree/s		
	0.000 to 1,250.000 custom units/s		
Range	0.000 to 1,570.796 rad/s		
	Linear:		
	0.000 to 1,073,741,824,000.000 counts/s		
	0.000 to 8,000.000 mm/s		
	0.000 to 8,000,000.000 µm/s		
	0.000 to 1,250.000 custom units/s		
Default Value	0		
Data Type	Float		
See Also	BODE.MODE, BODE.INJECTPOINT		
Start Version	M_01-00-00-000		

Fieldbus	Index/Subindex	Object Start Version	
Modbus	52	M_01-03-00-000	

Description

BODE.VAMP sets the amplitude of the excitation when in velocity mode as set in BODE.INJECTPOINT.

Example

Set the excitation velocity to 100 RPM

-->BODE.VAMP 100

Get the excitation velocity(already set to 100 RPM)

-->BODE.VAMP

100.000 [rpm]

Related Topics

- 14.3 Using the Performance Servo Tuner
- 14.3.4 Using the Performance Servo Tuner: Advanced
- 15 Scope
- 1.2.1.5 Bode (set command source)
- 6.5 Settings

F126

BODE.VFLIMIT

General Information	
Туре	R/W Parameter
Description	Sets the velocity fault duration limit (seconds) for the BODE.MODE 5 stability test
Units	s
Range	0.001 to 60.000
Default Value	0
Data Type	Decimal
See Also	BODE.MODE, BODE.MODETIMER, BODE.IFLIMIT, BODE.I- FTHRESH, BODE.VFTHRESH
Start Version	M_01-02-10-000

Description

When BODE.MODE is set to 5, the firmware monitors the drive feedback velocity VL.FB. When VL.FB goes above BODE.VFTHRESH, an internal counter records the length of time VL.FB was above BODE.VFTHRESH. If the internal counter reaches BODE.VFLIMIT, Fault 133 – Instability during Autotune will be generated. The smaller BODE.VFLIMIT, the quicker Fault 133 will be generated when VL.FB exceeds BODE.VFLIMIT.

Example

Set BODE.VFTHRESH to 10 RPM:

-->BODE.VFTHRESH 10

Set BODE.VFLIMIT to 0.500 seconds

-->BODE.VFLIMIT 0.5

Set BODE.MODE to 5 to enable stability detection

-->BODE.MODE 5

Related Topics

14.3 Using the Performance Servo Tuner

14.3.4 Using the Performance Servo Tuner: Advanced

F133

BODE.VFTHRESH

General Information	on Carlos Ca		
Туре	R/W Parameter		
Description	Sets the current fault threshold for the BODE.MODE 5 stability test.		
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR		
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s		
	Linear: counts/s, mm/s, μm/s, custom units/s		
	Rotary:		
	0.000 to 15,000.000 rpm		
	0.000 to 250.000 rps		
	0.000 to 90,000.000 deg/s		
	0.000 to 1,250.000 custom units/s		
Range	0.000 to 1,570.796 rad/s		
	Linear:		
	0.000 to 1,073,741,824,000.000 counts/s		
	0.000 to 8,000.000 mm/s		
	0.000 to 8,000,000.000 µm/s		
	0.000 to 1,250.000 custom units/s		
Default Value	0		
Data Type	Decimal		
See Also	BODE.MODE, BODE.MODETIMER, BODE.IFLIMIT, BODE.I-		
OU AISO	FTHRESH, BODE.VFLIMIT		
Start Version	M_01-02-10-000		

Description

When BODE.MODE is set to 5, the firmware monitors the drive feedback velocity VL.FB. When VL.FB goes above BODE.VFTHRESH, an internal counter records the length of time VL.FB was above BODE.VFTHRESH. If the internal counter reaches BODE.VFLIMIT, Fault 133 – Instability during Autotune will be generated.

The smaller BODE.VFLIMIT, the quicker Fault 133 will be generated when VL.FB exceeds BODE.VFLIMIT.

Example

Set BODE.VFTHRESH to 10 RPM:

-->BODE.VFTHRESH 10

Set BODE.VFLIMIT to 0.500 seconds:

-->BODE.VFLIMIT 0.5

Set BODE.MODE to 5 to enable stability detection:

-->BODE.MODE 5

Related Topics

14.3 Using the Performance Servo Tuner

14.3.4 Using the Performance Servo Tuner: Advanced

F133

CAP Parameters

CAP0.EDGE, CAP1.EDGE

General Information	
Туре	R/W Parameter
Description	Selects the capture edge.
Units	N/A
Range	1 to 3
Default Value	1
Data Type	U8
See Also	CAP0.PREEDGE, CAP1.PREEDGE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex		Object Start Version
Modbus	54	CAP0.EDGE	M_01-03-00-000
Modbus	80	CAP1.EDGE	IVI_U 1-U3-UU-UUU

Description

The filtered trigger source is monitored for rising edge, falling edge, or both edges. The event mode logic may ignore the precondition edge detection; however, the trigger always uses edge detection.

The precondition logic has an identical feature controlled by CAP0.PREEDGE, CAP1.PREEDGE.

Value	Description
0	Reserved
1	Rising edge
2	Falling edge
3	Both edges

Related Topics

CAP0.EN, CAP1.EN

General Information	
Туре	R/W Parameter
Description	Enables or disables the related capture engine.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex		Object Start Version
Modbus	56	CAP0.EN	M_01-03-00-000
Wodbus	82	CAP1.EN	NI_0 1-03-00-000

Description

This parameter enables or disables the related capture engine. After each successful capture event, this parameter is reset to 0 and must be activated again for the next capture. Also note that CAP0.PLFB, CAP1.PLFB is set to 0 when this parameter is set to 1.

0 = Disable

1 = Enable

Related Topics

CAP0.EVENT, CAP1.EVENT

General Information	
Туре	R/W Parameter
Description	Controls the precondition logic.
Units	N/A
Range	0 to 3
Default Value	0
Data Type	U8
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex		Object Start Version
EtherCAT COE	3460h/5	CAP0.EVENT	
and CANopen	3460h/6	CAP1.EVENT	NI_0 1-00-00-000
Modbus	58	CAP0.EVENT	M_01-03-00-000
Modbus	84	CAP1.EVENT	NI_0 1-03-00-000

Description

The event mode controls use of the precondition logic. If this field is not 0, then the precondition input is selected by CAPx.TRIGGER. If this field is 1, then the precondition edge is selected by the CAPx.PREEDGE. The four event modes are listed below.

Event	Description
0	Precondition settings ignored.
1	Trigger on first trigger event after selected edge on pre- condition input.
2	Trigger on first trigger event to occur while precondition input is 1
3	Trigger on first trigger event to occur while precondition input is 0.

Example

Event 0

The following diagram shows an example of Event = 0 (trigger on edge, trigger edge = rising). In this mode, the precondition logic is ignored.

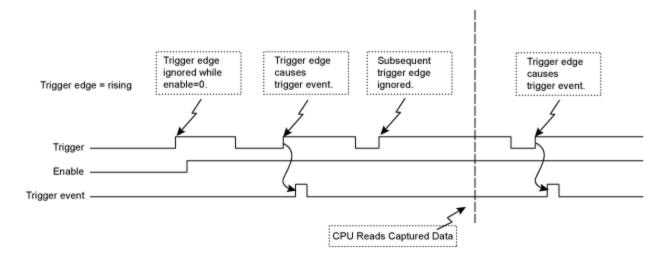


Figure 1: Trigger Edge Mode

Events 2 and 3 (Trigger edge while precondition = 0 or 1)

In these events, the precondition logic samples the current (post-filter) state of the selected precondition source input. The capture engine looks for a trigger edge while the precondition input is at a "1" or "0" state.

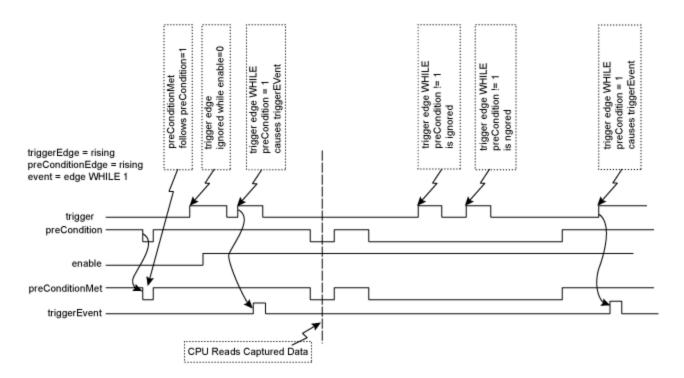


Figure 2: Trigger edge WHILE precondition edge

Event 1 (Trigger edge after precondition)

In this event, each trigger event requires Enable=1, a new precondition edge, followed by a new trigger edge. The sequence requirements are shown in the figure below.

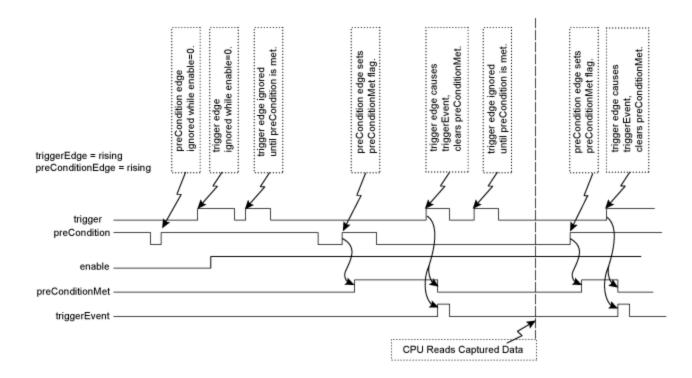


Figure 3: Trigger edge after precondition edge

Note: If the precondition and trigger edges occur at the same time, it is not a valid trigger event. A subsequent trigger edge must occur after the precondition edge. The same time resolves to a single 40 ns clock tick in the trigger event logic (after the optional filter function as well as any sensor, cable, or noise delays).

Related Topics

CAP0.FILTER, CAP1.FILTER

General Information		
Туре	R/W Parameter	
Description	Sets the filter for the capture source input.	
Units	N/A	
Range	0 to 2	
Default Value	0	
Data Type	U8	
See Also	CAP0.PREFILTER, CAP1.PREFILTER	
Start Version	M_01-00-000	
End Version	M_01-03-00-000	

Description

These parameters are not functional in $M_01-03-00-000$. In future releases, you can use DINx.FILTER to select a filter on the input channel.

Related Topics

DIN1.FILTER TO DIN7.FILTER

CAP0.MODE, CAP1.MODE

General Information		
Туре	NV Parameter	
Description	Selects the captured value.	
Units	N/A	
Range	0 to 3	
Default Value	0	
Data Type	U8	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex		Object Start Version
EtherCAT COE	3460h/3	CAP0.MODE	M 01-00-00-000
and CANopen	3460h/4	CAP1.MODE	101_01-00-00-000
Modbus	62	CAP0.MODE	M_01-03-00-000
Moubus	88	CAP1.MODE	IVI_U 1-03-00-000

Description

Mode 0 is the standard position capture, which stores PL.FB. Data can be retrieved with CAP0.PLFB, CAP1.PLFB.

Mode 1 is the drive internal time capture. Data can be retrieved with CAP0.T, CAP1.T.

Mode 2 is the KAS EtherCAT distributed clock time (DCT) capture. Instead of using a position value, the DCT is calculated. There is no user parameter to retrieve the captured DCT. Attempting to set Mode = 2 with anything other than an EtherCAT system will result in an invalid parameter error.

Mode 3 is the capture of the primary encoder signal. This mode is used to home onto a feedback index. This mode sets the other parameters needed for this mode. These parameters can be changed later, but this is not recommended unless the input source of the index signal varies. Parameters set in this mode are:

- CAPx.TRIGGER 10: index mark of primary encoder
- CAPx.EDGE 1: rising edge
- CAPx.EVENT 0: ignore precondition

Also the capture engine is immediately enabled and is continuously triggered again.

Mode 4 is similar to Mode 0 (standard position capture), except that the re-enabling of the capture is done automatically. This mode can be used for the registration move.

Related Topics

CAP0.PLFB, CAP1.PLFB

General Information		
Туре	R/O Parameter	
Description	Reads captured position value.	
	Depends on UNIT.PROTARY or UNIT.PLINEAR	
Units	Rotary: counts, rad, deg, custom units, 16-bit counts	
	Linear: counts, mm, µm, custom units, 16-bit counts	
Range	Full range of a signed 64 bit variable	
Default Value	0	
Data Type	S64	
See Also	UNIT.PROTARY, UNIT.PLINEAR	
Start Version	M_01-00-000	

Fieldbus	Index/Sub	index	Object Start Version	
	20A0h/0	CAP0.PLFB		
EtherCAT COE		CAP0.PLFB	M 01-00-00-000	
and CANopen	20A2h/0	CAP1.PLFB	IVI_U I-UU-UU-UUU	
	20A3h/0	CAP1.PLFB		
Modbus	64 (64-bit)	CAP0.PLFB	M 01-03-00-000	
เพียนมนธ	90 (64-bit)	CAP1.PLFB	IVI_U 1-U3-UU-UUU	

Description

This parameter reads the captured position value scaled to actual set units. See UNIT.PROTARY or UNIT.PIN for these units.

Related Topics

CAP0.PREEDGE, CAP1.PREEDGE

General Information		
Туре	R/W Parameter	
Description	Selects the capture precondition edge.	
Units	N/A	
Range	1 to 3	
Default Value	1	
Data Type	U8	
See Also	CAP0.EDGE, CAP1.EDGE	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex		Object Start Version	
EtherCAT COE	3460h/7	CAP0.PREEDGE CAP1.PREEDGE	M 01 00 00 000	
and CANopen	3460h/8			
Modbus	68	CAP0.PREEDGE	M_01-03-00-000	
Moubus	94	CAP1.PREEDGE	IVI_U 1-U3-UU-UUU	

Description

The precondition edge is monitored for rising edge, falling edge, or both. The event mode logic may ignore the precondition edge detection (trigger always uses edge detection).

The filtered trigger source has an identical feature controlled by CAP0.EDGE, CAP1.EDGE.

Value	Description
0	Reserved
1	Rising edge
2	Falling edge
3	Both edges

Related Topics

CAP0.PREFILTER, CAP1.PREFILTER

General Information		
Туре	R/W Parameter	
Description	Sets the filter for the precondition input source.	
Units	N/A	
Range	O to 2	
Default Value	0	
Data Type	U8	
See Also	CAP0.FILTER, CAP1.FILTER	
Start Version	M_01-00-000	
End Version	M_01-03-00-000	

Description

These parameters are not functional in $M_01-03-00-000$. In future releases, you can use DINx.FILTER to select a filter on the input channel.

Related Topics

DIN1.FILTER TO DIN7.FILTER

CAP0.PRESELECT, CAP1.PRESELECT

General Information		
Туре	R/W Parameter	
Description	Sets the precondition trigger.	
Units	N/A	
Range	0 to 11	
Default Value	0	
Data Type	U8	
See Also	CAP0.TRIGGER, CAP1.TRIGGER	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex		Object Start Version
EtherCAT COE	3460h/9	CAP0.PRESELECT	M_01-00-00-000
and CANopen	3460h/10	CAP1.PRESELECT	_
Modbus	72	CAP0.PRESELECT	M 01 02 00 000
Woodbus	98	CAP1.PRESELECT	IVI_U 1-U3-UU-UUU

Description

This parameter specifies the input signal for the precondition trigger.

Trigger Source	Input Name
0	General Input 1 (X7)
1	General Input 2 (X7)
2	General Input 3 (X7)
3	General Input 4 (X7)
4	General Input 5 (X8)
5	General Input 6 (X7)
6	General Input 7 (X7)
7	RS485 Input 1 (X9)
8	RS485 Input 2 (X9)
9	RS485 Input 3 (X9)
10	Primary Index

Related Topics

CAPO.STATE, CAP1.STATE

General Information	
Туре	R/O Parameter
Description	Indicates whether or not trigger source was captured.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex		Object Start Version
Modbuo	74	CAP.STATE	M 01 02 00 000
Modbus	100	CAP1.STATE	M_01-03-00-000

Description

When enabling the capture (CAP0.EN, CAP1.EN), this parameter is set to 0 until the next event is captured.

0 = Not captured

1 = Captured

Related Topics

8.11 Using Position Capture

CAP0.T, CAP1.T

General Information	
Туре	R/O Parameter
Description	Reads time capture (if time capture was configured).
Units	ns
Range	N/A
Default Value	N/A
Data Type	U32
See Also	CAP0.MODE, CAP1.MODE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	20A0h/0 CAP0.T 20A1h CAP0.T	
and CANopen	20A2h/0 CAP1.T 20A3h/0 CAP1.T	M_01-00-00-000
Modbus	76 CAP0.T 102 CAP1.T	M_01-03-00-000

Description

If time capture was configured, the captured time is stored in this parameter. The reference time is the occurrence of the last MTS signal (recurring every $62.5 \,\mu s$), so this is a purely drive internal time.

Related Topics

8.11 Using Position Capture

CAP0.TRIGGER, CAP1.TRIGGER

General Information	
Туре	R/W Parameter
Description	Specifies the trigger source for the position capture.
Units	N/A
Range	0 to 11
Default Value	0
Data Type	U8
See Also	CAP0.PRESELECT, CAP1.PRESELECT
Start Version	M_01-00-000

Fieldbus	Index/Subindex		Object Start Version	
EtherCAT COE	3460h/1	CAP0.TRIGGER	M 01-00-00-000	
and CANopen	3460h/2	CAP1.TRIGGER	M_01-00-00-000	
Modbus	78	CAP0.TRIGGER	M 01-03-00-000	
MIOUDUS	104	CAP1.TRIGGER	IVI_U 1-U3-UU-UUU	

Description

This parameter specifies the trigger source (capture input signal).

Trigger Source	Input Name
0	General Input 1
1	General Input 2
2	General Input 3
3	General Input 4
4	General Input 5
5	General Input 6
6	General Input 7
7	RS485 Input 1
8	RS485 Input 2
9	RS485 Input 3
10	Primary Index
11	Tertiary Index

Related Topics

8.11 Using Position Capture

CS Parameters

Controlled stop (CS) parameters set the values for the controlled stop process.

CS.DEC

General Information	
Туре	NV Parameter
Description	Sets the deceleration value for the controlled stop process.
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR
Units	Rotary: rps/s, rpm/s, deg/s ² , (custom units)/s ² , rad/s ²
	Linear: counts/s ² , mm/s ² , µm/s ² , (custom units)/s ²
	Rotary:
	0.002 to 833,333.333 rps/s
	0.112 to 50,000,000.000 rpm/s
	0.009 to 300,000,000.000 deg/s ²
	0.155 to 4,166,666.752 (custom units)/s ²
Range	0.012 to 5,235,987.968 rad/s ²
	Linear:
	16,000.000 to 3,579,139,408,000.000 counts/s ²
	0.031*MOTOR.PITCH to 833333.333*MOTOR.PITCH mm/s ²
	30.994*MOTOR.PITCH to 8333333333333*MOTOR.PITCH μ m/s ²
	0.155 to 4,166,666.667 (custom units)/s ²
	Rotary:
	166.669 rps/s
	10,000.000 rpm/s
	60,000.000 deg/s ²
	833.333 (custom units)/s ²
Default Value	1,047.2 rad/s ²
	Linear:
	715,840,000.000 counts/s ²
	166.714*MOTOR.PITCHMOTOR.PITCH mm/s²
	166,714.191*MOTOR.PITCHMOTOR.PITCH µm/s²
	833.571 (custom units)/s²
Data Type	Float
See Also	CS.VTHRESH, CS.TO, DRV.DIS, DIN1.MODE TO DIN7.MODE,
OGG AISU	DRV.DISMODE, DRV.DISSOURCES
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3440h/1	M_01-00-00-000
Modbus	106 (64-bit)	M_01-03-00-000

Description

This parameter sets the deceleration value for the controlled stop process.

Related Topics

- 10.10 Controlled Stop
- 10.1 Digital Inputs and Outputs
- 17.1 Fault and Warning Messages (this table indicates faults for which a controlled stop occurs)

CS.STATE

General Information	
Туре	R/O Parameter
Description	Returns the internal status of the controlled stop process.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	CS.DEC, CS.VTHRESH, CS.TODRV.DISMODE, DRV.DISSOURCES
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3441h/0	M_01-00-00-000
Modbus	110	M_01-03-00-000

Description

CS.STATE returns the internal state machine value of the controlled stop.

0 = controlled stop is not occurring.

1 = controlled stop is occurring

Related Topics

- 10.10 Controlled Stop
- 10.1 Digital Inputs and Outputs
- 17.1 Fault and Warning Messages (this table indicates faults for which a controlled stop occurs)

CS.TO

General Information	n
Туре	NV Parameter
Description	Sets the time value for the drive velocity to be within CS.VTHRESH.
Units	ms
Range	1 to 30,000 ms
Default Value	6 ms
Data Type	Integer
See Also	CS.DEC, CS.VTHRESH, CS.STATE, DRV.DIS, DIN1.MODE TO DIN7.MODE, DRV.DISMODE, DRV.DISSOURCES
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3440h/3	M 01-00-00-000
and CANopen	34401/3	IVI_0 1-00-00-000
Modbus	112	M_01-03-00-000

Description

CS.TO is the time value for the drive velocity to be within CS.VTHRESH before the drive disables.

Example

Set time value to 100 ms:

-->CS.TO 100

Related Topics

- 10.10 Controlled Stop
- 10.1 Digital Inputs and Outputs
- 17.1 Fault and Warning Messages (this table indicates faults for which a controlled stop occurs)

CS.VTHRESH

General Information	
Туре	NV Parameter
Description	Sets the velocity threshold for the controlled stop.
Units	rpm, rps, deg/s, custom units/s
	Rotary:
	0.000 to 15,000.000 rpm
	0.000 to 250.000 rps
	0.000 to 90,000.000 deg/s
	0.000 to 1,250.000 custom units/s
Range	0.000 to 1,570.796 rad/s
	Linear:
	0.000 to 1,073,741,824,000.000 counts/s
	0.000 to 8,000.000 mm/s
	0.000 to 8,000,000.000 μm/s
	0.000 to 1,250.000 custom units/s
Default Value	5 rpm
Data Type	Float

General Information	
See Also	CS.DEC, CS.TO, CS.STATE, DRV.DIS, DIN1.MODE TO DIN7.MODE,
	DRV.DISMODE, DRV.DISSOURCES
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT and	3440h/2	M 01-00-00-000
CANopen	3 11 011/2	IW_01-00-00-000
Modbus	114	M_01-03-00-000

Description

CS.VTHRESH is the velocity threshold for the controlled stop algorithm.

Example

Set velocity threshold for controlled stop at 100 rpm:

-->CS.VTHRESH 100

Related Topics

- 10.10 Controlled Stop
- 10.1 Digital Inputs and Outputs
- 17.1 Fault and Warning Messages (this table indicates faults for which a controlled stop occurs)

DIN Parameters

DIN.HCMD1 TO DIN.HCMD4

General Information	
Туре	NV parameter
Description	A buffer of commands to be used in digital input "command buffer" mode.
Units	None
Range	A string of up to 128 characters
Default Value	<empty></empty>
Data Type	String
See Also	DINx.MODE, DINx.PARAM, DIN.LCMDx
Start Version	M_01-02-08-000

Description

DIN.HCMDx sets the string of commands to be used in the digital input mode command buffer. Digital input mode **9-Command buffer** can execute four different sets of command buffers.

Each set of command buffers contains two buffers:

- High buffer: Executes upon a rising edge of a digital input.
- Low buffer: Executes upon a falling edge of a digital input.

DIN.HCMDx sets the string for the four high buffers (depending on x).

Example

Set the command buffer mode to digital input 1:

DIN1.MODE 9

Set the first sets of buffers to digital input 1:

DIN1.PARAM 1

Set the command DRV.OPMODE 0 to the high buffer:

DIN.HCMD1 DRV.OPMODE 1

Now, upon a rising edge in digital input 1, the drive mode is 1.

Related Topics

- 10.2 Command Buffer
- 10.1 Digital Inputs and Outputs

DIN.LCMD1 to DIN.LCMD4

General Information	n
Туре	NV parameter
Description	A buffer of commands to be used in digital input "command buffer" mode.
Units	N/A
Range	A string of up to 128 characters
Default Value	Empty
Data Type	String
See Also	DIN1.MODE TO DIN7.MODE, DIN1.PARAM TO DIN7.PARAM,
	DIN.HCMD1 TO DIN.HCMD4
Start Version	M_01-02-08-000

Description

DIN.LCMDx sets the string of commands to be used in the digital input mode command buffer. Digital input mode **9-Command buffer** can execute four different sets of command buffers.

Each set of command buffers contains two buffers:

- High buffer: Executes upon a rising edge of a digital input.
- Low buffer: Executes upon a falling edge of a digital input.

DIN.LCMDx sets the string for the four "low" buffers, depending on x.

Example

Set the command buffer mode to digital input 1:

DIN1.MODE 9

Set the first sets of buffers to digital input 1:

DIN1.PARAM 1

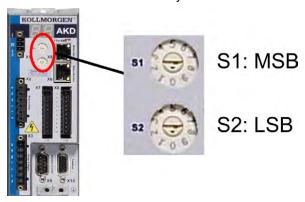
Set the command DRV.OPMODE 0 to the "low buffer":

DIN.LCMD1 DRV.OPMODE 0

Now, upon a falling edge in digital input 1, the drive mode is 0.

Related Topics

- 10.2 Command Buffer
- 10.1 Digital Inputs and Outputs


DIN.ROTARY

General Information	
Туре	R/O Parameter
Description	Reads the rotary knob value.
Units	N/A
Range	0 to 99
Default Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	116	M_01-03-00-000

Description

DIN.ROTARY reads the rotary knob value.

Related Topics

10.1 Digital Inputs and Outputs

DIN.STATES

General Information	
Туре	R/O Parameter
Description	Reads the digital input states.
Units	N/A
Range	0000000 to 1111111
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	118	M_01-03-00-000

Description

DIN.STATES reads the states of the seven digital inputs. The leftmost bit represents digital input 1 (DIN1) and the rightmost bit represents digital input 7 (DIN7).

Related Topics

10.1 Digital Inputs and Outputs

DIN1.FILTER TO DIN7.FILTER

General Information	
Туре	R/W Parameter
Description	Filter mode for digital inputs 1 to 7.
Units	N/A
Range	0 to 3
Default Value	1 for DIN1 and DIN2
	2 for DIN3 to DIN7
Data Type	Integer
See Also	N/A
Start Version	M_01-03-07-000

Description

This parameter sets the digital input filter configuration for channel x when followed with the values defined below. DINx.FILTER retrieves this information when not followed by data.

Value	Description
DINX.FILTER 0	The drive digital input channel detects all input signals with an input pulse width of ≥ 40 ns (no filtering applied).
DINX.FILTER 1	The drive digital input channel detects all input signals with an input pulse width of ≥ 10.24 µs, ± 0.64 µs (fast filter applied).
DINX.FILTER 2	The drive digital input channel detects all input signals with an input pulse width of ≥ 163 µs, ± 10.24 µs (standard filter applied).
DINX.FILTER 3	The drive digital input channel detects all input signals with an input pulse width of \geq 2.62 ms, \pm 0.16384 ms (slow filter applied).

Related Topics

Digital Inputs and Outputs

DIN1.INV TO DIN7.INV

General Information	
Туре	R/W Parameter
Description	Sets the indicated the polarity of a digital input mode.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/S	Subindex	Object Start Version
	120	DIN1.INV	
	130	DIN2.INV	
	140	DIN3.INV	
Modbus	150	DIN4.INV	M_01-03-00-000
	160	DIN5.INV	
	170	DIN6.INV	
	180	DIN7.INV	

Description

Sets the indicated the polarity of a digital input mode.

Example

DIN1.INV = 0 : Input is active high. DIN1.INV = 1 : Input is active low.

Related Topics

10.1 Digital Inputs and Outputs

DIN1.MODE TO DIN7.MODE

General Information		
Туре	R/W Parameter	
Description	Sets the digital input modes.	
Units	N/A	
Range	0 to 22	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Su	bindex	Object Start Version
	3562h/0	DIN1.MODE	
	3565h/0	DIN2.MODE	
	3568h/0	DIN3.MODE	
	356Bh/0	DIN4.MODE	
EtherCAT COE	36F6h/0	DIN5.MODE	M 01-00-00-000
and CANopen	36F9h/0	DIN6.MODE	IVI_0 1-00-00-000
	36FCh/0	DIN7.MODE	
	Profile	DIN1.MODE TO	
	specific	DIN7.MODE	
	SDOs/0		
	122	DIN1.MODE	
	132	DIN2.MODE	
	142	DIN3.MODE	
Modbus	152	DIN4.MODE	M_01-03-00-000
	162	DIN5.MODE	
	172	DIN6.MODE	
	182	DIN7.MODE	

Description

DIN1.MODE to DIN7.MODE parameters set the functionality of the digital inputs 1 through 7. Digital inputs and corresponding X7 and X8 pin connectors are described in the *AKD Installation Manual*, section 8.16.4, Digital Inputs. The table below summarizes the digital input modes; for detailed descriptions of each mode, see 10.1 Digital Inputs and Outputs.

DINx.MODE	Description	Task
0	No function; off	0 - None
1	Fault reset	1 - Background
2	Start motion task (use <u>DINx.PARAM</u> for this task)	2 - 1 KHz
3	Motion task select bit (see Motion Tasks)	3 - Background
4	Motion task start selected (see Motion Tasks)	4 - 1 kHz
5	Start home (see Homing)	5 - Background
6	Start jog	6 - Background
7	Reserved	7 - Background
8	Zero latch	8 - Background
9	Command buffer	9 - Background
10	Control fault relay	10 - Background
11	Home reference	11 - 1 kHz

DINx.MODE	Description	Task
12	Reserved	12 - None
13	Controlled stop (see Controlled Stop)	13 - 1 kHz
14	Reserved	14 - None
15	Quick stop	15 - Background
16	Activate electronic gearing (see Electronic Gearing)	16 - Background
17	Activate electronic gear position shift	17 - Background
18	Positive limit switch	18 - 4 kHz
19	Negative limit switch	19 - 4kHz
20	Brake release	20 - Background
21	Current limit	21 - 4 kHz
22	Opmode and Command Source switch	22 - Background
23	Change algebraic sign of the measured analog input voltage.	23 - 1 kHz

Related Topics

- 10.2 Command Buffer
- 10.1 Digital Inputs and Outputs
- 10.1.3 Digital Inputs
- 10.10 Controlled Stop
- 12.1 Homing
- 12.2 Motion Tasks
- 10.7 Electronic Gearing
- 17.2 Clearing Faults
- F245
- **CS** Parameters

DIN1.PARAM TO DIN7.PARAM

General Information		
Туре	R/W Parameter	
Description	Sets a value used as an extra parameter for digital inputs nodes.	
Units	N/A	
Range	-9,223,372,036,854,775,000 to +9,223,372,036,854,775,000	
Default Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
	124 (64-bit) DIN1.PAI	RAM
	134 (64-bit) DIN2.PAI	RAM
	144 (64-bit) DIN3.PAI	RAM
Modbus	154 (64-bit) DIN4.PAI	RAM M_01-03-00-000
	164 (64-bit) DIN5.PAI	RAM
	174 (64-bit) DIN6.PAI	RAM
	184 (64-bit) DIN7.PAI	RAM

Description

This parameter sets a value that is used as an extra parameter for digital inputs nodes.

Example

The digital input mode "Start motion task" is used to start a motion task. This mode uses an extra parameter as the ID of the motion task to be started.

Related Topics

10.1 Digital Inputs and Outputs

DIN1.STATE TO DIN7.STATE

General Information		
Туре	R/O Parameter	
Description	Reads a specific digital input state.	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/S	Subindex	Object Start Version
	128	DIN1.STATE	
	138	DIN2.STATE	
	148	DIN3.STATE	
Modbus	158	DIN4.STATE	M_01-03-00-000
	168	DIN5.STATE	
	178	DIN6.STATE	
	188	DIN7.STATE	

Description

DIN1.STATE to DIN7.STATE reads the state of one digital input according to the number identified in the command.

Related Topics

10.1 Digital Inputs and Outputs

This page intentionally left blank.

DOUT Parameters

DOUT.CTRL

General Information	on
Туре	NV Parameter
Description	Sets the source of digital outputs (firmware or fieldbus).
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	190	M_01-03-00-000

Description

DOUT.CTRL sets the source of the digital outputs:

0 = Firmware controlled

1 = Fieldbus controlled

Related Topics

DOUT.RELAYMODE

General Information		
Туре	R/W Parameter	
Description	Indicates faults relay mode.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	192	M_01-03-00-000

Description

DOUT.RELAYMODE indicates the faults relay mode as follows:

If DOUT.RELAYMODE= 0 and faults exist, then the relay is open.

If DOUT.RELAYMODE= 0 and faults do not exist, then the relay is closed.

If DOUT.RELAYMODE = 1 and the drive is disabled, then the relay is open.

If DOUT.RELAYMODE = 1 and the drive is enabled, then the relay is closed.

Related Topics

DOUT.STATES

General Information	
Туре	R/O Parameter
Description	Reads the state of the two digital outputs.
Units	N/A
Range	0 to 11
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	194	M_01-03-00-000

Description

DOUT.STATES reads the states of the two digital outputs. The rightmost bit represents DOUT2 and the leftmost bit represents DOUT1.

Related Topics

DOUT1.MODE AND DOUT2.MODE

General Information	
Туре	NV Parameter
Description	Sets the digital output mode.
Units	N/A
Range	0 to 14
Default Value	0
Data Type	Integer
See Also	DOUT1.PARAM AND DOUT2.PARAM
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex		Object Start Version
Modbuo	196	DOUT1.MODE	M 01-03-00-000
Modbus	206	DOUT2.MODE	IVI_01-03-00-000

Description

DOUTx.MODE sets the functionality of the digital outputs. The table below summarizes the digital output modes; for detailed descriptions of each mode, see 10.1 Digital Inputs and Outputs.

DOUTx.MODE	Description
0	User (default = 0)
1	Mains ready
2	Software limit switch reached
3	Move complete
4	In position
5	Position greater than x
6	Position less than x
7	Drive produced warning
8	Drive enabled
10	Motor brake
11	Drive produced fault
12	Absolute velocity greater than x
13	Absolute velocity less than x
14	Homing complete
15	PLS.STATE bits or connected

Related Topics

DOUT1.PARAM AND DOUT2.PARAM

General Information	
Туре	NV Parameter
Description	Sets extra parameters for the digital outputs.
Units	N/A
Range	DOUT1.PARAM: -357,913.941 to 357,913.941
	DOUT2.PARAM: -79,164,837,199.872 to 79,164,837,199.856
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subin	dex	Object Start Version
Modbuo	198 (64-bit)	DOUT1.PARAM DOUT2.PARAM	M 01 02 00 000
Modbus	208 (64-bit)	DOUT2.PARAM	IVI_U 1-U3-UU-UUU

Description

DOUT1.PARAM and DOUT2.PARAM set the extra parameter needed for the digital outputs calculations, respectively.

Related Topics

DOUT1.STATE AND DOUT2.STATE

General Information		
Туре	R/O Parameter	
Description	Reads the digital output state.	
Units	N/A	
Range	0 to 1	
Default Value	N/A	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex		Object Start Version
Modbuo	202	DOUT1.STATE	M 01 02 00 000
Modbus	212	DOUT2.STATE	M_01-03-00-000

Description

DOUT1.STATE and DOUT2.STATE read the state of one digital output according to the value stated in the command. These parameters can also be used to set a value of one digital output (only if the output mode is idle).

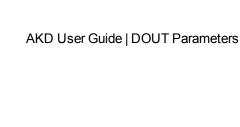
Related Topics

DOUT1.STATEU AND DOUT2.STATEU

General Information	General Information		
Туре	R/W Parameter		
Description	Sets the state of the digital output node.		
Units	N/A		
Range	0 to 1		
Default Value	0		
Data Type	N/A		
See Also	N/A		
Start Version	M_01-01-01-000		

Fieldbus	Index/S	Subindex	Object Start Version
Modbuo	204	DOUT1.STATEU	M 01-03-00-000
Modbus	214	DOUT2.STATEU	IVI_U 1-U3-UU-UUU

Description


 ${\tt DOUT1.STATEU} \ and \ {\tt DOUT2.STATEU} \ set \ the \ state \ of \ the \ digital \ output \ node \ as \ follows:$

0 = deactivated

1 = activated

DOUT1.STATEU and DOUT2.STATEU are used when DOUT1.MODE AND DOUT2.MODE = 0 (user mode).

Related Topics

This page intentionally left blank.

DRV Parameters and Commands

DRV.ACC

General Information	
Туре	NV Parameter
Description	Describes the acceleration ramp for the velocity loop.
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR
Units	Rotary: rps/s, rpm/s, deg/s², (custom units)/s², rad/s²
	Linear: counts/s ² , mm/s ² , µm/s ² , (custom units)/s ²
Range	Note: The range and default values of (custom units)/s² units depend on the values of PIN and POUT. The range and default values listed in this table are derived from the default values of PIN and POUT. Rotary: 0.002 to 833,333.333 rps/s 0.112 to 50,000,000.000 rpm/s 0.009 to 300,000,000.000 deg/s² 0.155 to 4,166,666.752 (custom units)/s² 0.012 to 5,235,987.968 rad/s² Linear: 16,000.000 to 3,579,139,408,000.000 counts/s² 0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s²
	30.995*MOTOR.PITCH to 2,147,483.647*MOTOR.PITCH μm/s² 0.155 to 2,147,483.647 (custom units)/s²
Default Value	Note: The range and default values of (custom units)/s² units depend on the values of PIN and POUT. The range and default values listed in this table are derived from the default values of PIN and POUT. Rotary: 166.669 rps/s 10,000.000 rpm/s 60,000.000 deg/s² 833.333 (custom units)/s² 1,047.2 rad/s² Linear: 715,840,000.000 counts/s² 166.714*MOTOR.PITCH mm/s² 166,714.191*MOTOR.PITCH μm/s² 833.571 (custom units)/s²
Data Type	Float
See Also	DRV.DEC, UNIT.ACCLINEAR, UNIT.ACCROTARY
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3501h/0	M_01-00-00-000
Modbus	216 (64-bit)	M_01-03-00-000

Description

Describes the acceleration ramp for the velocity central loop.

Related Topics

10.7.5 Limits

DRV.ACTIVE

General Information	
Туре	R/O Parameter
Description	Reads the enable status of an axis.
Units	N/A
Range	0, 1, 3
Default Value	N/A
Data Type	Integer
See Also	DRV.EN,DRV.DISSOURCES
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	220	M_01-03-00-000

Description

DRV.ACTIVE reads the enable status of an axis as follows:

- DRV.ACTIVE = 0 drive disabled
- DRV.ACTIVE = 1 drive enabled
- DRV.ACTIVE = 3 drive enabled and in dynamic brake mode

There is no state 2.

When the drive is in state 3, the drive display shows a blinking decimal point. Additionally, if the drive is in state 3 the Parameter Load/Save view does not allow you to download a parameter file.

If an axis is not enabled (DRV.ACTIVE is 0), but DRV.EN is 1 and the hardware enable is high, read the value of DRV.DISSOURCES to query the reason that the drive is not enabled.

Related Topics

- 3.2 Display Codes
- 10.9 Enable/Disable

DRV.BLINKDISPLAY

General Information	
Туре	Command
Description	Causes the display to blink for 10 seconds.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.BLINKDISPLAY causes the drive display located on the front of the drive to blink for 10 seconds. This command allows the user to identify the drive that is currently communicating with WorkBench.

DRV.CLRFAULTHIST

General Information	
Туре	Command
Description	Clears the fault history log in the NV.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.FAULTHIST
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	222	M_01-03-00-000

Description

DRV.CLRFAULTHIST clears the fault history from the nonvolatile memory of the drive.

This command erases all faults returned by DRV.FAULTHIST.

DRV.CLRFAULTS

General Information	
Туре	Command
Description	Tries to clear all active faults in the drive.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.FAULTS, DRV.EN, DRV.DIS
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	224	M_01-03-00-000

Description

When DRV.CLRFAULTS is sent, the drive will try to clear all active faults. When a fault occurs, the fault is registered in the drive fault handler. DRV.CLRFAULTS clears the fault from the drive fault handler. However, if the fault still exists in the system, DRV.CLRFAULTS fails and the fault is re-registered in the fault handler.

If the DRV.CLRFAULTS succeeds, then the reply to DRV.FAULTS states that no faults exist. If the condition that triggered the fault is still present, the fault condition will remain. See17.1 Fault and Warning Messages for details regarding the behavior of individual faults.

Note that executing a drive disable (DRV.DIS) followed by a drive enable (DRV.EN) has the same effect as executing DRV.CLRFAULTS.

Related Topics

17.2 Clearing Faults

DRV.CMDDELAY

General Information		
Туре	Command	
Description	Issues a delay before next command is executed.	
Units	ms	
Range	0 to 5,000 ms	
Default Value	0 ms	
Data Type	Float	
See Also	N/A	
Start Version	M_01-03-00-000	

Description

This parameter is used when drive commands are used in a script and a delay is needed between the execution of two consecutive commands. DRV.CMDDELAY creates a delay in the execution of drive commands. In the period of time specified, no commands are executed. This feature is especially useful for command buffers.t

Example

If the script is:

DRV.EN

IL.CMDU 0.1

then DRV.CMDDELAY is used between the two entries to delay execution 5 ms until the drive is enabled:

DRV.EN

DRV.CMDDELAY 5

IL.CMDU 0.1

Related Topics

10.2 Command Buffer

DRV.CMDSOURCE

General Information	n
Туре	NV Parameter
Description	Sets the command source (service, fieldbus, analog input, gearing, digital, or Bode).
Units	N/A
Range	0 to 3
Default Value	0
Data Type	Integer
See Also	DRV.OPMODE
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	226	M_01-03-00-000

Description

DRV.CMDSOURCE specifies the source of the command to the drive. DRV.OPMODE sets the operation mode to the relevant control loop.

DRV.CMDSOURCE values can be set as follows:

Value	Description
0	Service, TCP/IP command
1	Fieldbus command
2	Gearing command
3	Analog command

DRV.CMDSOURCE can be changed while the drive is enabled or disabled. If you use the terminal to change the operation mode, then it is recommended that you disable the drive before changing the command source.

A WARNING If you change DRV.CMDSOURCE from the terminal while the drive is enabled, the system may experience a step change in demand.

Example

To set the command source to the TCP/IP channel and the operation mode to velocity:

```
-->DRV.CMDSOURCE 0
-->DRV.OPMODE 1
```

Related Topics

11 Using Command Source and Operating Modes

DRV.CRASHDUMP

General Information	
Туре	Command
Description	Retrieves diagnostic information after the drive crashes.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Description

Drives rarely crash, but if a crash occurs, information that can help diagnose the cause of a crash is saved to the nonvolatile (NV) memory within the drive. After the drive is restarted, you can use the DRV.CRASHDUMP command to retrieve this diagnostic information, which can be emailed to Kollmorgen for further support.

If the drive crashes (display flashes an F and three bars), it saves the diagnostic information to a specific block of the drive NV memory. The DRV.CRASHDUMP command then prints the diagnostic information from this NV memory block. Subsequent crash conditions will overwrite the NV memory block. Since the NV memory block is overwritten, but never erased, the DRV.CRASHDUMP command always shows the diagnostic information for the most recent crash.

DRV.DBILIMIT

General Information	
Туре	NV Parameter
Description	Sets the maximum amplitude of the current for dynamic braking.
Units	Arms
Range	0 to minimum of drive peak current (DRV.IPEAK) and motor peak current (MOTOR.IPEAK).
Default Value	Minimum of drive continuous current (DRV.ICONT) and motor continuous current (MOTOR.ICONT).
Data Type	Float
See Also	DRV.DISMODE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3444h/0	M_01-00-00-000
Modbus	228	M_01-03-00-000

Description

This parameter sets the maximum amplitude of the current for dynamic braking.

Example

Setting DRV.DBILIMIT to 2 limits the dynamic brake current to 2 Arms.

Related Topics

10.10 Controlled Stop

CS Parameters

10.11 Dynamic Braking

DRV.DEC

General Information		
Туре	NV Parameter	
Description	Sets the deceleration value for the velocity loop.	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR	
Units	Rotary: rps/s, rpm/s, deg/s², (custom units)/s², rad/s²	
	Linear: counts/s², mm/s², µm/s², (custom units)/s²	
	Rotary:	
	0.002 to 833,333.333 rps/s	
	0.112 to 50,000,000.000 rpm/s	
	0.009 to 300,000,000.000 deg/s ²	
	0.155 to 4,166,666.752 (custom units)/s ²	
Range	0.012 to 5,235,987.968 rad/s ²	
	Linear:	
	16,000.000 to 3,579,139,408,000.000 counts/s ²	
	0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s²	
	30.994*MOTOR.PITCH to 833,333,333.333*MOTOR.PITCH µm/s²	
	0.155 to 4,166,666.667 (custom units)/s ²	
	Rotary:	
	166.669 rps/s	
	10,000.000 rpm/s	
	60,000.000 deg/s ²	
	833.333 (custom units)/s ²	
Default Value	1,047.2 rad/s²	
	Linear:	
	715,840,000.000 counts/s ²	
	166.71*MOTOR.PITCH4MOTOR.PITCH mm/s²	
	166,714.191*MOTOR.PITCHMOTOR.PITCH µm/s²	
	833.571 (custom units)/s²	
Data Type	Float	
See Also	DRV.ACC, UNIT.ACCROTARY, UNIT.ACCLINEAR, DRV.OPMODE	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3522h/0	M_01-00-00-000
Modbus	230 (64-bit)	M_01-03-00-000

Description

DRV.DEC sets the deceleration value for the velocity loop command (VL.CMDU) and for the analog velocity command (AIN.VALUE). The operation mode (DRV.OPMODE) must be set to velocity mode for this command to function.

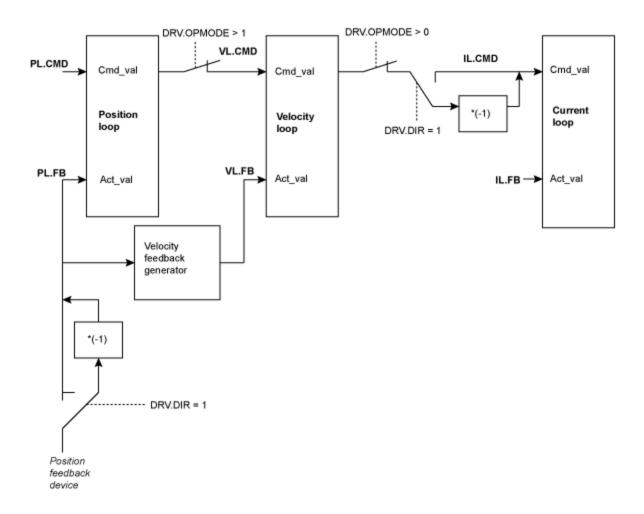
Related Topics

10.10 Controlled Stop

10.7.5 Limits

DRV.DIR

General Information	
Туре	R/W Parameter
Description	Changes drive direction.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000


Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	352Ah/0	M_01-00-00-000
Modbus	234	M_01-03-00-000

Description

DRV.DIR changes the direction of the motor by changing the algebraic sign of the current command and position feedback value according to the figure below.

Note the following when using DRV.DIR:

- You can only change the DRV.DIR command when the drive is disabled.
- The drive status changes to "Axis not homed" as soon as the DRV.DIR parameter changes value (see DRV.MOTIONSTAT).
- You must verify the settings of the hardware limit switches. If necessary, switch the positive and negative hardware limit switches by swapping the wires at the digital inputs.

DRV.DIS

General Information	
Туре	Command
Description	Disables the axis (software).
Units	N/A
Range	N/A
Default Value	Analog drive software enabled. All other types of drive software disabled.
Data Type	N/A
See Also	DRV.EN, DRV.DISSOURCES, DRV.ACTIVE, DRV.DISMODE,
	DRV.DISTO
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3443h/0	M_01-00-00-000
Modbus	236	M_01-03-00-000

Description

DRV.DIS issues a software disable to the drive. The method by which the drive will be disabled (either immediately or with a ramp down first) is controlled by DRV.DISMODE.

By querying the value of DRV.ACTIVE, you can check whether the drive is currently enabled or disabled.

By querying the value of DRV.DISSOURCES, you can check whether the software enable bit is high (software enabled was issued by executing DRV.EN) or the software enable bit is low (software disable was issued by executing DRV.DIS).

If DRV.DIS is commanded the emergency timeout is started. If the drive does not disable or activate dynamic brake within DRV.DISTO, fault "F703" (=> p. 248) is reported.

Related Topics

- 17.2 Clearing Faults
- 10.10 Controlled Stop
- 10.2 Command Buffer

DRV.DISMODE

General Information	
Туре	NV Parameter
Description	Selects among disable immediately or stop and then disable options.
Units	N/A
Range	0 to 3
Default Value	0
Data Type	Integer
See Also	DRV.DBILIMIT ,DRV.DISTO, CS.VTHRESH
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35FFh/0	M_01-00-00-000
Modbus	238	M_01-03-00-000

Description

DRV.DISMODE sets the drive reaction to a DRV.DIS command.

NOTE You must disable the drive in order to set DRV.DISMODE.

Value	Behavior
0	Disable axis immediately.
1	Use dynamic brake to ramp down. The drive remains in the dynamic brake state after the motor has stopped. The drive is disabled in the sense that it does not close the control loop and cannot perform a motion, but PWM stays active. Use a controlled stop to ramp down and then disable the
2	drive.
3	Use a controlled stop to ramp down, and then use dynamic brake. The drive remains in the dynamic brake state after the motor has stopped. The drive is disabled in the sense that it does not close the control loop and cannot perform a motion, but PWM stays active.

In all cases described above, if a brake is configured (MOTOR.BRAKE), the brake closes if VL.FB drops below CS.VTHRESH.

A WARNING Be careful with vertical loads when modifying this parameter. Coordinate this parameter's correct setting properly with the drive brake settings. If these settings are not coordinated, then vertical loads may have no stopping or holding force when the drive is disabled and the load could fall.

Related Topics

10.10 Controlled Stop

CS Parameters

10.11 Dynamic Braking

DRV.DISSOURCES

General Information	
Туре	R/O Parameter
Description	Returns the possible reason for a drive disable.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.ACTIVE, DRV.FAULTS, DRV.EN, DRV.DIS
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	240	M_01-03-00-000

Description

DRV.DISSOURCES is a bitwise parameter that returns the status of possible causes of a drive disable. If this parameter is 0, then the drive is enabled.

The return value specific bits are as follows:

Bit	Status and Response
0	Software disable (execute DRV.EN to issue software enable)
1	Fault exists (read DRV.FAULTS to get the active faults)
2	Hardware disable (remote enable input is low)
3	In-rush disable (the in-rush relay is opened)
4	Initialization disable (the drive did not finish the initialization process)
5	Controlled stop disable from a digital input.

Related Topics

10.10 Controlled Stop

DRV.DISTO

General Information	
Туре	R/W Parameter
Description	Sets the emergency timeout
Units	ms
Range	0 to 120,000 ms
Default Value	1,000 ms
Data Type	U32
See Also	DRV.DIS, DRV.DISMODE
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3445h/0	M_01-00-00-000
Modbus	242	M_01-03-00-000

Description

This timer starts when DRV.DIS is issued (regardless of the DRV.DIS origin). After this timeout elapses, the actual state of the drive is compared to the DRV.DISMODE setting. If the actual state does not match the DRV.DISMODE setting, a fault is reported and the hardware immediately executes the DRV.DISMODE setting (for instance, disable or activate dynamic brake). Setting DRV.DISTO to 0 will disable the timeout.

Related Topics

10.10 Controlled Stop

DRV.EMUEDIR

General Information	
Туре	R/W Parameter
Description	Sets the direction of the emulated encoder output (EEO) signal.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	N/A
See Also	DRV.EMUEMODE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3493h/0	M_01-00-00-000
Modbus	244	M_01-03-00-000

Description

This parameter allows the user to change the direction of the emulated encoder output. DRV.DIR also affects the output direction (through an XOR, "exclusive or", operation). The drive uses DRV.DIR and DRV.EMUEDIR to decide the direction of the emulated encoder output. If DRV.DIR and DRV.EMUEDIR have the same value, then DRV.EMUEDIR is set to 0 (meaning an increase in the motor feedback will result an increase of the encoder emulation output and vice-versa). If these parameters have different values, then DRV.EMUEDIR is set to 1 (meaning an increase in the motor feedback will result in a decrease of the encoder emulation output and vice-versa).

DRV.EMUEMODE

General Information	
Туре	R/W Parameter
Description	Sets the mode of the emulated encoder output (EEO) connector.
Units	N/A
Range	0 to 5
Default Value	0
Data Type	Integer
See Also	DRV.EMUERES, DRV.EMUEZOFFSET, DRV.EMUEMTURN
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3534h/0	M_01-00-00-000
Modbus	246	M_01-03-00-000

Description

This parameter sets the EEO connector to act as either an input or output as follows:

Setting	Function	
0	Input (No EEO Output). The EEO connector (X9) is configured as an input. See Feedback 2 (FB2) for definitions for the EEO Connector (X9). Note that this mode is also deprecated and will behave as it did with firmware versions prior to M_01-03-00-000. In earlier firmware versions, this mode indicates that the EEO connector is not operative.	
1	Output, with once per rev index pulse.	
2	Output, with absolute index pulse.	
3	Input, A/B signals.	
4	Input, step and direction signals.	
5	Input, up-down signals.	
6	Output, with once per rev index and Input, step and direction.	
7	Output, with absolute index and Input, step and direction	

Related Topics

DRV.EMUEMTURN

General Information	
Туре	R/W Parameter
Description	Defines the location of the index pulse on the EEO (emulated encoder output) when DRV.EMUEMODE=2.
Units	counts
Range	0 to 4,294,967,295
Default Value	0
Data Type	Integer
See Also	DRV.EMUEMODE, DRV.EMUERES
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3491h/0	M_01-00-00-000
Modbus	248	M_01-03-00-000

Description

If the EEO mode with absolute index is selected (DRV.EMUEMODE=2), the index will be output when the feedback position (in counts) matches this parameter.

Related Topics

DRV.EMUERES

General Information	
Туре	R/W Parameter
Description	Sets the resolution of the EEO (emulated encoder output).
Units	lines/rev (when DRV.EMUEMODE = 1, 2, or 3)
	counts/rev (when DRV.EMUEMODE = 4 or 5)
Range	0 to 16,777,215 lines per revolution
Default Value	0 lines per revolution
Data Type	Integer
See Also	DRV.EMUEMODE
Start Version	M_01-00-00-000 (resolution increased from 65,535 to 16,777,215 in M_01-04-00-000)

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3535h/0	M_01-00-00-000
Modbus	250	M_01-03-00-000

Description

This parameter sets the emulated encoder (EEO) resolution. DRV.EMUERES also defines how many lines are output for one revolution of the primary feedback (when this port is configured as an output), or how many lines will be considered a full revolution of the handwheel (when this port is configured as an input).

Related Topics

DRV.EMUEZOFFSET

General Information	n
Туре	R/W Parameter
Description	Sets the location of the EEO (emulated encoder output) index pulse (when DRV.EMUEMODE=1).
Units	1/65536 rev
Range	0 to 65535 rev
Default Value	0 rev
Data Type	Integer
See Also	DRV.EMUEMODE, DRV.EMUEMTURN
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3537h/0	M 01-00-00-000
and CANopen	353711/0	IVI_0 1-00-00-000
Modbus	252	M_01-03-00-000

Description

When EEO multiturn is selected (DRV.EMUEMODE=1), this parameter sets a position of the EEO index. When the primary feedback position (within a revolution) equals this value, an index pulse will output.

Related Topics

DRV.EN

General Information	
Туре	Command
Description	Enables the axis (software).
Units	N/A
Range	N/A
Default Value	Analog drive software is enabled.
	All other types of drive software are disabled.
Data Type	N/A
See Also	DRV.DIS, DRV.DISSOURCES DRV.ACTIVE
Start Version	M_01-00-000

Description

DRV.EN issues a software enable to the drive. You can query the value of DRV.ACTIVE to check whether the drive is currently enabled or disabled.

You can also query the value of DRV.DISSOURCES to check whether the software enable bit is high (software enabled was issued by executing DRV.EN) or the software enable bit is low (software disable was issued by executing DRV.DIS). If the drive software enable bit is low and DRV.EN is executed, then drive faults are automatically cleared during the software enable process.

Related Topics

- 17.2 Clearing Faults
- 10.2 Command Buffer
- 10.9 Enable/Disable

DRV.ENDEFAULT

General Information	
Туре	R/W Parameter
Description	Sets the default state of the software enable.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	256	M_01-03-00-000

Description

DRV. ENDEFAULT sets the default state of the software enable on power up for drives without fieldbuses (DRV.CMDSOURCE other than 1).

Related Topics

10.9 Enable/Disable

DRV.FAULTHIST

General Information		
Туре	R/O Parameter	
Description	Reads the last 10 faults from NV memory.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	DRV.FAULTS, DRV.CLRFAULTHIST	
Start Version	M_01-00-000	

Description

DRV.FAULTHISTORY returns the last 50 faults that occurred in the drive. The faults are shown with their fault number (which matches the one displayed on the drive display) and a time stamp that indicates when they last occurred. Issue a DRV.CLRFAULTHIST to clear this fault log.

DRV.FAULTS

General Information	
Туре	R/O Parameter
Description	Reads the active faults.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.CLRFAULTS, DRV.FAULTHIST, DRV.CLRFAULTHIST
Start Version	M_01-00-00-000

Description

DRV.FAULTS returns a list of all currently active faults in the system, preceded by their fault number which matches the number displayed on the drive display.

To clear the faults, either issue a DRV.CLRFAULTS or issue a DRV.DIS followed by DRV.EN.

If no active faults are in the system, then after executing DRV.CLRFAULTS the value read by DRV.FAULTS is "No faults active".

Example

```
-->DRV.FAULTS
502: Bus under voltage.
-->
```

DRV.HANDWHEEL

General Information	
Туре	R/O Parameter
Description	Reads the EEO input value.
Units	1/4,294,967,296 rev
Range	0 to 4,294,967,295 rev
Default Value	0 rev
Data Type	Integer
See Also	DRV.EMUERES, DRV.EMUEMODE
Start Version	M_01-00-000
End Version	M_01-03-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	2050h/0	M_01-00-00-000
Modbus	258	M_01-03-00-000

Description

When the EEO is selected as an input (DRV.EMUEMODE=3,4,5), this parameter reads the EEO value (where 4,294,967,296 is a full revolution, then the value rolls over). DRV.EMUERES defines the how many counts constitute a revolution on the EEO. This parameter represents the feedback 2 positions when feedback 2 is configured to be active.

When secondary feedback is selected (DRV.EMUEMODE is 0 and FB2.SOURCE = 1 (X9), or FB2.SOURCE = 2 (X7)), this parameter represents the secondary feedback position (where 4,294,967,296 is a full revolution, then the value rolls over). FB2.ENCRES defines how many counts define a revolution for the secondary feedback.

Related Topics

DRV.HELP

General Information	
Туре	R/O Parameter
Description	Reads the minimum, maximum, and default values for a specific parameter or command.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Description

This parameter returns more information about a specific parameter or command.

In most cases, except special parameters, this command tells you the minimum, maximum, default, and actual value of a parameter. Exceptions are commands that do not have these values (such as DRV.EN) or information commands (such as DRV.VER).

Related Topics

16.1 Terminal

DRV.HELPALL

General Information	
Туре	R/O Parameter
Description	Retrieves the minimum, maximum, default, and actual values for all available parameters and commands.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Description

This parameter retrieves all information about all parameters and commands in the firmware. In most cases, DRV.HELPALL returns the minimum, maximum, default, and actual value for each parameter and command. Exceptions include parameters and commands that do not have these values (such as DRV.EN) or pure INFO commands (such as DRV.VER).

Related Topics

16.1 Terminal

DRV.HWENMODE

General Information	
Туре	R/W Parameter
Description	Selects the action that the hardware enable digital input will perform.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-03-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3506h/0	M_01-03-00-000
Modbus	260	M_01-03-00-000

Description

This parameter selects the action that the hardware enable digital input will perform.

0 = The rising edge of the hardware enable will clear the drive faults.

1 = The rising edge of the hardware enable will not clear the drive faults.

The high/low state of the hardware enable is always used to control the active enable state of the drive.

Related Topics

10.9 Enable/Disable

DRV.ICONT

General Information	
Туре	R/O Parameter
Description	Reads the continuous rated current value.
Units	Arms
Range	N/A
Default Value	N/A
Data Type	Float
See Also	DRV.IPEAK
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	262	M_01-03-00-000

Description

DRV.ICONT returns the drive continuous rated current in Arms.

The value of the continuous current is read automatically on drive boot from the power EEPROM of the drive. This value cannot be modified.

DRV.INFO

General Information	
Туре	R/O Parameter
Description	Reads general information about the drive.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.INFO returns general information about the drive.

Example

```
Danaher Motion - Digital Servo Drive
Drive mode
                                : AKD-B00606-NAAN-0000
Continuous current
                                : 12.000 A
Peak current: 30.000 A
Mac address: 00.23.1B.00.00.16
FPGA size: 1600
Fieldbus type: Analog
Power type
                                 : MV - Medium Voltage
Product serial number: 16777215
Product manufacturing date code : 65535
Power board serial number
Power board manufacturing date code: 0
Control board serial number: 0
Control board manufacturing date code: 0
Option board serial number: 0
Option board manufacturing date code: 0
```

DRV.IPEAK

General Information	
Туре	R/O Parameter
Description	Reads the peak rated current value.
Units	Arms
Range	N/A
Default Value	N/A
Data Type	Float
See Also	DRV.ICONT
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	264	M_01-03-00-000

Description

DRV.IPEAK returns the drive peak rated current in Arms.

The value of the peak current is read automatically on drive boot from the power EEPROM of the drive. This value cannot be modified.

Related Topics

8.8 Foldback

8.3.9 Using Wake and Shake (WS)

DRV.IZERO

General Information	
Туре	R/W Parameter
Description	Sets the current that will be used during the DRV.ZERO procedure.
Units	Arms
Range	Drive peak current to 0 Arms
Default Value	0 Arms
Data Type	Float
See Also	DRV.ZERO
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	266	M_01-03-00-000

Description

This parameter sets the current that is used during the DRV.ZERO procedure.

DRV.LIST

General Information	
Туре	R/O Parameter
Description	Reads the list of available parameters and commands.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.LIST reads the list of available commands and parameters from the drive.

To filter this list, enter DRV.LIST followed by the prefix of the commands and parameters that you wish to display.

Example

Return a list of all available commands in the system:

-->DRV.LIST

Return all commands with the prefix DRV:

-->DRV.LIST DRV

DRV.LOGICVOLTS

General Information	
Туре	R/O Parameter
Description	Reads the logic voltages.
Units	mv , Ω
Range	N/A
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.LOGICVOLTS reads the logic voltages data of 1.2 V, 2.5 V, 3.3 V, 5 V, 12 V, -12 V, and 3.3 AV.

Example

Below is an example of the output for this command:

ch0	=	1.2V	: 1211 mv
ch1	=	2.5V	:2488 mv
ch2	=	3.3V	:3274 mv
ch3	=	5V	:4950 mv
ch4	=	12V	:11892 mv
ch5	=	-12V	:-11912 mv
ch6	=	3.3AV	:3300 mv
ch7	=	R ohm	:100000 ohm

DRV.MEMADDR

General Information		
Туре	R/W Parameter	
Description	Sets the read and write address.	
Units	N/A	
Range	N/A	
Default Value	U8	
Data Type	N/A	
See Also	DRV.MEMDATA	
Start Version	M_01-00-00-000	

Description

DRV.MEMADDR sets the address that is used by DRV.MEMDATA. The input can be either an internal parameter of the drive or any direct address from the DSP address space (SDRAM, internal RAM, or asynchronous memory). The input value can be either decimal or hexadecimal with 0x prefix.

Type extension can be one of the following:

U8,S8,U16,S16,U32,S32,U64,S64.

Examples

Setting to an internal parameter:

-->DRV.MEMADDR CCommandHandler.Debug1

Setting to an internal address:

-->DRV.MEMADDR 0xffabcde.u16

DRV.MEMDATA

General Information		
Туре	R/W Parameter	
Description	Sets or reads a value from an internal address.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	DRV.MEMADDR	
Start Version	M_01-00-00-000	

Description

DRV.MEMDATA reads a value from the address that was set by DRV.MEMADDR or writes a value to this address. The input value can be either decimal or hexadecimal with 0x prefix.

Examples

Read a value from internal address:

-->DRV.MEMDATA 01

Write a hexadecimal value to an internal address:

-->DRV.MEMADDR 0x01

DRV.MOTIONSTAT

General Information	
Туре	R/O Parameter
Description	Reads the motion status of the drive.
Units	N/A
Range	0 to 4,294,967,295
Default Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3492h/0	M_01-00-00-000
Modbus	268	M_01-03-00-000

Description

This command indicates the current status of the drive internal motion (see table below).

Bit	Significance	Description
0	0x00000001 Motion task is active (high active)	
1	0x00000002 Home position found /reference point set (high active)	
2	0x00000004	Home routine finished (high active). Bits 1 and 2 both must be set to confirm that the homing process is complete.
3	0x00000008	Homing active (high active)
4	0x00000010	Homing error condition has occurred (high active)*
5	0x00000020	Slave in electronic gearing mode synchronized (high active)
6	0x00000040	Electronic gearing is active (high active)
7	0x00000080	Emergency stop procedure in progress (high active)
8	0x00000100	Emergency stop procedure has an error (high active)
9	0x00000200 Service motion active (high active)	
10	0x00000400 A motion task could not be activated /invalid MT (high active)**	
11	0x00000800 Motion task target position has been reached. See also MT.TPOSWND (high active).	
12	0x00001000 Motion task target velocity has been reached. See also MT.TVELWND (high active).	
13	130x00002000	Motion task encountered an exception. A motion task exception can happen during a static motion task activation, or during activation of motion task on the fly (when velocity is not zero). The status bit will be reset automatically on successful activation of any motion, or by a command DRV.CLRFAULT.
14	Ox00004000 The target position of a motion task has been crossed. This situation occurs for motion tasks with a change on the fly when trig gering the DRV.STOP command just before the reaching the target velocity of the current active motion task. The ramp-down procedure with the motion task deceleration ramp causes the target position to be crossed (high active).	

^{*} A possible error condition for homing to a reference switch could be that no reference switch was found between two hardware limit switches.

Related Topics

Drive Motion Status

DRV.NAME

General Information		
Туре	NV Parameter	
Description	Sets and reads the name of the drive.	
Units	N/A	
Range	N/A	
Default Value	No-Name	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-000	

Description

You can assign a unique name to any drive. This name is one way to identify the drive in a multiple drive network (for instance, in a TCP/IP network on which multiple drives reside).

From the terminal screen, DRV.NAME returns the name of the drive as ASCII characters.

^{**} A possible error condition for an invalid motion task could be that a motion task tried to trigger automatically following motion task that has never been initialized (called an "empty motion" task).

DRV.NVLIST

General Information		
Туре	R/O Parameter	
Description	Lists the NV parameters and values from the RAM.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

DRV.NVLIST lists all the drive parameters that reside in NV memory.

The list includes each parameter name, followed by its current value from the RAM.

DRV.NVLOAD

General Information	
Туре	W/O Parameter
Description	Loads all data from the NV memory of the drive into the RAM parameters.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.NVLOAD DRV.NVLIST
Start Version	M_01-00-00-000

Description

DRV.NVLOAD loads all data from the NV memory of the drive into the RAM parameters.

DRV.NVSAVE

General Information	
Туре	Command
Description	Saves the drive parameters from the RAM to the NV memory.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.RSTVAR
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	Object Dictionary	M 01-00-00-000
and CANopen	35EBh/0	IVI_01-00-00-000
Modbus	N/A	N/A

Description

DRV.NVSAVE saves the current drive parameter values from the RAM to the NV memory.

The drive parameters that were saved to the NV are read from the NV on the next drive boot, causing the values to be automatically set to the saved values on every drive boot.

Executing DRV.RSTVAR does not modify the values of the NV, but instead sets the drive values in RAM to their defaults.

DRV.ONTIME

General Information	
Туре	R/O Parameter
Description	Returns how long the drive has been running since last power up.
Units	Days:Hours:Minutes:Seconds
Range	N/A
Default Value	N/A
Data Type	String
See Also	Returns how long the drive has been running since first activated.
Start Version	M_01-00-00-000

Description

This parameter returns the length of time that the drive has been running for the current session (since the last power up).

DRV.OPMODE

General Information	
Туре	NV Parameter
Description	Sets the drive operation mode (current, velocity, or position).
Units	N/A
Range	0 to 2
Default Value	0
Data Type	Integer
See Also	DRV.CMDSOURCE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35B4h/0	M_01-00-00-000
Modbus	270	M_01-03-00-000

Description

DRV.OPMODE specifies the operation mode of the drive. You must also use DRV.CMDSOURCE to set the source of the command to the drive.

The operation mode values can be set as follows:

Mode	Description
0	Current (torque) operation mode
1	Velocity operation mode
2	Position operation mode

DRV.OPMODE can be changed while the drive is enabled or disabled. If you are using the terminal to change the operation mode, then it is recommended that you disable the drive before changing the operation mode. If you change the operation mode from the terminal while the drive is enabled, the system may experience a step change in demand.

Example

Set the source of the command to a TCP/IP channel and the desired operation mode to velocity:

- -->DRV.CMDSOURCE 0
- -->DRV.OPMODE 1

Related Topics

- 11 Using Command Source and Operating Modes
- 10.10 Controlled Stop
- 11.3 Current Loop
- 10.1 Digital Inputs and Outputs
- 11.4 Velocity Loop
- 11.5 Position Loop
- 8.3.9 Using Wake and Shake (WS)

DRV.READFORMAT

General Information	
Туре	R/W Parameter
Description	Sets the value returned to either decimal or hexadecimal.
Units	N/A
Range	10 or 16
Default Value	10
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

 ${\tt DRV.READFORMAT\ sets\ the\ return\ values\ type\ to\ either\ decimal\ or\ hexadecimal}.$

Format	Description
10	Sets the read values to decimal format
16	Sets the read values to hexadecimal format

DRV.RSTVAR

General Informatio	n
Туре	Command
Description	Sets default values in the drive without re-booting the drive and without resetting the NV memory.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	272	M_01-03-00-000

Description

DRV.RSTVAR causes the drive to return to the default values without the need to re-boot the drive first and without resetting the NV memory. Use DRV.RSTVAR to return to the default settings and recover a working drive.

DRV.RUNTIME

General Information	
Туре	R/O Parameter
Description	Returns how long the drive has been running since first activated.
Units	Days:Hours:Minutes:Seconds
Range	N/A
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.RUNTIME returns the length of time that the drive has been running since it was first activated. This time includes the current session and the total amount of time from all previous sessions.

DRV.SETUPREQBITS

General Information	
Туре	R/O Parameter
Description	Reads the bitwise set status of parameters that must be set before the drive can be enabled
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.SETUPREQLIST, MOTOR.AUTOSET
Start Version	M_01-00-00-000

Description

This parameter returns the bitwise set status of parameters that needs to be set up before the drive can be enabled. Only when this parameter returns 0 can the drive be enabled.

Parameter	Bits
IL.KP	0x0000001
MOTOR.IPEAK	0x00000002
MOTOR.ICONT	0x00000004
MOTOR.VMAX	0x00000008
MOTOR.POLES	0x00000010
MOTOR.PHASE	0x00000020

Please note that if MOTOR.AUTOSET is set to 1 (parameters automatically calculated from motor ID data), then all values in the list will be initialized from the feedback device. Otherwise, the parameters must be set manually.

Example

-->DRV.SETUPREQBITS

0

-->

DRV.SETUPREQLIST

General Information	
Туре	R/O Parameters
Description	Reads the list of parameters that must be set before the drive can be enabled.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	DRV.SETUPREQBITS, MOTOR.AUTOSET
Start Version	M_01-00-00-000

Description

This parameter returns the list of parameters that must be set before the drive can be enabled and also whether or not each one of those parameters is set. Only when all commands have value of 0 can the drive be enabled.

Please note that if MOTOR.AUTOSET is set to 1 (parameters automatically calculated from motor ID data), then all values in the list will be initialized from the feedback device. Otherwise, the parameters must be set manually.

Example

```
-->DRV.SETUPREQLIST
IL.KP 0
MOTOR.ICONT 0
MOTOR.IPEAK 0
MOTOR.POLES 0
-->
```

DRV.STOP

General Information	
Туре	Command
Description	This command stops all drive motion.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35FEh/0	M_01-00-00-000
Modbus	274	M_01-03-00-000

Description

This command stops all drive motion.

DRV.TEMPERATURES

General Information	
Туре	R/O Parameter
Description	Reads the temperature of drive components.
Units	°C
Range	55 to 125 °C
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3610h/0	M 01-00-00-000
and CANopen	3611h/0	NI_0 1-00-00-000
Modbus	N/A	M_01-03-00-000

Description

DRV.TEMPERATURES reads the temperature in different parts of the drive (power and control boards). The temperature is read from temperature sensors located in the drive.

Example

Below is an example of the output for this command:

```
Control Temperature: 39 °C

Power1 Temperature: 31 °C

Power2 Temperature: Sensor does not exist.

Power3 Temperature: Sensor does not exist.
```

DRV.TYPE

General Information	
Туре	R/O on analog, EtherCAT and CANopen models
	R/W on the CC drive model.
Description	Selects the operational fieldbus on CC drive models.
Units	N/A
Range	0 to 3
Default Value	2
Data Type	Integer
See Also	FBUS.TYPE, DRV.INFO
Start Version	M_01-03-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	276	M_01-03-00-000

Description

DRV.TYPE allows you to select the operational fieldbus for your drive. This parameter is read-write on the CC drive models and read-only on the analog, EtherCAT, and CANopen drive models. To change the operational fieldbus of your drive:

- 1. Set DRV.TYPE to one of the following values:
 - 0 = Analog (no EtherCAT or CANopen) with no position indexer functionality.
 - 1 = Analog (no EtherCAT or CANopen) with position indexer functionality.
 - 2 = EtherCAT
 - 3 = CANopen
- 2. Save the parameters to the NV memory on the drive by issuing the DRV.NVSAVE command
- 3. Power cycle the 24 V supply to the drive. When the drive has finished powering up, it will be working with the new selection.

Changing DRV.TYPE does not immediately change the type of the drive fieldbus selection. You must power cycle the drive to start the drive with the selected functionality.

You cannot use EtherCAT and CANopen at the same time. Use FBUS.TYPE or DRV.INFO to identify the field-bus currently in use.

DRV.TYPE does not change if you use DRV.RSTVAR.

Related Topics

2 AKD Models

DRV.VER

General Information		
Туре	R/O Parameter	
Description	Reads the drive version.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

DRV.VER reads both FPGA and firmware versions.

The version data presented is hard coded in the firmware code.

Example

Below is an example of the output for this command:

```
Danaher Motion - Digital Servo Drive
------

FPGA version : FP0004_0001_00_07
```

Firmware Version : $M_0-0-15_T_2009-01-19_10-36-28_IR$

DRV.VERIMAGE

General Information	
Туре	R/O Parameter
Description	Returns the version data from each image.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.VERIMAGE reads the versions of the different images in the drive. This parameter returns the version data from each image .i00 file.

Example

Below is an example of the output for this parameter:

```
Danaher Motion - Digital Servo Drive
------
Resident Firmware: R_0-0-11
Operational Firmware: M_0-0-15
Resident FPGA: FPB004_0001_00_07
Operational FPGA: FP0004_0001_00_07
```

DRV.WARNINGS

General Information	
Туре	R/O Parameter
Description	Reads the active warnings.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Description

DRV.WARNINGS returns a list of all currently active warnings in the system.

DRV.ZERO

General Information	
Туре	R/W Parameter
Description	Sets the zero mode. The procedure is activated when the drive is enabled.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	DRV.IZERO
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	278	M_01-03-00-000

Description

The zero procedure is a sequence in which phase commutation is initialized. During this procedure, the motor is held at a certain known electrical position (by applying a current defined by DRV.IZERO). After the motor rests at this position, the commutation angle is calculated and set automatically.

FB1 Parameters

FB1.BISSBITS

General Information	
Туре	NV Parameter
Description	Specifies the number of Biss Sensor (Position) Bits for the BiSS Mode C encoder in use.
Units	bits
Range	0 to 64 bits
Default Value	32 bits
Data Type	Integer
See Also	FB1.SELECT, FB1.IDENTIFIED
Start Version	M_01-01-00-100 and M_01-01-03-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	280	M_01-03-00-000

Description

FB1.BISSBITS specifies the number of BiSS sensor (position) bits for the BiSS Mode C encoder in use. Typically the value is either 26 or 32 for a BiSS Mode C Renishaw encoder. The required value for this parameter is provided by the feedback device manufacturer for the particular device being used.

Related Topics

FB1.ENCRES

General Information	
Туре	NV Parameter
Description	Sets the resolution of the motor encoder.
Units	Encoder counts
Range	0 to 2 ³² -1
Default Value	1,024
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3533h/0	M_01-00-00-000
Modbus	282	M_01-03-00-000

Description

This parameter sets or gets the resolution of the motor encoder (encoder feedback systems only) in number of counts per revolution for a rotary motor and the number of encoder pitches per motor pole pitch for a linear motor. The number of encoder counts per revolution is obtained by multiplying the motor catalog resolution in units of PPR by four. For example, for a 1024 PPR resolution motor, the number of encoder counts per revolution is 1024*4 = 4096. For this motor FB1.ENCRES must be set to 4096.

For linear motors, the value of FB1. ENCRES is set to the number of encoder pitches per motor pole pitch. For a motor with 32 mm pole pitch, and a 40 μ m encoder pitch, the value for FB1. ENCRES should be set to 32 mm/40 μ m = 800.

Related Topics

FB1.HALLSTATE

General Information	
Туре	R/O Parameter
Description	Reads the Hall switch values (encoder feedback
	only).
Units	Binary
Range	0 0 0 to 1 1 1
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

FB1.HALLSTATE reads the Hall switch values (encoder feedback only).

Related Topics

FB1.HALLSTATEU

General Information	
Туре	R/O Parameter
Description	Reads the state of Hall switch U.
Units	N/A
Range	0 and 1
Default Value	1
Data Type	Integer
See Also	FB1.HALLSTATE
Start Version	M_01-03-07-000

Description

FB1.HALLSTATEU reads the state of Hall switch U.

Related Topics

FB1.HALLSTATEV

General Information	
Туре	R/O Parameter
Description	Reads the state of Hall switch V.
Units	N/A
Range	0 and 1
Default Value	1
Data Type	Integer
See Also	FB1.HALLSTATE
Start Version	M_01-03-07-000

Description

 $\label{eq:FB1.HALLSTATEV} \text{ reads the state of Hall switch V}.$

Related Topics

FB1.HALLSTATEW

General Information	
Туре	R/O Parameter
Description	Reads the state of Hall switch W.
Units	N/A
Range	0 and 1
Default Value	1
Data Type	Integer
See Also	FB1.HALLSTATE
Start Version	M_01-03-07-000

Description

FB1.HALLSTATEW reads the state of Hall switch W.

Related Topics

FB1.IDENTIFIED

General Information	
Туре	R/O Parameter
Description	Reads the type of feedback device used by the drive/motor.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	Integer
See Also	FB1.SELECT
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	284	M_01-03-00-000

Description

This parameter is set according to FB1.SELECT on drive power up if FB1.SELECT is not -1; otherwise the parameter value is read from the drive memory.

Type	Description
0	Unknown
10	Incremental encoder with A/B Quad, marker
10	pulse and Hall
11	Incremental encoder with A/B Quad, marker
- 11	pulse and no Hall
20	Sine Encoder, with marker pulse and Hall
21	Sine encoder , with marker pulse & No Halls
30	EnDat 2.1 with Sine Cosine
31	EnDat 2.2
32	BiSS with Sine Cosine
33	HIPERFACE
34	BiSS Mode C Renishaw
40	Resolver
41	SFD

Related Topics

FB1.INITSIGNED

General Information	
Туре	NV Parameter
Description	Sets initial feedback value as signed or unsigned.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	FB1.ORIGIN
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	286	M_01-03-00-000

Description

This parameter sets whether the initial value of the feedback read from the feedback device will be set as a signed or as an unsigned value.

0 = Unsigned

1 = Signed

The drive internal process for the feedback initialization is as follows:

- 1. Reads the position feedback.
- 2. Adds the origin to the feedback.
- 3. Determines modulo from Step 2 by the actual feedback bits.
- 4. Sets the position feedback sign according to FB1.INITSIGNED.

Related Topics

FB1.MECHPOS

General Information	
Туре	R/O Parameter
Description	Reads the mechanical position.
Units	counts
Range	0 to 4,294,967,295 counts
Default Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	288	M_01-03-00-000

Description

FB1.MECHPOS reads the mechanical angle which is equal to the lower 32 bits in the 64-bit position feedback word.

Related Topics

FB1.MEMVER

General Information	
Туре	R/O Parameter
Description	Returns the memory feedback version.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

FB1.MEMVER returns the memory feedback version (only applicable for feedbacks with memory).

Related Topics

FB1.OFFSET

General Information		
Туре	NV Parameter	
Description	Sets position feedback offset.	
	Depends on UNIT.ACCROTARY or UNIT.PLINEAR	
Units	Rotary: counts, rad, deg, custom units, 16-bit counts	
	Linear: counts, mm, µm, custom units, 16-bit counts	
	Rotary:	
	-5,123,372,000,000,005.000 to 5,123,372,000,000,005.000 counts	
	-7495.067 to 7495.067 rad	
	-429,436.096 to 429,436.096 deg	
	-5,964.390 to 5,964.390 [custom units]	
Range	-78,176,452.637 to 78,176,452.636 16-bit counts	
Range	Linear:	
	-5,123,372,000,000,005.000 to 5,123,372,000,000,005.000 counts	
	-1192.878*MOTOR.PITCH to 1192.878*MOTOR.PITCH mm	
	-1192877.952*MOTOR.PITCH to 1192877.952*MOTOR.PITCH μm	
	-5964.390 to 5964.390 custom units	
	-78176452.637 to 78176452.636 16-bit counts	
Default Value	0	
Data Type	Float	
See Also	PL.FB	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3490h/0	M_01-00-00-000
Modbus	290 (64-bit)	M_01-03-00-000

Description

FB1.OFFSET is a value added to the position feedback (PL.FB).

Example

If PL.FB is 10 deg and FB1.OFFSET is set to -10 deg, then the next read of PL.FB will return $\sim\!0$ deg.

Related Topics

FB1.ORIGIN

General Information	
Туре	NV Parameter
Description	Adds to the initial feedback position.
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR
Units	Rotary: counts, rad, deg, custom units, 16-bit counts
	Linear: counts, mm, µm, custom units, 16-bit counts
	Rotary:
	0.000 to 5,123,372,000,000.000 counts
	0.000 to 7,495.067 rad
	0.000 to 429,436.096 deg
	0.000 to 5,964.390 custom units
Dongo	0.000 to 78,176,452.636 16-bit counts
Range	Linear:
	0.000 to 5,123,372,000,000.000 counts
	0.000 to 1,192.878 mm
	0.000 to 1,192,877.952 μm
	0.000 to 5,964.390 custom units
	0.000 to 78,176,452.636 counts 16 Bit
Default Value	0 counts
Data Type	Float
See Also	FB1.INITSIGNED
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3656h/0	M_01-00-00-000
Modbus	294 (64-bit)	M_01-03-00-000

Description

FB1.ORIGIN is a value that is added to the feedback device position. Initial value and modulo are determined from the number of bits of the feedback:

Initial position value = (<feedback from device> + FB1.ORIGIN) modulo <number of feedback bits>

The number of feedback bits is set according to the feedback type. For memory feedbacks it is the number of feedback bits; for none memory it is always single turn.

The drive internal process for the feedback initialization is as follows:

- 1. Reads the position feedback.
- 2. Adds the origin to the feedback.
- 3. Determines modulo from Step 2 by the actual feedback bits.
- 4. Sets the position feedback sign according to FB1.INITSIGNED.

Example

This example uses UNIT.PROTARY set to 2 (degrees)

It also assumes that the drive is connected to a single turn feedback device with memory.

FB1.ORIGIN is set to 22 and saved into NV memory.

Drive boots and reads from feedback device position 340 degrees. According to the description section above, calculation will be:

(340 + 22) modulo 360 = 2 degrees.

Therefore the initial feedback value will be set to 2 degrees.

Related Topics

FB1.PFIND

General Information	
Туре	R/W Parameter
Description	A procedure that allows the user to find the commutation angle for encoder feedback, which has no halls.
Units	NA
Range	0, 1
Default Value	0
Data Type	Integer
See Also	FB1.PFINDCMDU
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	298	M_01-03-00-000

Description

A procedure that allows the user to find the commutation angle for encoder feedback (which has no Halls).

Related Topics

FB1.PFINDCMDU

General Information	
Туре	R/W Parameter
Description	Current value used during the phase finding procedure (PFB.PFIND=1)
Units	A
Range	0 to DRV.IPEAK
Default Value	0
Data Type	Float
See Also	PFB.PFIND
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	300	M_01-03-00-000

Description

FB1.PFINDCMDU sets the current value used during the phase finding procedure.

Related Topics

FB1.POLES

General Information	
Type	R/O Parameter
Description	Reads the number of feedback poles.
Units	N/A
Range	2 to 128
Default Value	2
Data Type	Integer
See Also	MOTOR.POLES
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	302	M_01-03-00-000

Description

FB1.POLES sets the number of individual poles in the feedback device. This variable is used for the commutation function, as well as for velocity feedback scaling, and represents the number of individual poles (not pole pairs). The division value of motor poles (MOTOR.POLES) and feedback poles (FB1.POLES) must be an integer when moving drive to enable, otherwise a fault is issued.

Related Topics

FB1.PSCALE

General Information	
Туре	R/W Parameter
Description	Sets position scaling value for fieldbus transferred position objects.
Units	N/A
Range	0 to 32
Default Value	20
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	304	M_01-03-00-000

Description

Position values transfered over fieldbus are converted from native 64-bit values to a maximum 32-bit position value. This parameter sets the resolution/revolution of position values back to the controller.

FB1.PSCALE determines the counts per revolution of position values delivered by fieldbus. The default value is 20, which yields 2^20 counts/revolution. This scaling is used for CAN PDOs 6064 (Position Actual Value) and 60F4 (Following Error Actual Value).

Example

The drive always works internally with 64-bit position values. The drive internal 64-bit actual position should contain the following value:

0x0000.0023.1234.ABCD

The lower 32 bits represent the mechanical angle of the feedback. The upper 32 bits represent the number of turns.

FB1.PSCALE = 20

The 32-bit position is: 0x0231234A

FB1.PSCALE = 16

The 32-bit position is: 0x00231234

Related Topics

FB1.RESKTR

General Information		
Туре	NV Parameter	
Description	Sets the resolver nominal transformation ratio.	
Units	N/A	
Range	0.001 to 50.000	
Default Value	0.5	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	306	M_01-03-00-000

Description

This parameter sets the resolver nominal transformation ratio. It affects the resolver excitation output amplitude. The value can be obtained from the resolver data sheet.

Related Topics

FB1.RESREFPHASE

General Information		
Туре	NV Parameter	
Description	Sets the electrical degrees of phase lag in the resolver.	
Units	electrical degrees	
Range	-180 to 180°	
Default Value	-2°	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	308	M_01-03-00-000

Description

This parameter sets the electrical degrees of phase lag in the resolver.

See the motor resolver datasheet for the value for this parameter .

Related Topics

FB1.SELECT

General Information		
Туре	NV Parameter	
Description	Sets user entered type or identified type (-1).	
Units	N/A	
Range	-1, 10, 20, 30, 31, 32, 40, 41	
Default Value	-1	
Data Type	Integer	
See Also	FB1.IDENTIFIED	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	353Bh/0	M_01-00-00-000
Modbus	310	M_01-03-00-000

Description

FB1.SELECT sets the feedback type manually (see FB1.IDENTIFIED) or allows the drive to automatically identify the feedback type on power up.

FB1.SELECT Input Values

Input Value	Description
-1	The drive automatically identifies the type of feedback as part of the power up process. Setting this value does not modify FB1.IDENTIFIED, unless it is saved in the NV memory for the next power up. If a feedback with memory is connected to the drive, the value of FB1.IDENTIFIED is set automatically to the feedback identified and all parameters read from the feedback are set according to the values read from the feedback. If no feedback is connected or a feedback with no memory is connected, the value of FB1.IDENTIFIED is set to 0 (no feedback identified) and all values normally read from the feedback are read from NV memory (if stored in NV) otherwise they are set to the default values.
10	Manually sets the type to incremental encoder. This input sets the value of FB1.ID-ENTIFIED to 10. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).
20	Manually sets the type to sine encoder. This input sets the value of FB1.IDENTIFIED to 20. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).
30	Manually sets the type to Endat 2.1. This input sets the value of FB1.IDENTIFIED to 30. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).
31	Manually sets the type to Endat 2.2. This input sets the value of FB1.IDENTIFIED to 31. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).
32	Manually sets the type to BiSS. This input sets the value of FB1.IDENTIFIED to 32. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).
33	Manually sets the type to Hyperface. This input sets the value of FB1.IDENTIFIED to 33. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).

Input Value	Description
40	Manually sets the type to resolver. This input sets the value of FB1.IDENTIFIED to 40. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).
41	Manually sets the type to SFD. This input sets the value of FB1.IDENTIFIED to 41. If the feedback setting fails, FB1.IDENTIFIED is automatically set to 0 (no feedback identified).

FB1.SELECT Feedback Types

Туре	Description
0	Unknown
10	Incremental encoder with A/B Quad, marker pulse and Hall
11	Incremental encoder with A/B Quad, marker pulse and no Hall
20	Sine Encoder, with marker pulse and Hall
21	Sine encoder , with marker pulse & No Halls
30	EnDat 2.1 with Sine Cosine
31	EnDat 2.2
32	BiSS with Sine Cosine
33	HIPERFACE
34	BiSS Mode C Renishaw
40	Resolver
41	SFD

Related Topics

FB1.TRACKINGCAL

General Information		
Туре	NV Parameter	
Description	Controls tracking calibration algorithm.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	312	M_01-03-00-000

Description

This parameter turns the tracking calibration algorithm on or off for sine-cosine or resolver.

0 = Tracking calibration is off.

1 = Tracking calibration is on.

Related Topics

FB2 Parameters

FB2.ENCRES

General Information		
Туре	NV Parameter	
Description	Sets the secondary feedback (FB2) resolution.	
Units	counts/rev	
Range	0 to 262,140 counts/rev	
Default Value	0	
Data Type	Integer	
See Also	FB2.MODE, FB2.SOURCE	
Start Version	M_01-03-00-000	

Description

This parameter sets the feedback 2 (FB2) resolution and defines how many counts input into the secondary feedback will be considered a full revolution.

Related Topics

FB2.MODE

General Information	
Туре	R/W Parameter
Description	Sets the mode for the second feedback inputs, EEO connector (X9) and high speed opto inputs (pins 9 and 10 on X7).
Units	N/A
Range	0 to 2
Default Value	0
Data Type	Integer
See Also	FB2.ENCRES, FB2.SOURCE, PL.FBSOURCE
Start Version	M_01-03-00-000

Description

This parameter sets the feedback 2 input type as follows:

0 = Input A/B Signals

1 = Input Step and Direction Signals

2 = Input, up-down signals

Related Topics

8.4 Feedback 2

FB2.SOURCE

General Information	
Туре	R/W Parameter
Description	Sets the source for the second feedback input. Choices are the EEO connectors (X9) which are RS485 inputs, or the X7 connector's high speed opto inputs (pins 9 and 10).
Units	N/A
Range	0 to 2
Default Value	0
Data Type	Integer
See Also	FB2.ENCRES, FB2.MODE, PL.FBSOURCE
Start Version	M_01-03-00-000

Description

This parameter sets the secondary feedback source to be either the EEO connector (X9) or the high speed opto inputs on the I/O Connector (X7) as follows:

0 = None

- 1 = Feedback Source X9 (EEO connector)
- 2 = Feedback Source X7 (High Speed Opto Inputs on the I/O Connector)

Related Topics

8.4 Feedback 2

FBUS Parameters

FBUS.PARAM1 TO FBUS.PARAM20

General Information	
Туре	NV Parameter
Description	Set fieldbus specific meanings.
Units	N/A
Range	See table below.
Default Value	See table below.
Data Type	Unsigned 32
See Also	CANopen Communication Manual, EtherCAT Communication Manual
Start Version	M_01-00-000

Fieldbus	Index/Su	ıbindex			Object Start Version
	36E5h/0	FBUS.PARAM01	36EAh/0	FBUS.PARAM06	
E45 0 A T 0 O E	36E6h/0	FBUS.PARAM02	36EBh/0	FBUS.PARAM07	
EtherCAT COE	36E7h/0	FBUS.PARAM03	36ECh/0	FBUS.PARAM08	M_01-00-00-000
and CANopen	36E8h/0	FBUS.PARAM04	36EDh/0	FBUS.PARAM09	_
	36E9h/0	FBUS.PARAM05	36EEh/0	FBUS.PARAM10	
EtherCAT COE					
and CANopen	EtherC/	AT COE	CANC	pen	
Range	N/A		125; 2	50; 500; 1000	
FBUS.PARAM01	0 to 1		0 to 1		
FBUS.PARAM02	1,001 to	65,535	N/A		
FBUS.PARAM03	0 to 1		0 to 1		
FBUS.PARAM04	0 to 1		0 to 1		
FBUS.PARAM05					
EtherCAT COE					
and CANopen	EtherC/	AT COE	CANo	pen	
Default Value	N/A		125		
FBUS.PARAM01	1		0		
FBUS.PARAM02	0		N/A		
FBUS.PARAM03	1		0		
FBUS.PARAM04	0		0		
FBUS.PARAM05					
	314	FBUS.PARAM01	334	FBUS.PARAM11	
	316	FBUS.PARAM02	336	FBUS.PARAM12	
	318	FBUS.PARMA	338	FBUS.PARAM13	
	320	FBUS.PARAM04	340	FBUS.PARAM14	
Modbus	322	FBUS.PARAM05	342	FBUS.PARAM15	M 01-03-00-000
Wodbus	324	FBUS.PARAM06	344	FBUS.PARAM16	INI_01-03-00-000
	326	FBUS.PARAM07	346	FBUS.PARAM17	
	328	FBUS.PARAM08	348	FBUS.PARAM18	
	330	FBUS.PARAM09	350	FBUS.PARAM19	
	332	FBUS.PARAM10	352	FBUS.PARAM20	

Description

FBUS.PARAM01 sets the baud rate for the CANopen bus. Supported baud rates are 125, 250, 500 and 1000 kBaud.

FBUS.PARAM02 switches the phase locked loop (PLL) for synchronized use: 0 = OFF, 1 = ON

FBUS.PARAM03 sets the configured station alias for EtherCAT.

FBUS.PARAM04 switches the surveillance of SYNC-signals: 0 = OFF, 1 = ON

FBUS.PARAM05 is used to configure some special behaviors of the DS402.

FBUS.PARAM06 - FBUS.PARAM10 are reserved.

FBUS.PARAM04 Additional Notes

FBUS.PARAM04 enables (1) or disables (0) the synchronization supervision of the CANOpen or Ether CAT field bus. Default values:

• CANOpen: disabled (0)

• EtherCAT: enabled (1)

The synchronization supervision is active when:

- FBUS.PARAM04 = 1
- The first CANOpen Sync message or first EtherCAT frame was received.

When more than three CANOpen sync messages or seven EtherCAT frames have not been received, and the drive is enabled, fault F125, "Synchronization lost", occurs.

FBUS.PARAM05 Additional Notes

Bit 0 configures the behavior of DS402 state machine in case of fault resets.

- Bit 0 = 1: Faults can only be reset using DS402 control word bit 7.
- Bit 0 = 0: The reset can also be done via telnet or digital input and the DS402 state machine reflects this condition.
- Bit 1 = 1: The state of the hardware enable does not change the state machine state Operation Enable.
- Bit 0 = 0: If the state Operation Enable or Switched on is active it falls back to the state switched On Disabled, if the Hardware enable goes to 0.
- Bit 2 = 1: Workbench/Telnet can not software enable the drive, when CAN/EtherCAT are Operational.
- Bit 0 = 0: Workbench/Telnet can software enable the drive.
- Bit 3 = 1: DS402-state machine is not influenced, if the software-enable is taken away via Telnet.
- Bit 0 = 0: DS402-state machine is influenced, if the software-enable is taken away via Telnet.

FBUS.PLLSTATE

General Information	
Туре	R/O Parameter
Description	Returns the status of the PLL
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	FBUS.PARAM1 TO FBUS.PARAM20, Fieldbus documentation
Start Version	M_01-02-00-000

Description

 ${\sf FBUS.PLLSTATE}\ \ {\sf returns}\ \ {\sf the}\ \ {\sf status}\ \ {\sf of}\ \ {\sf the}\ \ {\sf phase}\ \ {\sf loop}\ \ ({\sf PLL}).\ \ {\sf The}\ \ {\sf PLL}\ \ {\sf states}\ \ {\sf are}\ \ {\sf as}\ \ {\sf follows}:$

PLL State	Description	
PLL not activated	This state is set using FBUS.PARAM02. Not each fieldbus or operation mode needs synchronization.	
PLL activated, but unlocked	The PLL is activated but has not yet been locked successfully. This state is related to the fieldbus master, as well as to the fieldbus mode of operation.	
PLL activated and locked	PLL is fully operational and locked	

For more information, see the AKD CANopen Manual, Phase Locked Loop.

FBUS.PLLTHRESH

General Information	
Туре	NV Parameter
Description	Sets number of successful synchronized cycles needed to lock the PLL.
Units	N/A
Range	0 to 10,000
Default Value	0
Data Type	Integer, U32
See Also	Appendix B: Fieldbus Manuals
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	354	M_01-03-00-000

Description

This parameter sets number of successful synchronized cycles needed to lock the PLL.

FBUS.SAMPLEPERIOD

General Information			
Туре	NV Parameter		
Description	Sets fieldbus sample period.		
Units	Whole multiples of MTS 250 µs		
Range	4 to 128 and value must be a power of 4		
Default Value	32 = 2 ms		
Data Type	U8		
See Also	Appendix B: Fieldbus Manuals		
Start Version	M_01-00-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	Profile specific SDOs/0	M_01-00-00-000
Modbus	356	M_01-03-00-000

Description

This parameter sets the fieldbus cycle time. It is normally written in the startup phase of the field busses via the object 60C2 subindex 1 (interpolation time units) and 2 (interpolation time index), where the index stands for a power of 10 seconds (for instance, -3 stands for milliseconds) and the units are the counts of these units. Kollmorgen recommends the following standard cycle rates, 250 us (4), 500 us (8), 1 ms (16), 2 ms (32), 4 ms (64).

FBUS.SYNCACT

General Information			
Туре	R/O Parameter		
Description	Reads actual distance from the desired sync distance.		
Units	ns		
Range	0 to 250,000 ns		
Default Value	0 ns		
Data Type	Integer, U 32		
See Also	Appendix B: Fieldbus Manuals		
Start Version	M_01-00-00-000		

Fieldbus	Index/Subindex	Object Start Version
Modbus	358	M_01-03-00-000

Description

This parameter reads actual distance from the desired sync distance.

FBUS.SYNCDIST

General Information	
Туре	NV Parameter
Description	Sets time target for synchronization.
Units	ns
Range	0 to 250,000 ns
Default Value	100,000 ns
Data Type	Integer, U32
See Also	Appendix B: Fieldbus Manuals
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	360	M_01-03-00-000

Description

This parameter sets time target for synchronization.

FBUS.SYNCWND

General Information	
Туре	NV Parameter
Description	Sets symmetrically arranged window around the desired sync distance.
Units	ns
Range	0 to 1,000,000 ns
Default Value	50,000 ns
Data Type	Integer, U2
See Also	Appendix B: Fieldbus Manuals
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	362	M_01-03-00-000

Description

This parameter sets symmetrically arranged window around the desired sync distance.

FBUS.TYPE

General Information	
Туре	R/O Parameter
Description	Shows the active fieldbus type.
Units	N/A
Range	0 to 3
Default Value	0
Data Type	U8
See Also	Fieldbus Manuals
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	364	M_01-03-00-000

Description

FBUS.TYPE shows the active fieldbus type.

0 = No fieldbus available

1 = SynqNet

2 = EtherCAT

3 = CANopen

GEAR Parameters

GEAR.ACCMAX

General Informatio	n	
Туре	R/W Parameter	
Description	Sets the maximum allowed acceleration value; active in opmode 2 (position) only.	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR	
Units	Rotary: rps/s, rpm/s, deg/s ² , (custom units)/s ² , rad/s ²	
	Linear: counts/s ² , mm/s ² , µm/s ² , (custom units)/s ²	
	Rotary:	
	0.002 to 833,333.333 rps/s	
	0.112 to 50,000,000.000 rpm/s	
	0.009 to 300,000,000.000 deg/s ²	
	0.155 to 4,166,666.752 (custom units)/s ²	
Range	0.012 to 5,235,987.968 rad/s²	
	Linear:	
	16,000.000 to 3,579,139,408,000.000 counts/s ²	
	0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s ²	
	30.994*MOTOR.PITCH to 83,3333,333.333*MOTOR.PITCH μm/s ²	
	0.155 to 4,166,666.667 (custom units)/s ²	
	Rotary:	
	166.669 rps/s	
	10,000.000 rpm/s	
	60,000.000 deg/s ²	
	833.333 (custom units)/s ²	
Default Value	1,047.2 rad/s ²	
	Linear:	
	715,840,000.000 counts/s ²	
	166.714*MOTOR.PITCHMOTOR.PITCH mm/s ²	
	166,714.191*MOTOR.PITCHMOTOR.PITCH µm/s ²	
	833.571 (custom units)/s ²	
Data Type	Float	
See Also	UNIT.ACCROTARY, UNIT.ACCLINEAR, GEAR.DECMAX	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	366 (64-bit)	M_01-03-00-000

Description

This parameter limits the acceleration of the slave to a numerical higher value.

Related Topics

GEAR.DECMAX

General Information		
Туре	R/W Parameter	
Description	Sets the maximum allowed deceleration value; active in opmode 2 (position) only.	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR	
Units	Rotary: rps/s, rpm/s, deg/s ² , (custom units)/s ² , rad/s ²	
	Linear: counts/s ² , mm/s ² , µm/s ² , (custom units)/s ²	
	Rotary:	
	0.002 to 833,333.333 rps/s	
	0.112 to 50,000,000.000 rpm/s	
	0.009 to 300,000,000.000 deg/s ²	
	0.155 to 4,166,666.752 (custom units)/s ²	
Range	0.012 to 5,235,987.968 rad/s²	
	Linear:	
	16,000.000 to 3,579,139,408,000.000 counts/s ²	
	0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s ²	
	30.994*MOTOR.PITCH to 833,333,333.333*MOTOR.PITCH μm/s ²	
	0.155 to 4,166,666.667 (custom units)/s ²	
	Rotary:	
	166.669 rps/s	
	10,000.000 rpm/s	
	60,000.000 deg/s ²	
	833.333 (custom units)/s ²	
Default Value	1,047.2 rad/s ²	
	Linear:	
	715,840,000.000 counts/s²	
	166.714*MOTOR.PITCHMOTOR.PITCH mm/s ²	
	166,714.191*MOTOR.PITCHMOTOR.PITCH µm/s²	
	833.571 (custom units)/s ²	
Data Type	Float	
See Also	UNIT.ACCROTARY, UNIT.ACCLINEAR, GEAR.ACCMAX	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	370 (64-bit)	M_01-03-00-000

Description

This parameter limits the deceleration of the slave to a numerical higher value.

Related Topics

GEAR.IN

General Information	
Туре	R/W Parameter
Description	Sets the denominator of the electronic gearing ratio; active in opmode 2 (position) only.
Units	N/A
Range	1 to 65,535
Default Value	1
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	374	M_01-03-00-000

Description

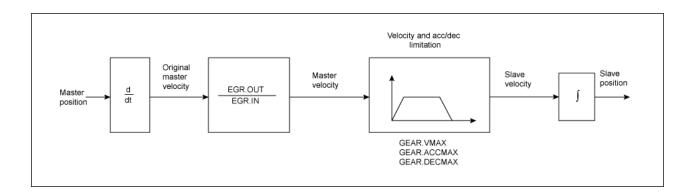
This parameter sets the denominator of the gear ratio for the electronic gearing mode. The gear ratio is used in order to increase and decrease the slave velocity. The slave velocity can be calculated by the following formula: Slave velocity = Master velocity * GEAR.OUT/GEAR.IN

Be sure that you set the external master source number of signals per revolution correctly. Also, select the gear ratio so that the maximum electronic gearing velocity (GEAR.VELMAX) is not exceeded.

Master velocitymax * GEAR.OUT/GEAR.IN < GEAR.VELMAX

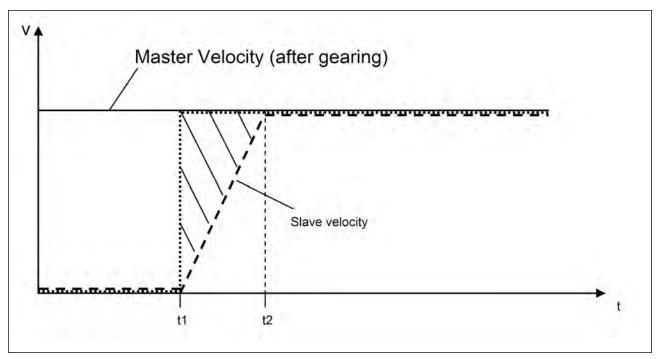
Related Topics

GEAR.MODE


General Information	
Туре	R/W Parameter
Description	Selects electronic gearing mode; active in opmode 2 (position) only.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	376	M_01-03-00-000

Description


This parameter selects the electronic gearing mode at the beginning of the electronic gearing procedure. The gearing mode determines drive synchronization. In the context of electronic gearing, synchronization means that the slave follows the master pulses without losing counts due to acceleration or velocity limitations.

- Mode 0: The slave is not immediately synchronized after a GEAR.MOVE command. The slave accelerates until the master velocity (velocity after the gearing) has been reached. The drive is synchronized as soon as the velocity of the master has been reached.
- Mode 1: The slave is immediately synchronized after a GEAR.MOVE command.

Block diagram of the electronic gearing feature

The slave position is forwarded to the position loop. Ensure that DRV.OPMODE has been set to 2 and DRV.CMDSOURCE has been set to 2. The slave is able to reach the master velocity according to the GEAR.VMAX setting. GEAR.VMAX does not limit the slave velocity.

Acceleration process for GEAR.MODE 0

Time	Description
t <t1< td=""><td>The master sends already signals to the slave drive, but the GEAR.MOVE command</td></t1<>	The master sends already signals to the slave drive, but the GEAR.MOVE command
	has not been triggered yet.
t = t1	A GEAR.MOVE command has been triggered.
t1 <t<t2< td=""><td>The slave accelerates according to the GEAR.ACCMAX setting. The position, which is</td></t<t2<>	The slave accelerates according to the GEAR.ACCMAX setting. The position, which is
	marked with solid lines, will be ignored.
	The slave has reached the master velocity and is from now on considered as syn-
t=t2	chronized. Synchronization means that the slave will not lose any more position counts
	coming from the master.
t>t2	The slave follows the master input signals.

Related Topics

GEAR.MOVE

General Information	
Туре	Command
Description	Starts the electronic gearing; active in opmode 2 (position) only.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	378	M_01-03-00-000

Description

The command GEAR.MOVE starts the electronic gearing procedure according to the selected electronic gearing mode. The electronic gearing process can be stopped using the DRV.STOP command.

Related Topics

GEAR.OUT

General Information	
Туре	R/W Parameter
Description	Sets the numerator of the electronic gearing ratio; active in opmode 2 (position) only.
Units	N/A
Range	-32,768 to +32,767
Default Value	1
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	380	M_01-03-00-000

Description

This parameter is the numerator of the gear ratio for the electronic gearing mode. The gear ratio is used in order to increase/decrease the slave velocity. The slave velocity can be calculated by the following formula:

Slave velocity = Master velocity * GEAR.OUT/GEAR.IN

Make sure that the external master source has been set properly. Also, be certain to select a gear ratio such that the maximum electronic gearing velocity (GEAR.VELMAX) will not be exceeded.

Master velocitymax * GEAR.OUT/GEAR.IN < GEAR.VELMAX

Related Topics

GEAR.VMAX

General Information	on a second control of the second control of
Туре	R/W Parameter
Description	Reads the maximum allowed velocity value; active in opmode 2 (position) only.
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s
	Linear: counts/s, mm/s, μm/s, custom units/s
	Rotary:
	0.000 to 15,000.000 rpm
	0.000 to 250.000 rps
	0.000 to 90,000.000 deg/s
	0.000 to 1,250.000 custom units/s
Range	0.000 to 1,570.796 rad/s
	Linear:
	0.000 to 1,073,741,824,000.000 counts/s
	0.000 to 250.000*MOTOR.PITCH mm/s
	0.000 to 250,000.000*MOTOR.PITCH µm/sec
	0.000 to 1,250.000 custom units/s
	Rotary:
	3,000 rpm
	50 rps
	18,000.002 deg/s
	250.000 custom units/s
Default Value	314.159 rad/s
	Linear:
	0.050 counts/s
	50 mm/s
	50,000.004MOTOR.PITCH μm/s
	250.000 custom units/s
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	382	M_01-03-00-000

Description

This parameter limits the maximum velocity of the slave drive.

Related Topics

GUI Parameters

GUI parameters are used within WorkBenchfor data reporting and data storage.

GUI.DISPLAY

General Information	
Туре	R/O Parameter
Description	Reads drive display data.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	Display
See Also	N/A
Start Version	M_01-00-00-000

Description

This parameter reports to the GUI what the drive currently is displaying. For all GUI commands, the data is compressed and formatted for the GUI, not for the user.

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

GUI.PARAM02

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

GUI.PARAM03

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

GUI.PARAM05

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

GUI.PARAM06

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

GUI.PARAM08

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

The GUI uses this parameter to store data. Only the GUI can modify this data (not the user).

GUI.PARAM09

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

General Information	
Туре	NV Parameter
Description	Used by the GUI to store data.
Units	N/A
Range	2,147,483,648 to 2,147,483,647
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Description

HOME Parameters

HOME.ACC

General Information	on .	
Туре	R/W Parameter	
Description	Sets homing acceleration; active in opmode 2 (position) only.	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR	
Units	Rotary: rps/s, rpm/s, deg/s ² , (custom units)/s ² , rad/s ²	
	Linear: counts/s ² , mm/s ² , μm/s ² , (custom units)/s ²	
	Rotary:	
	0.002 to 833,333.333 rps/s	
	0.112 to 50,000,000.000 rpm/s	
	0.009 to 300,000,000.000 deg/s ²	
	0.155 to 4,166,666.752 (custom units)/s ²	
Range	0.012 to 5,235,987.968 rad/s ²	
	Linear:	
	16,000.000 to 3,579,139,408,000.000 counts/s ²	
	0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s ²	
	30.994*MOTOR.PITCH to 833,333,333.333*MOTOR.PITCH μm/s ²	
	0.155 to 4,166,666.667 (custom units)/s ²	
	Rotary:	
	166.669 rps/s	
	10,000.000 rpm/s	
	60,000.000 deg/s ²	
	833.333 (custom units)/s ²	
Default Value	1,047.2 rad/s ²	
	Linear:	
	715,840,000.000 counts/s²	
	166.714*MOTOR.PITCHMOTOR.PITCH mm/s ²	
	166,714.191*MOTOR.PITCHMOTOR.PITCH µm/s²	
	833.571 (custom units)/s²	
Data Type	Float	
See Also	UNIT.ACCROTARY, UNIT.ACCLINEAR	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3502h/0 Profile specific SDOs/0	M_01-00-00-000
Modbus	384 (64-bit)	M_01-03-00-000

Description

This parameter determines the acceleration of the motor during the homing procedure.

Related Topics

HOME.AUTOMOVE

General Information	
Туре	R/W Parameter
Description	Sets homing auto move flag.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	HOME.MODE
Start Version	M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	388	M_01-03-00-000

Description

HOME.AUTOMOVE allows the drive to start a homing procedure after enabling the drive.

HOME. AUTOMOVE = 0: The drive is not allowed to start automatically a homing procedure after the enable command.

HOME.AUTOMOVE = 1: The drive automatically starts a homing procedure after the enable command.

When HOME.AUTOMOVE is set to 1, the drive continuously checks the following conditions:

- 1. Is the drive enabled (DRV.ACTIVE = 1)?
- 2. Is the drive in DRV.OPMODE = 2?
- 3. Has the command source been adjusted to 0 (DRV.CMDSOURCE = 0)?
- 4. Is no other motion currently active (see DRV.MOTIONSTAT)?

As soon as all of the conditions above are true, the drive activates the homing procedure, which has been selected via the HOME.MODE setting. The automatic homing procedure is finished as soon as the homing procedure has been successfully triggered by the drive. From now on the drive will not attempt to trigger any additional homing procedure.

HOME.AUTOMOVE is not functional in release M_01-03-00-000 for homing procedures which require an external index signal (HOME.MODE 3, 6, 10, and 11).

Related Topics:

HOME.DEC

General Informatio	on Control of the Con	
Туре	R/W Parameter	
Description	Sets homing deceleration; active in opmode 2 (position) only.	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEARUNIT.A-	
Units	CCLINEAR	
Oillio	Rotary: rps/s, rpm/s, deg/s ² , (custom units)/s ² , rad/s ²	
	Linear: counts/s ² , mm/s ² , µm/s ² , (custom units)/s ²	
	Rotary:	
	0.002 to 833,333.333 rps/s	
	0.112 to 50,000,000.000 rpm/s	
	0.009 to 300,000,000.000 deg/s ²	
	0.155 to 4,166,666.752 (custom units)/s ²	
Range	0.012 to 5,235,987.968 rad/s²	
	Linear:	
	16,000.000 to 3,579,139,408,000.000 counts/s ²	
	0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s ²	
	30.994*MOTOR.PITCH to 833,333,333.333*MOTOR.PITCH μm/s ²	
	0.155 to 4,166,666.667 (custom units)/s ²	
	Rotary:	
	166.669 rps/s	
	10,000.000 rpm/s	
	60,000.000 deg/s ²	
	833.333 (custom units)/s ²	
Default Value	1,047.2 rad/s ²	
	Linear:	
	715,840,000.000 counts/s ²	
	166.714*MOTOR.PITCHMOTOR.PITCHmm/s ²	
	166,714.191MOTOR.PITCH μm/s ²	
	833.571 (custom units)/s ²	
Data Type	Float	
See Also	UNIT.ACCROTARY, UNIT.ACCLINEAR	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3524h/0 Profile specific SDOs/0	M_01-00-00-000
Modbus	390 (64-bit)	M_01-03-00-000

Description

This parameter sets the deceleration of the motor during the homing procedure.

Related Topics:

HOME.DIR

General Information	
Туре	NV Parameter
Description	Sets homing direction; active in opmode 2 (position) only.
Units	N/A
Range	0 to 1
Default Value	1
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	6098h6098h	M_01-00-00-000
Modbus	394	M_01-03-00-000

Description

This parameter determines the direction in which the motor should start to move during a homing procedure.

0 = Movement in negative direction.

1 = Movement in positive direction.

Related Topics

HOME.DIST

General Information		
Туре	R/W Parameter	
Description	Sets homing distance; active in opmode 2 (position) only.	
	Depends on UNIT.PROTARY or UNIT.PLINEARUNIT.ACCLINEAR	
Units	Rotary: counts, rad, deg, custom units, 16-bit counts	
	Linear: counts, mm, µm, custom units, 16-bit counts	
Range	N/A	
Default Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	396	M_01-03-00-000

Description

This parameter takes effect only after the homing procedure is complete (see the HOME.MODE description). HOME.DIST specifies an additional movement after the homing procedure is complete. The drive uses the homing acceleration, deceleration, and velocity parameters for this movement. This parameter can be used to let the motor move away from the home position by the value of HOME.DIST.

A value not equal to 0 triggers an additional movement of the selected homing distance after the general homing procedure. A value of 0 for HOME.DIST causes no additional movement.

Related Topics

HOME.FEEDRATE

General Information	
Туре	R/W Parameter
Description	Sets homing velocity factor; active in opmode 2 (position) only.
Units	%
Range	0 to 100%
Default Value	50%
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	Profile specific SDOs/2	M_01-00-00-000
Modbus	400	M_01-03-00-000

Description

This parameter is used in order to reduce the velocity during the index search (index = zero-pulse of a feedback device). This parameter determines the percentage of the homing velocity (HOME.V) that should be used during the index-search.

Related Topics

HOME.IPEAK

General Information	
Туре	R/W Parameter
Description	Sets the current limit during homing procedure to a mechanical stop; active in opmode 2 (position) only.
Units	A
Range	± Drive peak current A
Default Value	[(1/120) * DRV.IPEAK] A
Data Type	Float
See Also	HOME.MODE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35E2h/0	M_01-00-00-000
Modbus	402 (64-bit)	M_01-03-00-000

Description

This parameter sets the intermediate current limit during a homing procedure to a mechanical stop (HOME.MODE 8 and 9). The current-controller limit (IL.LIMITP and IL.LIMITN) is set to ±HOME.IPEAK while the homing procedures are active.

HOME.IPEAK is active as soon as the homing procedure starts and remains active until the home position is found. Previous current limit settings are re-activated before the motor covers the homing distance (HOME.DIST \neq 0).

Related Topics

12.1 HomingHoming mode 8: Move Until Position Error Exceeded

HOME.MODE

General Information	
Туре	R/W Parameter
Description	Selects the homing mode; active in opmode 2 (position) only.
Units	N/A
Range	0 to 10
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	6098h6098h	M_01-00-00-000
Modbus	406	M_01-03-00-000

Description

HOME.MODE specifies the homing procedure of the drive. The homing modes available in the drive are summarized in the following table; see 12.1 Homing for a detailed discussion and examples for each mode:

Mode	Description	
0	Home using current position	
1	Find limit input	
2	Find input limit then find zero angle	
3	Find input limit then find index	
4	Find home input, including hardware limit switches	
5	Find home input then find zero angle, including hardware limit switches	
6	Find home input then find index, including hardware limit switches.	
7	Find zero angle	
8	Move until position error exceeded	
9	Move until position error exceeded, then find zero angle	
10	Move until position error exceeded, then find index	
11	Find index signal, without any precondition	
12	Homing to a home-switch, including mechanical stop detection	

Related Topics

HOME.MOVE

General Information	
Туре	Command
Description	Starts a homing procedure; active in opmode 2 (position) only.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Description

The HOME.MOVE command starts a homing procedure. The DRV.OPMODE must be set to 2 (closed position loop) and DRV.CMDSOURCE must be set to 0 (TCP/IP command).

Related Topics

HOME.P

General Information		
Туре	R/W Parameter	
Description	Sets home position; active in opmode 2 (position) only.	
	Depends on UNIT.PROTARY or UNIT.PLINEAR	
Units	Rotary: counts, rad, deg, custom units, 16-bit counts	
	Linear: counts, mm, µm, custom units, 16-bit counts	
Range	N/A	
Default Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
	Profile specific SDOs/0	M_01-00-00-000
Modbus	410 (64-bit)	M_01-03-00-000

Description

This parameter sets the home position. The command and actual position of the drive will be set to this value as soon as a homing event occurs. The homing events differ in each homing mode.

Related Topics

HOME.PERRTHRESH

General Information		
Туре	R/W Parameter	
Description	Sets the position lag threshold; active in opmode 2 (position) only.	
	Depends on UNIT.PROTARY or UNIT.PLINEAR	
Units	Rotary: counts, rad, deg, custom units, 16-bit counts	
	Linear: counts, mm, µm, custom units, 16-bit counts	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3482h/0	M_01-00-00-000
Modbus	414 (64-bit)	M_01-03-00-000

Description

This parameter is used for the homing modes against a mechanical stop (HOME.MODE = 8 and 9). The absolute value of the following error (PL.ERR) is compared with HOME.PERRTHRESH in order to detect a mechanical stop.

Related Topics

Homing mode 8: Move Until Position Error Exceeded

HOME.REQUIRE

General Information	
Туре	NV Parameter
Description	Defines if the axis must be homed before a motion task can be executed.
Units	N/A
Range	0 to 1
Default Value	1
Data Type	Integer
See Also	N/A
Start Version	M_01-03-00-005

Description

This parameter defines whether or not the axis must be homed before a motion task can be executed.

- HOME.REQUIRE = 1: Homing must be complete ("Home Done" is true) before a motion task can execute.
- HOME.REQUIRE = 0: The axis does not need to be homed before a motion task can execute. When HOME.REQUIRE is set to 0, "Home Done" can be either true or false before a motion task can execute.

Related Topics

- 12.1 Homing
- 12.2 Motion Tasks

HOME.SET

General Information	
Туре	Command
Description	Immediately sets the home position; active in opmode 2 (position) only.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35F0h/0	M_01-00-00-000
Modbus	418	M_01-03-00-000

Description

The HOME.SET command immediately homes the drive. The drive can be homed in an enabled or disabled state. Motion in the current mode of operation (DRV.OPMODE=0) or velocity mode of operation (DRV.OPMODE=1) is not affected by the HOME.SET command. Motion in the position mode of operation (DRV.OPMODE=2) is immediately aborted when the HOME.SET command is issued.

Related Topics

12.1 Homing

HOME.V

General Information	
Туре	R/W Parameter
Description	Sets homing velocity; active in opmode 2 (position) only.
	Depends on UNIT.VROTARY or UNIT.VLINEAR
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s
	Linear: counts/s, mm/s, μm/s, custom units/s
	Rotary:
	0.000 to 15,000.000 rpm
	0.000 to 250.000 rps
	0.000 to 90,000.000 deg/s
	0.000 to 1,250.000 custom units/s
Range	0.000 to 1,570.796 rad/s
	Linear:
	0.000 to 1,073,741,824,000.000 counts/s
	0.000 to 250.000*MOTOR.PITCH mm/s
	0.000 to 250,000.000*MOTOR.PITCH µm/sec
	0.000 to 1,250.000 custom units/s
	Rotary:
	60 rpm
	1 rps
	359.999 deg/s
	5 (custom units)/s
Default Value	6.283 rad/s
	Linear:
	0.001 counts/s
	1*MOTOR.PITCH mm/s
	999.998*MOTOR.PITCH µm/sec
	5.000 custom units/s
Data Type	Float
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	6099h/1	M_01-00-00-000
Modbus	420	M_01-03-00-000

Description

This parameter sets the velocity of the motor during the homing procedure.

Related Topics

12.1 Homing

HWLS Parameters

HWLS.NEGSTATE

General Information	
Туре	R/O Parameter
Description	Reads the status of the negative hardware limit switch.
Units	0 to 1
Range	N/A
Default Value	Boolean
Data Type	HWLS.POSSTATE
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	422	M_01-03-00-000

Description

HWLS.NEGSTATE reads the status of the negative HW limit switch as follows:

0 = Low

1 = High

Related Topics

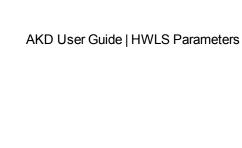
10.1 Digital Inputs and Outputs

HWLS.POSSTATE

General Information	
Туре	R/O Parameter
Description	Reads the status of the positive hardware limit switch.
Units	N/A
Range	0 to 1
Default Value	N/A
Data Type	Boolean
See Also	HWLS.NEGSTATE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	424	M_01-03-00-000

Description


HWLS.POSSTATE reads the status of the positive hardware limit switch as follows:

0 = Low

1 = High

Related Topics

10.1 Digital Inputs and Outputs

This page intentionally left blank.

IL Parameters

IL.BUSFF

General Information	
Туре	R/O Parameter
Description	Displays the current feedforward value injected by the fieldbus.
Units	Arms
Range	N/A
Default Value	N/A
Data Type	Float
See Also	IL.KBUSFF
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	426	M_01-03-00-000

Description

This parameter displays the current feedforward value injected by the fieldbus.

Related Topics

IL.CMD

General Information	
Туре	R/O Parameter
Description	Reads the value of the q-component current controller inside the FPGA.
Units	Arms
Range	± Drive peak current (DRV.IPEAK)
Default Value	N/A
Data Type	Float
See Also	DRV.IPEAK
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	428	M_01-03-00-000

Description

IL.CMD displays the q-component current command value of the current loop after any limitation (such as a parameter setting or I^2 t calculation).

IL.CMD is limited also by motor peak current, IL.LIMITN and IL.LIMITP.

Related Topics

10.4 Analog Input

IL.CMDU

General Information	
Туре	R/W Parameter
Description	Sets the user current command.
Units	Arms
Range	Minimum range value = maximum of IL.LIMITN and -MOTOR.IPEAK
	Maximum range value = minimum of IL.LIMITP and MOTOR.IPEAK
Default Value	0 Arms
Data Type	Float
See Also	DRV.IPEAK, DRV.OPMODE, DRV.CMDSOURCE
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	430	M_01-03-00-000

Description

This parameter sets the user current command value.

The current command value, which is provided to the current loop (IL.CMD), can be limited further using a parameter setting or I²t calculation. IL.CMDU is limited also by motor peak current, IL.LIMITN and IL.LIMITP.

Related Topics

IL.DIFOLD

General Information	
Туре	R/O Parameter
Description	Reads the drive foldback current limit.
Units	Arms
Range	0 to 2,147,483.647 Arms
Default Value	N/A
Data Type	Float
See Also	Foldback
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3559h/0	M_01-00-00-000

Description

IL.DIFOLD is the output of the drive foldback algorithm. It is an artificial current, which can be higher or lower than the drive peak current (DRV.IPEAK). When IL.DIFOLD is lower than the existing current limit (such as IL.LI-MITP), it becomes the active current limit.

IL.DIFOLD decreases when the actual current is higher than drive continuous current and increases (up to a certain level) when the actual current is lower than drive continuous current.

Related Topics

IL.FB

General Information	
Туре	R/O Parameter
Description	Reads the actual value of the d-component current.
Units	Arms
Range	± Drive peak current (DRV.IPEAK)
Default Value	N/A
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3558h/0	M_01-00-00-000
Modbus	432	M_01-03-00-000

Description

This parameter reads the measured, de-rotated actual current value of the motor.

Related Topics

IL.FF

General Information	
Туре	R/O Parameter
Description	Displays the current loop overall feedforward value
Units	Arms
Range	N/A
Default Value	N/A
Data Type	Float
See Also	IL.KBUSFF, IL.KVFF, IL.OFFSET, IL.FRICTION, IL.KACCFF
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	434	M_01-03-00-000

Description

This parameter displays the current loop overall feedforward value.

Related Topics

IL.FOLDFTHRESH

General Information	
Туре	R/O Parameter
Description	Reads the foldback fault level.
Units	Arms
Range	0 to 500 Arms
Default Value	Drive peak current (DRV.IPEAK)
Data Type	Float
See Also	Foldback
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3420h/0	M_01-00-00-000
Modbus	436	M_01-03-00-000

Description

IL.FOLDFTHRESH is the fault level of the current foldback algorithm. If IL.IFOLD drops below the value for IL.FOLDFTHRESH, then a fault is generated and the drive is disabled.

To avoid reaching the current foldback fault level, set IL.FOLDFTHRESHU well below the continuous current value for both the drive and the motor or set the IL.FOLDFTHRESHU value to zero.

Related Topics

IL.FOLDFTHRESHU

General Information	
Туре	NV Parameter
Description	Sets the user value for the foldback fault level.
Units	Arms
Range	0 to 500 Arms
Default Value	Drive peak current (DRV.IPEAK)
Data Type	Float
See Also	IL.FOLDFTHRESH, Foldback
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3421h/0	M_01-00-00-000
Modbus	438	M_01-03-00-000

Description

IL.FOLDFTHRESHU is the fault level of the current foldback algorithm. The value of IL.FOLDFTHRESH is the minimum of DRV.IPEAK, MOTOR.IPEAK, and IL.FOLDFTHRESHU.

Related Topics

IL.FOLDWTHRESH

General Information	
Туре	NV Parameter
Description	Sets the foldback warning level.
Units	Arms
Range	0 to 500 Arms
Default Value	0 A
Data Type	Float
See Also	Foldback
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	355Ah/0	M_01-00-00-000
Modbus	440	M_01-03-00-000

Description

IL.FOLDWTHRESH is the warning level of the current foldback algorithm. When IL.IFOLD drops **below** IL.FOLDWTHRESH a warning is generated.

To ensure that the current foldback warning level is never reached, IL.FOLDWTHRESH should be set well below the continuous current value for both the drive and the motor. You can also set the IL.FOLDFTHRESH value to zero.

Related Topics

IL.FRICTION

General Information	
Туре	R/W Parameter
Description	Sets friction compensation value.
Units	A
Range	0 to the minimum of user positive current limit (IL.LIMITP) and motor peak current (MOTOR.IPEAK).IL.LIMITP
Default Value	0
Data Type	Float
See Also	IL.FF
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3422h/0	M 01-00-00-000
and CANopen	342211/0	IVI_0 1-00-00-000
Modbus	442	M_01-03-00-000

Description

Position command derivative sign is multiplied by this value to be injected to the current command.

Related Topics

IL.IFOLD

General Information	
Туре	R/O Parameter
Description	Reads the overall foldback current limit.
Units	A
Range	0 to 2,147,483.647 A
Default Value	N/A
Data Type	Float
See Also	Foldback
Start Version	M_01-00-000

		Object Start Version
EtherCAT COE and CANopen	3425h/0	M_01-00-00-000
Modbus	444	M_01-03-00-000

Description

Two current foldback algorithms run in parallel in the drive: the drive foldback algorithm and the motor foldback algorithm. Each algorithm uses different sets of parameters.

Each algorithm has its own foldback current limit, IL.DIFOLD and IL.MIFOLD. The overall foldback current limit is the minimum of the two at any given moment.

IL.IFOLD = min (IL.DIFOLD, IL.MIFOLD).

IL.DIFOLD is an artificial current, which can be higher or lower than the drive or motor peak current. When IL.IFOLD becomes lower than the existing current limit (such as IL.LIMITP), it becomes the active current limit.

Related Topics

IL.IUFB

General Information	
Туре	R/O Parameter
Description	Reads the sigma-delta measured current in the u-winding of the motor.
Units	A
Range	± Drive peak current (DRV.IPEAK)
Default Value	N/A
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	446	M_01-03-00-000

Description

This parameter displays the measured current in the u-winding of the motor.

Related Topics

IL.IVFB

General Information	
Туре	R/W Parameter
Description	Sets the sigma-delta measured current in the u-winding of the motor.
Units	Α
Range	± Drive peak current (DRV.IPEAK)
Default Value	0 A
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	448	M_01-03-00-000

Description

IL.IVFB is an offset value that is added to the measured current in the u-winding of the motor. This value is used for compensating for an error in the current measurement. The drive measures 256 times the current in the u-winding when powering-up the drive. Afterwards, the drive calculates the average value of the measured current and uses this value for the offset value.

Related Topics

IL.KACCFF

General Information	
Туре	R/W Parameter
Description	Sets current loop acceleration feedforward gain value
Units	mArms/(rad/s²)
Range	0.0 to 2.0 mArms/(rad/s²)
Default Value	0 mArms/(rad/s²)
Data Type	Float
See Also	IL.FF
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3426h/0	M_01-00-00-000
Modbus	450	M_01-03-00-000

Description

This value sets the gain for the acceleration feedforward (a scaled second derivative of the position command is added to the current command value).

This parameter is valid only in the position mode (DRV.OPMODE = 2).

Related Topics

IL.KBUSFF

General Information	
Туре	RW
Description	Current loops fieldbus injected feed-forward gain
Units	NA
Range	0 to 2
Default Value	0
Data Type	Float
See Also	IL.FF, IL.BUSFF
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	452	M_01-03-00-000

Description

This parameter scales the feedforward term added by the fieldbus to the current command. The nominal feedforward value can be multiplied by this gain value.

This parameter is only used in the position mode (DRV.OPMODE = 2).

Related Topics

IL.KP

General Information	
Туре	NV Parameter
Description	Sets the proportional gain of the q-component of the PI regulator.
Units	V/A
Range	0 to 2,000 V/A
Default Value	Read from the motor or, if no memory, 50.009 V/A
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3598h/0	M_01-00-00-000
Modbus	454	M_01-03-00-000

Description

IL.KP is used to modify the proportional gain of the PI-loop that controls the q-component of the current.

Related Topics

IL.KPDRATIO

General Information	
Туре	NV Parameter
Description	Sets the proportional gain of the d-component current PI-regulator as a percentage of IL.KP
Units	N/A
Range	0 to 100
Default Value	1
Data Type	Float
See Also	IL.KP
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3596h/0	M_01-00-00-000
and CANopen		
Modbus	456	M_01-03-00-000

Description

This parameter modifies the proportional gain of the PI-loop, which controls the d-component of the current.

Related Topics

IL.KPLOOKUPINDEX

General Information	
Туре	R/W Parameter
Description	Sets the index into the Current Loop Gain Scheduling Table.
Units	N/A
Range	0 to 255
Default Value	0
Data Type	Integer
See Also	IL.KPLOOKUPVALUEIL.KPLOOKUPVALUESIL.KP
Start Version	M_01-04-00-000

Description

This parameter sets the index into the Current Loop Gain Scheduling Table. The table is 256 records long, spanning 0 A to 1.62 * DRV.IPEAK.

To determine the level of current that corresponds to a table index, use the following equation:

IL.CMD = (Table Index /157) * DRV.IPEAK

Related Topics

Current Loop Gain Scheduling Current Loop

IL.KPLOOKUPVALUE

General Information	
Туре	R/W Parameter
Description	Sets the value of the current loop gain scheduling index.
Units	%
Range	0 to 100.000%
Default Value	0
Data Type	Float
See Also	IL.KPLOOKUPINDEXIL.KPLOOKUPVALUESIL.KP
Start Version	M_01-04-00-000

Description

This parameter sets the value at the current index into the Current Loop Gain Scheduling Table. The table is 256 records long, spanning 0 A to 1.62 * DRV.IPEAK. The value can range from 0% to 100% and determines what percentage of IL.KP will be applied to the current loop.

To determine what level of current corresponds to a table index, use the following equation:

IL.CMD = (Table Index/157) * DRV.IPEAK

Example

Assume:

DRV.IPEAK = 9 A

IL.KPLOOKUPINDEX = 100

IL.KPLOOKUPVALUE = 50

IL.KP = 240

When IL.CMD = 100/157 * 9 = 5.73 A, IL.KP will not be 240, but will be 50% * 240 = 120.

Related Topics

Current Loop Gain Scheduling Current Loop

IL.KPLOOKUPVALUES

General Information	
Туре	R/W Parameter
Description	Gets the Current Loop Gain Scheduling Table.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	Table
See Also	IL.KPLOOKUPINDEX, IL.KPLOOKUPVALUEIL.KP
Start Version	M_01-04-00-000

Description

Retrieves the Current Loop Gain Scheduling Table in a comma delimited table.

This table is 256 records long, and the table will return values in the following format:

-->IL.KPLOOKUPVALUES

Index Value

0, 100.000

1, 100.000

2, 100.000

3, 100.000

4, 100.000

5, 100.000

6, 100.000

7, 100.000

8, 100.000

9, 100.000

10, 100.000

Related Topics

Current Loop Gain Scheduling Current Loop

IL.KVFF

General Information	
Туре	R/W
Description	Current loop velocity feed-forward gain.
Units	N/A
Range	0 to 2
Default Value	0
Data Type	Float
See Also	IL.FF
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	458	M_01-03-00-000

Description

This parameter sets the gain for the velocity loop feedforward. The nominal feedforward value can be multiplied by this gain value.

This parameter is only used in position mode (DRV.OPMODE = 2).

Related Topics

IL.LIMITN

General Information		
Туре	NV Parameter	
Description	Sets the negative user (application-specific) current limit.	
Units	A	
Range	Negative drive peak current (DRV.IPEAK) to 0 A	
Default Value	Negative drive peak current (DRV.IPEAK)	
Data Type	Float	
See Also	IL.LIMITP	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	356Fh/0	M_01-00-00-000
Modbus	460	M_01-03-00-000

Description

This parameter sets the negative user limit clamp value of the torqueproducing q-component current command (IL.CMD). The current command is additionally limited by the motor peak current setting (MOTOR.IPEAK) and by the present value of the foldback I²t peak motor current protection.

Related Topics

IL.LIMITP

General Information	
Туре	NV Parameter
Description	Sets the positive user (application-specific) current limit.
Units	A
Range	0 A to drive peak current (DRV.IPEAK)
Default Value	Drive peak current (DRV.IPEAK)
Data Type	Float
See Also	IL.LIMITN
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	356Eh/0	M_01-00-00-000
Modbus	462	M_01-03-00-000

Description

This parameter sets the positive user limit clamp value of the torque-producing q-component current command (IL.CMD). The current command is additionally limited by the motor peak current setting (MOTOR.IPEAK) and by the present value of the foldback I²t peak motor current protection.

Related Topics

IL.MFOLDD

General Information		
Туре	R/O Parameter	
Description	Sets the motor foldback maximum time at motor peak current.	
Units	S	
Range	0.1 to 2400 s	
Default Value	10 s	
Data Type	Float	
See Also	Foldback	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	464	M_01-03-00-000

Description

IL.MFOLDD sets the maximum time allowed for the motor to remain at peak current before starting to fold towards the motor continuous current. When at motor peak current, IL.MFOLDD is the amount of time before the foldback algorithm starts to reduce the current.

Related Topics

IL.MFOLDR

General Information	
Туре	R/O Parameter
Description	Sets the motor foldback recovery time.
Units	S
Range	0.1 to 65,535 s
Default Value	Calculated from other foldback parameters.
Data Type	Float
See Also	Foldback
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	466	M_01-03-00-000

Description

IL.MFOLDR sets the recovery time for the motor foldback algorithm. If 0 current is applied for at least the recovery time duration, it is possible to apply motor peak current for the duration of IL.MFOLDD time.

The IL.MFOLDR value is automatically calculated from other foldback parameters.

Related Topics

IL.MFOLDT

General Information	
Туре	R/O Parameter
Description	Sets the motor foldback time constant of the exponential current drop (foldback).
Units	S
Range	0.1 to 2,400 s
Default Value	10 s
Data Type	Float
See Also	Foldback
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	468	M_01-03-00-000

Description

IL.MFOLDT sets the time constant of the exponential drop (foldback) of the current towards motor continuous current.

Related Topics

IL.MIFOLD

General Information	
Туре	R/O Parameter
Description	Sets the motor foldback current limit.
Units	A
Range	0 to 2147483.647 A
Default Value	N/A
Data Type	Float
See Also	Foldback
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35A4h/0	M_01-00-00-000
Modbus	470	M_01-03-00-000

Description

IL.MIFOLD sets the output of the motor foldback algorithm. It is an artificial current, which can be higher or lower than the motor peak current. When IL.MIFOLD becomes lower than the existing current limit (IL.LIMITP) it becomes the active current limit.

IL.MIFOLD decreases when the actual current is higher than motor continuous current and increases (up to a certain level) when the actual current is lower than the motor continuous current.

Related Topics

IL.OFFSET

General Information	
Туре	RW Parameter
Description	A constant current command added to compensate for gravity.
Units	Α
Range	[IL.LIMITN to IL.LIMITP
Default Value	0 A
Data Type	Float
See Also	IL.FF
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3423h/0	M_01-00-00-000
Modbus	472	M_01-03-00-000

Description

This value is added to the overall current loop feedforward value.

Related Topics

IL.VCMD

General Information	
Туре	R/O Parameter
Description	Sets the output of the q-component PI regulator.
Units	Vrms
Range	0 Vrms to bus voltage
Default Value	N/A
Data Type	Integer
See Also	IL.VDCMD
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	474	M_01-03-00-000

Description

Sets the output of the current loop that controls the q-component of the current.

Related Topics

IL.VUFB

General Information	
Туре	R/O Parameter
Description	Reads the measured voltage on the u-winding of the motor.
Units	V
Range	-1200*VBusScale to +1200*VBusScale
Default Value	N/A
Data Type	Integer
See Also	IL.VVFB
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	476	M_01-03-00-000

Description

Reads the measured voltage on the u-winding of the motor.

Related Topics

IL.VVFB

General Information	
Туре	R/O Parameter
Description	Reads the measured voltage on the v-winding of the motor.
Units	V
Range	-1200*VBusScale to +1200*VBusScale
Default Value	N/A
Data Type	Integer
See Also	IL.VUFB
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	478	M_01-03-00-000

Description

The range for this parameter depends on whether the drive model is an MV/240 Vac or an HV/480 Vac.

The VBusScale parameter sets the drive model:

MV/240 Vac: VBusScale = 1 HV/480 Vac: VBusScale = 2

VBusScale is used for multiple parameter ranges that are model dependent, such as IL.KP.

Related Topics

11.3 Current Loop

23 LOAD.INERTIA

General Information		
Туре	NV Parameter	
Description	Sets the load inertia.	
Units	kgcm² for rotary motors	
	kg for linear motors	
Range	1 to 1,000,000 kgcm² or kg	
Default Value	0 kgcm² or kg	
Data Type	Float	
See Also	N/A	
Start Version	M_01-03-06-000	

Description

LOAD.INERTIA sets the load inertia.

Related Topics

Motor

24 MODBUS Parameters

MODBUS.PIN AND MODBUS.POUT

See UNIT.PIN and UNIT.POUT.

MODBUS.PSCALE

General Information		
Туре	Parameter	
Description	Sets the resolution of value PL.FB in bits.	
Units	bits	
Range	0 to 32 bits	
Default Value	20 bits	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-04-00-000	

Description

This parameter sets the resolution of PL.FB value in bits.

Example

MODBUS.PSCALE = 10

PL.FB has a resolution of 10 bits per rev (1024 counts per rev).

MODBUS.UNITLABEL

General Information	
Туре	Parameter
Description	Configures the drive for the induction motor's minimum voltage at stand- still.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-04-00-000

Description

This parameter configures the drive for the induction motor's minimum voltage at standstill. It is given as a percentage (%) of the motor's rated voltage. MOTOR.VOLTMIN is used to calculate the constant Volts per Hertz characteristics of the drive/motor and should be set to a value that generates a current of about 40% of the rated current at standstill.

Related Topics

Motor

MOTOR Parameters

MOTOR.AUTOSET

General Information	
Туре	NV Parameter
Description	Determines which drive parameters are calculated automatically.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3451h/0	M_01-00-00-000
Modbus	480	M_01-03-00-000

Description

This parameter determines whether or not certain drive parameters (for example, IL.KP or MOTOR.POLES) are calculated automatically. A value of 1 causes the parameters to be automatically calculated from the motor ID data (read from memory-supporting feedback devices, such as SFD, Endat, and BISS). Automatically calculated parameters are read-only. A value of 0 disables the automatic calculation and you must set the parameters manually. Manually set parameters are read-write.

Related Topics

MOTOR.BRAKE

General Information	
Туре	NV Parameter
Description	Sets the presence or absence of a motor brake.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3587h/0	M_01-00-00-000
Modbus	482	M_01-03-00-000

Description

The MOTOR.BRAKE parameter notifies the firmware whether a brake exists or not. It does not apply or release the brake. If a brake is found to be present, the firmware considers hardware indications regarding the brake circuits (such as open circuit or short circuit). If a brake does not exist, then the firmware ignores the hardware indications since they are irrelevant.

Value	Status
0	Motor brake does not exist.
1	Motor brake exists and brake hardware circuitry checks are enabled.

Enabling the MOTOR.BRAKE (value set to 1) when no motor brake exists creates a fault. The motor brake is polled every 16 ms.

Related Topics

MOTOR.BRAKERLS

General Information		
Туре	Command	
Description	Allows a user to release the motor brake.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3450h/0	M 01-00-00-000
and CANopen	0430170	W_01-00-00-000
Modbus	484	M_01-03-00-000

Description

This command allows a user to release the motor brake.

0 = Drive controls the brake.

1 = Brake is released.

Note: A digital input mode is also used for the same purpose. The two mechanisms are independent.

Related Topics

MOTOR.BRAKESTATE

General Information		
Туре	R/O Parameter	
Description	Reads the actual status of the motor brake.	
Units	N/A	
Range	Brake released or not present.	
	Brake applied.	
Default Value	Brake applied or not present.	
Data Type	String	
See Also	N/A	
Start Version	M_01-00-00-000	

Description

This parameter reads the actual status of the motor brake and can only show two states:

- 1 = Brake released or not present
- 2 = Brake applied

Related Topics

MOTOR.CTF0

General Information		
Туре	NV Parameter	
Description	Sets the thermal constant of the motor coil.	
Units	mHz	
Range	0.265 to 16,000 mHz	
Default Value	10 mHz	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3454h/0	M_01-00-00-000
Modbus	486	M_01-03-00-000

Description

This parameter is used to configure the thermal constant of the motor coil, which is the break frequency of a single-pole low-pass filter model of the thermal dynamics of the motor coil.

This parameter, together with MOTOR.IPEAK and MOTOR.ICONT, determine the motor foldback parameters IL.MFOLDD, IL.MFOLDT, and IL.MFOLDR.

Calculating MOTOR.CTF0

Given a motor coil/winding thermal time constant T in seconds, then:

MOTOR.CTF0 = $1/(2\pi T)$

Related Topics

MOTOR.ICONT

General Information		
Туре	NV Parameter	
Description	Sets the motor continuous current.	
Units	A	
Range	0.1 to 500 A	
Default Value	1.0 A	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	358Eh/0	M_01-00-00-000
Modbus	488	M_01-03-00-000

Description

This parameter is used to configure the motor continuous current.

Related Topics

MOTOR.IDDATAVALID

General Information		
Туре	R/O Parameter	
Description	Reports the status of the motor memory.	
Units	N/A	
Range	N/A	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-02-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	490	M_01-03-00-000

Description

MOTOR.IDDATAVALID reports the status of the motor memory status.

The valid values for this keyword are the following:

Value	Description	
0	Error in identification	
1	Success in identification	
2	Identification in process	
3	Identification not started yet	
4	Success recognizing feedback, but failed to varify OEM data integrity	

Related Topics

MOTOR.INERTIA

General Information		
Туре	NV Parameter	
Description	Sets the motor inertia.	
Units	kgcm² for rotary motors	
	kg for linear motors	
Range	1 to 200,000 kgcm² or kg	
Default Value	100 kgcm² or kg	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35ABh/0	M_01-00-00-000
Modbus	492	M_01-03-00-000

Description

This parameter sets the motor inertia.

Related Topics

MOTOR.IPEAK

General Information	
Туре	NV Parameter
Description	Sets the motor peak current.
Units	mA
Range	0.200 to 1,000 A
Default Value	2.000 A
Data Type	Float
See Also	IL.LIMITP, IL.LIMITN
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	358Fh/0	M_01-00-00-000
Modbus	494	M_01-03-00-000

Description

This parameter configures the drive for the motor's peak, instantaneous-rated current. MOTOR.IPEAK is used to limit clamp the magnitude of the torque producing q-component current command (IL.CMD).

Related Topics

MOTOR.KE

General Information		
Туре	NV Parameter	
Description	Sets the motor back EMF constant.	
Unito	Vpeak/krpm for Rotary Motors	
Units	Vpeak/m/s for Linear Motors	
Range	0.0 to 100,000	
Default Value	0	
Data Type	Float	
See Also	N/A	
Start Version	M_01-03-06-000	

Description

MOTOR.KE defines the back EMF constant for the motor. The back EMF constant defines how much voltage is generated at the motors coils. The relationship between MOTOR.KE and speed is described by the following equation:

Coil Voltage = MOTOR.KE * VL.FB

Where:

VL.FB is in units of krpm for rotary motors and in units of m/s for linear motors

Related Topics

Motor

MOTOR.KT

General Information		
Туре	NV Parameter	
Description	Sets the torque constant of the motor.	
Units	Nm/A	
Danas	0.001 Nm/A to 1,000,000.000 Nm/A for rotary motors.	
Range	0.001 Nm/A to 1,000,000.000 N/A for linear motors.	
Default Value	0.1 Nm/A	
Data Type	Float	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3593h/0	M_01-00-00-000
Modbus	496	M_01-03-00-000

Description

This parameter is the torque constant of the motor in Nm/A. The value can be online checked according to the following equation:

Kt =
$$60 * \sqrt{3} * Ui/(2 * \pi * n)$$

Where:

Ui = induced voltage of the motor n = actual rotor velocity

Related Topics

MOTOR.LQLL

General Information	
Туре	NV Parameter
Description	Sets the line-to-line motor Lq.
Units	mH
Range	1 to 2 ³² H
Default Value	17.000 H
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3455h/0	M_01-00-00-000
Modbus	498	M_01-03-00-000

Description

This parameter is used to configure the motor line-to-line inductance.

Related Topics

MOTOR.NAME

General Information	
Туре	NV Parameter
Description	Sets the motor name.
Units	N/A
Range	11 chars
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

This parameter is used to set the motor name.

Related Topics

MOTOR.PHASE

General Information	
Туре	NV Parameter
Description	Sets the motor phase.
Units	Electrical degrees
Range	0 to 360°
Default Value	0°
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	359Ch/0	M_01-00-00-000
Modbus	500	M_01-03-00-000

Description

This parameter sets the motor phase.

Related Topics

MOTOR.PITCH

General Information	
Туре	NV Parameter
Description	Sets the motor pitch.
Units	μm
Range	1,000 to 1,000,000 μm
Default Value	1.000 μm
Data Type	Integer
See Also	N/A
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	502	M_01-03-00-000

Description

This parameter defines the pole-to-pair pitch for the linear motor in micrometers.

Related Topics

MOTOR.POLES

General Information		
Туре	NV Parameter	
Description	Sets the number of motor poles.	
Units	N/A	
Range	0 to 128	
Default Value	6	
Data Type	Integer	
See Also	FB1.POLES	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	359Dh/0	M_01-00-00-000
Modbus	504	M_01-03-00-000

Description

MOTOR.POLES sets the number of motor poles. This command is used for commutation control and represents the number of individual magnetic poles of the motor (not pole pairs). The division value of motor poles (MOTOR.POLES) and feedback poles (FB1.POLES) must be an integer when setting drive to enable, otherwise a fault is issued.

Related Topics

MOTOR.R

General Information	
Туре	NV Parameter
Description	Sets the stator winding resistance phase-phase in ohms.
Units	Ω
Range	0.001 to 650 Ω
Default Value	10 Ω
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3456h/0	M_01-00-00-000
Modbus	506	M_01-03-00-000

Description

MOTOR.R sets the stator winding resistance phase-to-phase in ohms.

Related Topics

MOTOR.RTYPE

General Information	
Туре	NV Parameter
Description	Defines the type of thermal resistor inside the motor.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	508	M_01-03-00-000

Description

This parameter defines the type of thermal resistor used inside of the motor to measures motor temperature.

0 = PTC

1 = NTC

Related Topics

MOTOR.TBRAKEAPP

General Information	
Туре	NV Parameter
Description	The delay time used for applying the motor brake.
Units	ms
Range	0 to 1,000 ms
Default Value	75 ms
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	366Eh/0	M_01-00-00-000
Modbus	510	M_01-03-00-000

Description

This parameter is used to configure the mechanical delay when applying the motor brake. MOTOR.TBR-AKEAPP is a time delay that is applied when a brake exists and the drive is disabled at the end of a controlled stop. This delay lasts from the time that the brake is commanded to apply until the time that the drive is disabled.

This feature allows you to disable the drive and apply the brake on a vertical application without the load falling. Without this time delay, if you immediately disable the drive, then the load falls during the time needed for the brake to mechanically apply.

Related Topics

MOTOR.TBRAKERLS

General Information	
Туре	NV Parameter
Description	The delay time used for releasing the motor brake.
Units	ms
Range	0 to 1,000 ms
Default Value	75 ms
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	366Fh/0	M_01-00-00-000
Modbus	512	M_01-03-00-000

Description

This parameter is used to configure the mechanical delay when releasing the motor brake. MOTOR.TBRA-KERLS is a time delay that is applied when a brake exists and the drive is enabled. When the drive is enabled, the brake is commanded to release and, during the MOTOR.TBRAKERLS period of time, the drive does not accept a motion command. This delay allows the brake to fully release before the drive begins a new motion.

Related Topics

MOTOR.TEMP

General Information	
Туре	R/O Parameter
Description	Reads the motor temperature represented as the resistance of the motor PTC.
Units	Ω
Range	0 to 2^{32} Ω
Default Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3612h/0	M_01-00-00-000
Modbus	514	M_01-03-00-000

Description

This parameter is used to get the motor temperature which is represented as the resistance of the motor PTC.

Related Topics

MOTOR.TEMPFAULT

General Information	
Туре	NV Parameter
Description	Sets the motor temperature fault level.
Units	Ω
Range	0 to 2,000,000,000 Ω
Default Value	0Ω = switched off
Data Type	Integer
See Also	MOTOR.TEMP
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3586h/0	M_01-00-00-000
Modbus	516	M_01-03-00-000

Description

This parameter is used to configure the motor temperature fault level as a resistance threshold of the motor PTC. A zero value prevents any warning from being issued.

Related Topics

MOTOR.TEMPWARN

General Information	
Туре	NV Parameter
Description	Sets the motor temperature warning level.
Units	Ω
Range	0 to 2,000,000,000 Ω
Default Value	0Ω = switched off
Data Type	Integer
See Also	MOTOR.TEMP
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3453h/0	M_01-00-00-000
Modbus	518	M_01-03-00-000

Description

This parameter is used to configure the motor temperature warning level as a resistance threshold of the motor PTC.

A zero value prevents any warning from being created.

Related Topics

MOTOR.TYPE

General Information	
Туре	NV Parameter
Description	Sets the motor type.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	520	M_01-03-00-000

Description

MOTOR.TYPE sets the drive control algorithms to different motor types as follows:

0 = Rotary motor

1 = Linear motor

Related Topics

MOTOR.VMAX

General Information	
Туре	NV Parameter
Description	Sets the maximum motor speed.
Units	rpm
Range	100 to 40,000 rpm
Default Value	3,000 rpm
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35A3h/0	M_01-00-00-000
Modbus	522	M_01-03-00-000

Description

This parameter is used to configure the maximum speed of the motor.

Related Topics

MOTOR.VOLTMAX

General Information	
Туре	NV Parameter
Description	Sets the motor maximum voltage.
Units	Vrms
Range	110 to 900 Vrms
Default Value	230 Vrms
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3452h/0	M_01-00-00-000
Modbus	524	M_01-03-00-000

Description

This parameter sets the maximum permissible motor voltage. For instance, if a motor that is rated for a 400 V supply is connected to the drive, then the MOTOR.VOLTMAX setting is 400. This value also sets regen resistor and over voltage thresholds in the drive to acceptable values for the motor so that the motor windings are not damaged.

Related Topics

MOTOR.VOLTMIN

General Information		
Туре	NV Parameter	
Description	Sets the minimum voltage for V/f control.	
Units	%	
Range	0 to 100%	
Default Value	2%	
Data Type	U16	
See Also	MOTOR.VRATED, MOTOR.VOLTRATED	
Start Version		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3457h/3	M_01-00-00-000
Modbus		M_01-03-00-000

Description

This parameter configures the drive for the induction motor's minimum voltage at standstill. It is given as a percentage (%) of the motor's rated voltage. MOTOR.VOLTMIN is used to calculate the constant volts per Hertz characteristics of the drive and motor and should be set to a value that generates a current of about 40% of the rated current at standstill.

Related Topics

MOTOR.VOLTRATED

General Information	
Туре	NV Parameter
Description	Sets the motor rated voltage.
Units	V
Range	50 to 1,000 V
Default Value	230 V
Data Type	U16
See Also	MOTOR.VRATED, MOTOR.VOLTMIN
Start Version	M_01-03-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3457h/2	M_01-03-00-000
Modbus	Modbus Parameter Table	M_01-03-00-000

Description

This parameter configures the drive for the induction motor's rated voltage as indicated on the nameplate.

MOTOR.VOLTRATED is used to calculate the constant Volts per Hertz characteristics of the drive and motor.

Related Topics

Motor

MOTOR.VRATED

General Information		
Туре	NV Parameter	
Description	Sets the motor rated velocity (not maximum velocity)	
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, µm/s, custom units/s	
	Rotary:	
	0.000 to 15,000.000 rpm	
	0.000 to 250.000 rps	
	0.000 to 90,000.000 deg/s	
	0.000 to 1,250.000 custom units/s	
Range	0.000 to 1,570.796 rad/s	
	Linear:	
	0.000 to 1,073,741,824,000.000 counts/s	
	0.000 to 8,000.000 mm/s	
	0.000 to 8,000,000.000 µm/s	
	0.000 to 1,250.000 custom units/s	
Default Value	0 rpm	
Data Type	U16	
See Also	MOTOR.VOLTRATED, MOTOR.VOLTMIN	
Start Version	M_01-03-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3457h/1	M_01-03-00-000
Modbus	Modbus Parameter Table	M_01-03-00-000

Description

This parameter configures the drive for the rated velocity of the induction motor as indicated on the nameplate. MOTOR.VRATED is used to calculate the constant volts per Hertz characteristics of the drive and motor.

Related Topics

Motor

MT Parameters and Commands

MT.ACC

General Information	
Туре	R/W Parameter
Description	Specifies motion task acceleration; active in opmode 2 (position) only.
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR
Units	Rotary: rps/s, rpm/s, deg/s², (custom units)/s², rad/s²
	Linear: counts/s², mm/s², µm/s², (custom units)/s²
	Rotary:
	0.002 to 833,333.333 rps/s
	0.112 to 50,000,000.000 rpm/s
	0.009 to 300,000,000.000 deg/s ²
	0.155 to 4,166,666.752 (custom units)/s ²
Range	0.012 to 5,235,987.968 rad/s ²
	Linear:
	16,000.000 to 3,579,139,408,000.000 counts/s ²
	0.031*MOTOR.PITCH to 833,333.333*MOTOR.PITCH mm/s ²
	30.994*MOTOR.PITCH to 833,333,333.333*MOTOR.PITCHµm/s²
	0.155 to 4,166,666.667 (custom units)/s²
	Rotary:
	166.669 rps/s
	10,000.000 rpm/s
	60,000.000 deg/s ²
	833.333 (custom units)/s ²
Default Value	1,047.2 rad/s ²
	Linear:
	715,840,000.000 counts/s ²
	166.714*MOTOR.PITCHMOTOR.PITCH mm/s²
	166,714.191*MOTOR.PITCHMOTOR.PITCH µm/s²
	833.571 (custom units)/s²
Data Type	Float
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.DEC, MT.TNUM, MT.MTNEXT,
	MT.TNEXT, MT.SET , MT.LOAD
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
	Profile specific SDOs/0	M_01-00-00-000
Modbus	526 (64-bit)	M_01-03-00-000

Description

MT.ACC specifies the motion task acceleration and is used by the MT.SET and MT.LOAD command. This parameter is a temporary value, since a motion task is only set after a MT.SET command. The motion task acceleration is further limited by the maximum allowed acceleration DRV.ACC

A value of 0 for MT.ACC should not be used when setting a motion task via MT.SET because this value causes a validity check of the MT.SET command to fail.

A value of 0 for MT.ACC after an MT.LOAD command displays an empty (not initialized) motion task.

Related Topics

MT.CLEAR

General Information	
Туре	Command
Description	Clears motion tasks from the drive; active in opmode 2 (position) only.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	530	M_01-03-00-000

Description

MT.CLEAR clears a motion task from the drive. This command needs one argument in order to clear a motion task. A motion task consists of the following parameters: MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT

A value of -1 clears all motion tasks in the drive (MT.CLEAR -1).

Example

MT.CLEAR 5: Clear motion task number 5.

After performing a command such as MT.PARAMS 5, the drive displays the following:

A value of 0 for velocity, acceleration, or deceleration displays motion task as uninitialized.

Related Topics

MT.CNTL

General Information	
Туре	R/W Parameter
Description	Sets motion task control word; active in opmode 2 (position) only.
Units	N/A
Range	0 to 4,294,967,295
Default Value	0
Data Type	Integer
See Also	MT.NUM, MT.P, MT.V, MT.ACCMT.V, MT.DEC, MT.TNUM, MT.MTNEXT MT.MTNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	35AFh/0	M 01-00-00-000
and CANopen	6086h/0	INI_01-00-00-000
Modbus	532	M_01-03-00-000

Description

MT.CNTL specifies the motion task control word, which is used by the MT.SET and MT.LOAD commands. The control word describes the behavior of the motion task. This parameter is a temporary value, since a motion task is only set after an MT.SET command is issued.

Since this parameter is read bitwise, it can combine multiple functions into a single word. The meaning of each bit is described in the tables below.

Table 1: Motion Task (MT) Bit Descriptions

Bit	Meaning	Description
0	0x00001	
1	0x00002	See Toble 2: MT Type
2	0x00004	See Table 2: MT Type.
3	0x00008	
		If this bit is 0, then the next MT is not executed.
4	0x00010	If this bit is 1, then the next MT is executed.
5	0x00020	
6	0x00040	
7	0x00080	See Table 3: Next MT Start Type.
8	0x00100	
9	0x00200	
10	0x00400	See Table 4: MT Acceleration Type.
11	0x00800	- See Table 4. IVIT Acceleration Type.

Bit	Meaning	Description
12	0x01000	Activates the override functionality for a trapezoidal MT. If this bit is 1, a motion task with override functionality must be activated (see bit 5).
13	0x02000	If this bit is 0, then an attempt to trigger any new motion task will be accepted while this motion task is currently running. If this bit is 1, then an attempt to trigger any new motion task will be denied while this motion task is currently running.
14	0x04000	If this bit is set, the motion task that is supposed to be started cannot be started from velocity 0. The motion can be started if a motion task already running will be interrupted.
15	0x08000	Reserved.

Table 2: MT Type

Bits 3, 2, 1, 0	Description
0000	Absolute. The target position is defined by the MT.P value.
1000	Reserved.
0001	Relative to Command Position. The target position is defined as: Target position = PL.CMD + MT.P
0011	Relative to Previous Target Position. The target position is defined as: Target position = Target position of the last motion task + MT.P
0101	Reserved.
0111	Relative to Feedback Position. The target position is defined as: Target position = PL.FB + MT.P

Table 3: Next MT Start Type

Bits 9, 8, 7, 6, 5	Description
00000	Switches over to next MT after stopping. After an MT ends, the next MT starts immediately.
00001	Switches over to next MT after stopping and delay. After an MT ends, the MT following time (MT.TNEXTelapse in order to start the next MT.
11000	Switches over to the next MT at next MT speed (change on the fly). When the target position of an MT is reached, the drive has already accelerated with the acceleration ramp of the next MT to the target velocity of the next MT. Thus, the drive begins the next MT at the next MT target velocity. The MT.TNEXT setting is ignored if adjusted.

Table 4: MT Acceleration Type

Bits 11, 10	Description
00	Trapezoidal acceleration and deceleration.

Bits 11, 10	Description
01	1:1 motion profile table motion task. The drive follows the customer motion profile table without inserting a constant velocity phase between the acceleration and deceleration process. This setting allows the usage of non-symmetric velocity profiles.
	The MT.TNUM parameter defines which table to use for the 1:1 profile handling.
11	Standard motion profile table motion task. The drive accelerates according to the shape of the motion profile table by stepping through the first half of the customer table. Then the drive inserts a constant velocity phase until the brake point is reached. Finally, the drive decelerates by stepping through the second half of the customer profile table.
	The MT.TNUM parameter defines which table to use for the 1:1 profile handling. This mode allows also a change on the fly between motion tasks (see Table 3 above). See "AKD Customer Profile Application Note" on the Kollmorgen web site (www.kollmorgen.com) for additional details.

Related Topics

MT.CONTINUE

General Information	n
Туре	Command
Description	Continues a stopped motion task; active in opmode 2 (position) only.
Units	N/A
Range	N/A
Default Value	0
Data Type	N/A
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACCMT.V, MT.DEC, MT.TNUM, MT.MTNEXT MT.MTNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	534	M_01-03-00-000

Description

MT.CONTINUE continues a motion task that has been stopped by the DRV.STOP command.

Related Topics

MT.DEC

General Information	n
Туре	R/W Parameter
Description	Sets motion task deceleration; active in opmode 2 (position) only.
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR
Units	Rotary: rps/s, rpm/s, deg/s², (custom units)/s², rad/s²
	Linear: counts/s², mm/s², µm/s², (custom units)/s²
	Rotary:
	0.002 to 833,333.333 rps/s
	0.112 to 50,000,000.000 rpm/s
	0.009 to 300,000,000.000 deg/s ²
	0.155 to 4,166,666.752 (custom units)/s ²
Range	0.012 to 5,235,987.968 rad/s ²
	Linear:
	16,000.000 to 3,579,139,408,000.000 counts/s ²
	0.031*MOTOR.PITCH to 833333.333*MOTOR.PITCH mm/s ²
	30.994*MOTOR.PITCH to 833333333.333*MOTOR.PITCH µm/s ²
	0.155 to 4166666.667 (custom units)/s ²
	Rotary:
	166.669 rps/s
	10,000.000 rpm/s
	60,000.000 deg/s ²
	833.333 (custom units)/s²
Default Value	1,047.2 rad/s ²
	Linear:
	715,840,000.000 counts/s²
	166.714*MOTOR.PITCHMOTOR.PITCH mm/s ²
	166,714.191*MOTOR.PITCHMOTOR.PITCH µm/s²
	833.571 (custom units)/s ²
Data Type	Float
See Also	MT.ACC, MT.NUM, MT.P, MT.V, MT.CNTL, MT.TNUM, MT.MTNEXT
	, MT.TNEXT, MT.SET , MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	Profile specific SDOs/0	M_01-00-00-000
Modbus	536 (64-bit)	M_01-03-00-000

Description

MT.DEC specifies the motion task deceleration and is used by the MT.SET and MT.LOAD commands. This parameter is a temporary value, since a motion task is only set after an MT.SET command is issued. The motion task deceleration is further limited by the maximum allowed acceleration, DRV.DEC.

A value of 0 for MT.DEC should not be used when setting a motion task via MT.SET because this value causes a validity check of the MT.SET command to fail.

A value of 0 for MT.DEC after an MT.LOAD command displays an empty (not initialized) motion task.

Related Topics

MT.EMERGMT

General Information	
Туре	R/W Parameter
Description	Selects a motion task to be triggered after an emergency stop procedure; active in opmode 2 (position) only.
Units	N/A
Range	1 to 128
Default Value	0
Data Type	N/A
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	540	M_01-03-00-000

Description

MT.EMERGMT selects the motion task to be triggered after an emergency stop procedure.

A value of -1 shows that no motion task must be started after a ramp-down procedure in a closed position loop mode of operation.

Related Topics

MT.HOMEREQUIRE

General Information	
Туре	NV Parameter
Description	Defines if the axis is required to be homed before a motion task can be executed.
Units	N/A
Range	0 to 1
Default Value	1
Data Type	Integer
See Also	N/A
Start Version	M_01-03-00-005

Description

This parameter defines whether or not the axis must be homed before a motion task can be executed.

MT.HOMEREQUIRE = 0: The axis does not need to be homed before a motion task can execute ("Home Done" can be either true or false before a motion task can execute).

MT.HOMEREQUIRE = 1: Homing must be complete ("Home Done" is true) before a motion task can execute.

Related Topics

MT.LIST

General Information	
Туре	Command
Description	Lists all initialized motion tasks in the drive; active in opmode 2 (position) only.
Units	N/A
Range	0
Default Value	N/A
Data Type	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD
See Also	M_01-00-00-000
Start Version	N/A

Description

MT.LIST reads every initialized motion task from the drive. A motion task consists of the following parameters: MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, and MT.TNEXT.

A motion task is considered as initialized as soon as MT.V, MT.ACC, and MT.DEC of that specific motion task have values not equal to 0.

Related Topics

MT.LOAD

General Information	
Туре	Command
Description	Reads/loads a motion task number from the drive; active in opmode 2 (position) only.
Units	N/A
Range	N/A
Default Value	0
Data Type	N/A
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT, MT.SET
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	542	M_01-03-00-000

Description

MT.LOAD reads out a motion task number MT.NUM from the drive. A motion task consists of the following parameters: MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT. These parameters belong to the motion task number MT.NUM and are refreshed by MT.LOAD.

Related Topics

MT.MOVE

General Information		
Туре	Command	
Description	Starts a motion task; active in opmode 2 (position) only.	
Units	N/A	
Range	N/A	
Default Value	0	
Data Type	N/A	
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM,	
See Also	MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	544	M_01-03-00-000

Description

MT.MOVE starts a motion task. This command needs one argument in order to start a motion task. The drive must be homed, otherwise the motion task will not start (see also HOME commands).

Example

MT.MOVE 3 -> Start motion task number 3.

Related Topics

12.2 Motion Tasks

Mode 2: Start Motion Task in 10.1 Digital Inputs and Outputs (see also **Modes 3: Motion Task Select Bit** and **Mode 4: Motion Task Start Selected** in this topic)

MT.MTNEXT

General Information	
Туре	R/W Parameter
Description	Specifies following motion task number; active in opmode 2 (position) only.
Units	N/A
Range	0 to 128
Default Value	0
Data Type	Integer
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.TNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	35BCh/0	M 01-00-00-000
and CANopen	33BC170	IVI_0 1-00-00-000
Modbus	546	M_01-03-00-000

Description

MT.MTNEXT specifies the number of the following motion task and is used by the MT.SET and MT.LOAD command. This parameter is a temporary value. A motion task is only set after an MT.SET command.

The motion task control word can be selected so that a following motion task is executed after a first motion task. This parameter displays which motion task should be started after the first motion task.

Related Topics

MT.NUM

General Information	
Туре	R/W Parameter
Description	Sets the motion task number; active in opmode 2 (position) only.
Units	N/A
Range	0 to 128
Default Value	0
Data Type	Integer
See Also	MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	365Bh/0	M_01-00-00-000
Modbus	548	M_01-03-00-000

Description

MT.NUM specifies the motion task number, which is used by the MT.SET and MT.LOAD commands. This parameter is a temporary value. A motion task is only set after an MT.SET command is issued.

Related Topics

MT.P

General Information	
Туре	R/W Parameter
Description	Sets the motion task position; active in opmode 2 (position) only.
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR
Range	N/A
Default Value	0
Data Type	Float
See Also	MT.NUM, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	Profile specific SDOs/0	M_01-00-00-000
Modbus	550 (64-bit)	M_01-03-00-000

Description

MT.P specifies the motion task position, which is used by the MT.SET and MT.LOAD command. Depending on the motion task control word (MT.CNTL), the MT.P command can either be the target position of the motion task or a relative distance. This parameter is a temporary value. A motion task is only set after an MT.SET command.

Related Topics

MT.PARAMS

General Information		
Туре	Command	
Description	Shows a motion task; active in opmode 2 (position) only.	
Units	N/A	
Range	N/A	
Default Value	0	
Data Type	N/A	
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD	
Start Version	M_01-00-000	

Description

MT.PARAMS displays a motion task. This command needs one argument in order to show a motion task. If you enter MT.PARAMS without an argument, the drive returns the current or last active motion task.

Example

MT.PARAMS 5

The drive responds as follows:

```
7 5222.000 Counts 135.000 rpm 1 550.746 rpm/s 654.458 rpm/s 0 0 ms
```

Related Topics

MT.SET

General Information	n
Туре	Command
Description	Sets the motion task in the drive; active in opmode 2 (position) only.
Units	N/A
Range	N/A
Default Value	0
Data Type	N/A
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM,
	MT.MTNEXT, MT.TNEXT, MT.LOAD
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3431h/0	M 01-00-00-000
and CANopen		
Modbus	554	M_01-03-00-000

Description

MT.SET sends a motion task to the drive. A motion task consists of the following parameters: MT.NUM , MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM, MT.MTNEXT , and MT.TNEXT.

The motion task number (MT.NUM) with the parameters above is sent to the drive only after the MT.SET command.

Related Topics

MT.TNEXT

General Information	
Туре	R/W Parameter
Description	Specifies following motion task time; active in opmode 2 (position) only.
Units	ms
Range	0 to 65,535 ms
Default Value	0 ms
Data Type	Integer
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM,
	MT.MTNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	35BDh/0	M 01-00-00-000
and CANopen	JUDDII/U	IVI_0 1-00-00-000
Modbus	556	M_01-03-00-000

Description

MT.TNEXTspecifies the time that must elapse before starting a following motion task. This value is used by the MT.SET and MT.LOAD command. This parameter is a temporary value. A motion task is only set after an MT.SET command.

The motion task control word can be selected so that a following motion task is executed after a first motion task and this additional delay time.

Related Topics

MT.TNUM

General Information	
Туре	R/W Parameter
Description	Sets the motion task customer table number; active in opmode 2 (position) only.
Units	N/A
Range	0 to 7
Default Value	0
Data Type	Integer
See Also	MT.NUM, MT.P, MT.V, MT.CNTL, MT.ACC, MT.DEC, MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	558	M_01-03-00-000

Description

MT.TNUM specifies the customer profile table and is used by the MT.SET and MT.LOAD command. This parameter is a temporary value. A motion task is only set after an MT.SET command.

The drive can have up to eight customer specific profile tables. The drive performs an S-curve acceleration with these profile tables. The shapes of these tables have an impact on the shape of the motion task acceleration and deceleration. The motion task control word specifies if a customer profile table is used or not.

This parameter has no impact when a trapezoidal motion task acceleration and deceleration profile is selected (see Table 4: MT Acceleration Typein the MT.CNTL description).

Related Topics

MT.TNVSAVE

General Information	
Туре	Command
Description	Saves the motion profile tables to the nonvolatile memory.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	MT.TDWNLDS, MT.TDWNLDV
Start Version	M_01-04-00-000

Description

This command saves all motion profile tables, which are used for motion tasking, to the nonvolatile memory. The nonvolatile memory for these tables can be cleared by triggering this command while no motion profile table is available in the volatile memory (empty array in the volatile memory). The nonvolatile memory for these tables can be deleted as follows:

```
-->MT.TDWNLDS 1
-->MT.TDWNLDS 2
-->MT.TNVSAVE
```

The first two commands are needed in order to delete all motion profile tables in the volatile memory. The following MT.TNVSAVE command detects that there is no data available in the volatile memory and therefore deletes the nonvolatile memory sector.

WorkBench also uses this command for the firmware download procedure.

MT.TPOSWND

General Information	
Туре	R/W Parameter
Description	Sets the motion task target position window; active in opmode 2 (position) only.
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR Rotary: counts, rad, deg, custom units, 16-bit counts Linear: counts, mm, µm, custom units, 16-bit counts
Range	N/A
Default Value	0.5 rev
Data Type	Float
See Also	DRV.MOTIONSTAT
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	35C6h/0	M 01-00-00-000
and CANopen	00001110	W_01 00 00 000
Modbus	560 (64-bit)	M_01-03-00-000

Description

Within DRV.MOTIONSTAT, MT.TPOSWND is used to indicate that the target position of a motion task has been reached. DRV.MOTIONSTAT displays a "Target Position Reached" bit as soon as the following statement becomes true:

 $abs(actual_position - target_position) < MT.TPOSWND$

Related Topics

MT.TVELWND

General Informatio	on Control of the Con	
Туре	R/W Parameter	
Description	Sets the motion task target velocity window; active in opmode 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEAR	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: Counts/s, mm/s, µm/s, custom units/s	
	Rotary:	
	0.000 to 15,000.000 rpm	
	0.000 to 250.000 rps	
	0.000 to 90,000.000 deg/s	
	0.000 to 1,250.000 custom units/s	
Range	0.000 to 1,570.796 rad/s	
	Linear:	
	0.000 to 1,073,741,824,000.000 counts/s	
	0.000 to 250.000*MOTOR.PITCH mm/s	
	0.000 to 250,000.000*MOTOR.PITCH μm/sec	
	0.000 to 1,250.000 custom units/s	
	Rotary:	
	60.000 rpm	
	1.000 rps	
	359.999 deg/s	
	5.000 custom units/s	
Default Value	6.283 rad/s	
	Linear:	
	0.001 counts/s	
	1.000*MOTOR.PITCH mm/s	
	999.998*MOTOR.PITCH µm/sec	
	5.000 custom units/s	
Data Type	Float	
See Also	DRV.MOTIONSTAT	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3856h/0	M_01-00-00-000
Modbus	564	M_01-03-00-000

Description

Within DRV.MOTIONSTAT, MT.TVELWND is used to indicate that the target velocity of a motion task has been reached. DRV.MOTIONSTAT displays a "Target Velocity Reached" bit as soon as the following statement becomes true:

(target velocity – MT.TVELWND) < actual velocity < (target velocity + MT)

Related Topics

MT.V

General Information		
Туре	R/W Parameter	
Description	Sets the motion task velocity; active in opmode 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEAR	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, µm/s, custom units/s	
	Rotary:	
	0.000 to 15,000.000 rpm	
	0.000 to 250.000 rps	
	0.000 to 90,000.000 deg/s	
	0.000 to 1,250.000 custom units/s	
Range	0.000 to 1,570.796 rad/s	
	Linear:	
	0.000 to 1,073,741,824,000.000 counts/s	
	0.000 to 250.000*MOTOR.PITCH mm/s	
	0.000 to 250,000.000*MOTOR.PITCH μm/sec	
	0.000 to 1,250.000 custom units/s	
Default Value	0	
Data Type	Float	
See Also	MT.NUM, MT.P, MT.CNTL, MT.ACC, MT.DEC, MT.TNUM,	
	MT.MTNEXT, MT.TNEXT, MT.SET, MT.LOAD	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	6081h6081h	M_01-00-00-000
Modbus	566	M_01-03-00-000

Description

MT.V specifies the motion task velocity, which is used by the MT.SET and MT.LOAD command. This parameter is a temporary value. A motion task is only set after an MT.SET command. The motion task velocity is furthermore limited by VL.LIMITP or VL.LIMITN depending on the direction of the motion task.

A value of 0 should not be used when setting a motion task via MT.SET because this value causes a validity check of the MT.SET command to fail.

A value of 0 after an MT.LOAD command displays an empty (not initialized) motion task.

Related Topics

MT.VCMD

General Information	
Туре	R/O Parameter
Description	Reads the derivative of PL.CMD; active in opmode 2 (position) only.
Units	Depends on UNIT.VROTARY or UNIT.VLINEAR
Range	N/A
Default Value	N/A
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	568	M_01-03-00-000

Description

MT.VCMD returns the derivative of the position loop trajectory (PL.CMD), which is therefore a velocity. MT.VCMD is updated while the drive is in DRV.OPMODE 2 and is processing the following motion types:

- Motion tasking
- Homing
- Electronic gearing
- Service motion
- External trajectory coming from a fieldbus
- External trajectory calculated from an analog input signal

Related Topics

PL Parameters

PL.CMD

General Information	
Туре	R/O Parameter
Description	Reads the position command directly from the entry to the position loop.
	Depends on UNIT.PROTARY or UNIT.PLINEARUNIT.ACCLINEAR
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts
	Linear: counts, mm, µm, (custom units), 16-bit counts
Range	N/A
Default Value	N/A
Data Type	Float
See Also	PL.FB
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	570 (64-bit)	M_01-03-00-000

Description

PL.CMD reads the position command as it is received in the position loop entry.

Related Topics

- 11.5 Position Loop
- 10.4 Analog Input

PL.ERR

General Information		
Туре	R/O Parameter	
Description	Reads the position error present when the drive is controlling the position	
Description	loop.	
Units	counts, rad, deg, (custom units)	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	PL.FB	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35C5h/0 Profile specific SDOs/0	M_01-00-00-000
Modbus	574 (64-bit)	M_01-03-00-000

Description

PL.ERR reads the position error present when the drive is controlling the position loop. PL.ERR is the difference between the actual position of the motor shaft (PL.FB) and the commanded position of the drive (PL.CMD). If the drive is not in the position operating mode (DRV.OPMODE = 2), then the PL.ERR value is not generated by the drive and this parameter is read as 0.

Related Topics

PL.ERRFTHRESH

General Information			
Туре	NV Parameter		
Description	Sets the maximum position error.		
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR		
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts		
	Linear: counts, mm, µm, (custom units), 16-bit counts		
	Rotary:		
	0.000 to 5,123,372,000,000,005.000 counts		
	0.000 to 7,495,067.136 rad		
	0.000 to 429,436,076.032 deg		
	0.000 to 5,964,389.888 (custom units)		
Donne	0.000 to 78,176,452,636.718 16-bit counts		
Range	Linear:		
	0.000 to 5,123,372,000,000,005.000 counts		
	0.000 to 1,192,877.952*MOTOR.PITCH mm		
	0.000 to 1,192,878,014.464*MOTOR.PITCH μm		
	0.000 to 5,964,389.888 (custom units)		
	0.000 to 78,176,452,636.718 16-bit counts		
	Rotary:		
	42,949,672,960.000 counts		
	62.832 rad		
	3,600.000 deg		
	50.000 (custom units)		
Defection Value	655,360.000 16-bit counts		
Default Value	Linear:		
	42,949,672,960.000 counts		
	10.000*MOTOR.PITCHMOTOR.PITCHmm		
	10,000.000*MOTOR.PITCH µm		
	50.000 (custom units)		
	655,360.000 16-bit counts		
Data Type	Float		
See Also	PL.ERR		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	35C7h/0	M 01-00-00-000
and CANopen	6065h/0	NI_0 1-00-00-000
Modbus	580 (64-bit)	M_01-03-00-000

Description

This parameter sets the maximum position error. If the position error PL.ERR is larger than PL.ERRFTHRESH the drive generates a fault. If PL.ERRFTHRESH is set to 0, the maximum position error is ignored.

Example

Set position rotary units to 2 (degrees). Setting PL.ERRFTHRESH to 1000 states that is the position error is larger than 1000 degrees, the drive will generate a fault.

UNIT.PROTARY 2

PL.ERRFTHRESH 1000

Related Topics

PL.ERRMODE

General Information		
Туре	R/W Parameter	
Description	Sets the type of following error warning and fault usage.	
Units	0- Standard following error	
Office	1-Enhanced following error	
Range	0 to 1	
Default Value	0	
Data Type	Boolean	
See Also	PL.ERR, PL.ERRFTHRESH, PL.ERRWTHRESH	
Start Version	M_01-02-09-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	578	M_01-03-00-000

Description

PL.ERRMODE sets the type of following error warning and fault usage.

Mode 0 - following error magnitude fault

In Mode 0, the values of PL.ERRFTHRESH and PL.ERRWTHRESH are compared against the value of PL.ERR. If the absolute value of PL.ERR is larger than PL.ERRWTHRESH, then a warning is generated. If the absolute value of PL.ERR is larger than PL.ERRFTHRESH, then a fault is generated.

Mode 1 - deviation from predicted trajectory fault

In Mode 1, the values of PL.ERRFTHRESH and PL.ERRWTHRESH are compared against the following value:

If the absolute value of <error> is larger than PL.ERRWTHRESH for a consecutive period of 100 ms, then a warning is generated. If the absolute value of <error> is larger than PL.ERRFTHRESH for a consecutive period of 100 ms, then a fault is generated.

In mode 1, if PL.KI is not 0 then the following error prediction mechanism is turned off. When the drive is disabled, the following error limit tests are turned off and the warnings are cleared. A value of 0 in PL.ERR-FTHRESH or PL.ERRWTHRESH disables the respective functionality.

Example

Assuming

PL.ERRMODE = 0, PL.ERRFTHRESH=1.2, PL.ERRWTHRESH=1, then PL.ERR reads 1.1.

In this case the warning is generated, but the fault is not.

Assuming PL.ERRMODE = 0, PL.ERRFTHRESH=1.2, PL.ERRWTHRESH=1, then PL.ERR reads 1.3. In this case the warning is generated, as well as the fault.

Related Topics

PL.ERRWTHRESH

General Information			
Туре	NV Parameter		
Description	Sets the position error warning level.		
	Depends on UNIT.PROTARY or UNIT.PLINEARUNIT.ACCLINEAR		
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts		
	Linear: counts, mm, µm, (custom units), 16-bit counts		
	Rotary:		
	0.000 to 5,123,372,000,000,005.000 counts		
	0.000 to 7,495,067.136 rad		
	0.000 to 429,436,076.032 deg		
	0.000 to 5,964,389.888 (custom units)		
Panga	0.000 to 78,176,452,636.718 16-bit counts		
Range	Linear:		
	0.000 to 5,123,372,000,000,005.000 counts		
	0.000 to 1,192,877.952*MOTOR.PITCH mm		
	0.000 to 1,192,878,014.464*MOTOR.PITCH μm		
	0.000 to 5,964,389.888 (custom units)		
	0.000 to 78,176,452,636.718 16-bit counts		
Default Value	0.000 deg		
Data Type	Float		
See Also	PL.ERR		
Start Version	M_01-00-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3483h/0	M_01-00-00-000
Modbus	580 (64-bit)	M_01-03-00-000

Description

If this value is not equal 0 and the position error PL.ERR is larger than this value, the drive will generate a warning. If PL.ERRWTHRESH is set to 0 the warning is not issued.

Example

Set position rotary units to 2 degrees. If you set PL.ERRWTHRESH to 100 and the position error is larger than 100 degrees, then the drive will generate a warning.

UNIT.PROTARY 2

PL.ERRWTHRESH 100

Related Topics

PL.FB

General Information		
Туре	R/O Parameter	
Description	Reads the position feedback value.	
	Depends on UNIT.PROTARY or UNIT.PLINEARUNIT.ACCLINEAR	
Units	Rotary: counts, rad, deg, (custom units), 16-bit counts	
	Linear: counts, mm, µm, (custom units), 16-bit counts	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	FB1.OFFSET	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	6064h6064h/0	M_01-00-00-000
Modbus	588 (64-bit)	M_01-03-00-000

Description

PL.FB returns the position feedback value.

Note that this value is not the pure feedback value read from the feedback device, but also includes the value of the FB1.OFFSET and an internal offset set automatically by the FW when a homing switch is actuated.

Related Topics

11.5 Position Loop

Selecting and Using Homing Modes

PL.FBSOURCE

General Information		
Туре	NV Parameter	
Description	Sets the feedback source for the position loop.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Boolean	
See Also	VL.FBSOURCE	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	592	M_01-03-00-000

Description

This parameter determines the feedback source that the position loop uses. A value of 0 for this parameter selects the primary feedback, a value of 1 selects the secondary feedback. If you use the secondary feedback as the source for the position loop, then FB2.MODE mode should be set as 0 (A/B signals). A/B signals are the only supported feedback type as secondary feedback into the position loop. Other settings for FB2.MODE are intended as pulse inputs or a gearing command when PL.FBSOURCE remains 0.

Related Topics

PL.INTINMAX

General Informatio	n		
Туре	NV Parameter		
Description	Limits the input of the position loop integrator by setting the input saturation.		
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR		
	Rotary: counts, rad, deg, (custom units), 16-bit counts		
	Linear: counts, mm, µm, (custom units), 16-bit counts		
	Rotary:		
	0.000 to 18,446,744,073,709.000 counts		
	0.000 to 26,986.052 rad		
Para	0.000 to 1,546,188.288 deg		
	0.000 to 21,474.836 (custom units)		
	0.000 to 281,474,976.710 16-bit counts		
Range	Linear:		
	0.000 to 18,446,744,073,709.000 counts		
	0.000 to 4,294.968*MOTOR.PITCH mm		
	0.000 to 4,294,967.296*MOTOR.PITCH μm		
	0.000 to 21,474.836 (custom units)		
	0.000 to 281,474,976.710 16-bit counts		
	Rotary:		
	3,999,989,760.000 counts		
	5.852 rad		
	335.275 deg		
Default Value	4.657 (custom units)		
	61,035.000 16-bit counts		
Delault Value	Linear:		
	3,999,989,760.000 counts		
	0MOTOR.PITCH mm		
	9MOTOR.PITCH μm		
	4.657 (custom units)		
	61,035.000 16-bit counts		
Data Type	Float		
See Also	PL.FB		
Start Version	M_01-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3481h/1	M_01-00-00-000
Modbus	594 (64-bit)	M_01-03-00-000

Description

PL.INTINMAX limits the input of the position loop integrator by setting the input saturation. When used in concert with PL.INSATOUT, this variable allows you to make the position loop integrator effective near the target position. Far from the target position, however, the integrator is not dominant in the loop dynamics.

Related Topics

PL.INTOUTMAX

General Information	on .		
Туре	NV Parameter		
Description	Limits the output of the position loop integrator by setting the output saturation.		
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR		
	Rotary: counts, rad, deg, (custom units), 16-bit counts		
	Linear: counts, mm, µm, (custom units), 16-bit counts		
	Rotary:		
	0.000 to 18,446,744,073,709.000 counts		
	0.000 to 26,986.052 rad		
	0.000 to 1,546,188.288 deg		
	0.000 to 21,474.836 (custom units)		
Damas	0.000 to 281,474,976.710 counts16 bit		
Range	Linear:		
	0.000 to 18,446,744,073,709.000 counts		
	0.000 to 4,294.968*MOTOR.PITCH mm		
	0.000 to 4,294,967.296*MOTOR.PITCH µm		
	0.000 to 21,474.836 (custom units)		
	0.000 to 281,474,976.710 16-bit counts		
	Rotary:		
	3,999,989,760.000 counts		
	5.852 rad		
	335.275 deg		
Default Value	4.657 (custom units)		
	61,035.000 16-bit counts		
	Linear:		
	3,999,989,760.000 counts		
	0MOTOR.PITCH mm		
	9MOTOR.PITCH μm		
	4.657 (custom units)		
	61,035.000 16-bit counts		
Data Type	Float		
See Also	PL.INTINMAX		
Start Version	M_01-00-00-000		

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3481h/2	M_01-00-00-000
Modbus	598 (64-bit)	M_01-03-00-000

Description

PL.INTOUTMAX limits the output of the position loop integrator by setting the output saturation.

When used in concert with PL.INTINMAX, this variable allows you to make the position loop integrator effective near the target position. Far from the target position, however, the integrator is not dominant in the loop dynamics.

Related Topics

PL.KI

General Information		
Туре	NV Parameter	
Description	Sets the integral gain of the position loop.	
Units	Hz	
Range	0 to 250 Hz	
Default Value	0 Hz	
Data Type	Float	
See Also	PL.KP, PL.KD	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3480h/0	M_01-00-00-000
Modbus	602	M_01-03-00-000

Description

PL.KI sets the integral gain of the position regulator PID loop.

Related Topics

PL.KP

General Information	
Туре	NV Parameter
Description	Sets the proportional gain of the position regulator PID loop.
Units	(rev/s)/rev
Range	0 to 2,147,483.008 (rev/s)/rev
Default Value	100 rps/rev
Data Type	Float
See Also	PL.KI, PL.KD
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3542h/0	M_01-00-00-000
Modbus	604	M_01-03-00-000

Description

PL.KP sets the proportional gain of the position regulator PID loop.

Related Topics

PL.MODP1

General Information	
Туре	R/W parameter
Description	Sets modulo range parameter.
Units	Depends on UNIT.PROTARY and UNIT.PLINEAR
Range	N/A
Default Value	N/A
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3637h/0	M_01-00-00-000
Modbus	606 (64-bit)	M_01-03-00-000

Description

This parameter is either the beginning or the end of the modulo range, depending on whether this value is smaller or larger than PL.MODP2. If you set PL.MODP1 equal to PL.MODP2, an error message occurs.

Condition	Beginning of the modulo-range	End of the modulo-range
PL.MODP1 < PL.MODP2	PL.MODP1	PL.MODP2
PL.MODP2 < PL.MODP1	PL.MODP2	PL.MODP1

Related Topics

PL.MODP2

General Information	
Туре	R/W Parameter
Description	Sets the beginning or end modulo range parameter.
Units	Depends on UNIT.PROTARY and UNIT.PLINEAR.
Range	N/A
Default Value	N/A
Data Type	Float
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3638h/0	M_01-00-00-000
Modbus	610 (64-bit)	M_01-03-00-000

Description

This parameter is either the beginning or the end of the modulo range, depending on whether this value is smaller or larger than PL.MODP1.

Condition	Beginning of the modulo range	End of the modulo range
PL.MODP1 < PL.MODP2	PL.MODP1	PL.MODP2
PL.MODP2 < PL.MODP1	PL.MODP2	PL.MODP1

Related Topics

PL.MODPDIR

General Information	
Туре	R/W Parameter
Description	Sets the direction for absolute motion tasks.
Units	N/A
Range	0 to 2
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3430h/0	M_01-00-00-000
Modbus	614	M_01-03-00-000

Description

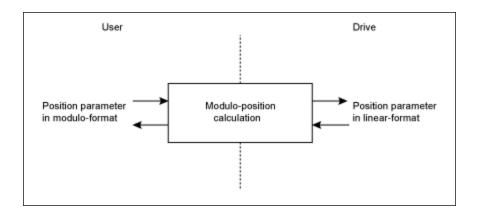
This parameter defines the direction of an absolute motion task when the modulo position has been activated. For more details about absolute motion tasks, see .12.2 Motion Tasks. For absolute motion tasks, you can only select a target position within the modulo range.

PL.MODPDIR Settings

Value	Motion	Description
0	Inside Range	The motor moves in a negative direction if the target position of the absolute motion task is less than the current position. The motor moves in positive direction if the target position of the absolute motion task is greater than the current position.
1	Positive	The motor always moves in a positive direction relative to the target position of the absolute motion task.
2	Negative	The motor always moves in a negative direction relative to the target position of the absolute motion task.
3	Shortest Distance	The motor always moves the shortest distance in order to reach the target position within the modulo-range.

PL.MODPEN

General Information	
Туре	R/W Parameter
Description	Enables the modulo position.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000


Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35CFh/0	M_01-00-00-000
Modbus	616	M_01-03-00-000

Description

A value of 0 disables the modulo-position and a value of 1 enables the modulo-position feature. The modulo-position feature can be used for circular applications such as round tables.

The position loop of the drive uses always a linear position variable but the data-exchange between the user and the drive uses the modulo-position calculation in order to convert values from linear format into modulo format and vice versa.

The following figure shows the interface between the user and the drive for PL.MODPEN=1:

Related Topics

PLS Parameters and Commands

PLS.EN

General Information	
Туре	R/W Parameter
Description	Enables programmable limit switch (PLS).
Units	N/A
Range	0 to 255
Default Value	0
Data Type	Integer
See Also	PLS.MODE, PLS.RESET, PLS.STATE, PLS.UNITS, PLS.P1 to
See Also	PLS.P8, PLS.WIDTH1 to PLS.WIDTH8, PLS.T1 to PLS.T8
Start Version	M_01-02-03-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	34A3h/1	M_01-02-03-000
Modbus	618	M_01-03-00-000

Description

PLS.EN is a bit variable which determines the mode of an individual PLS. Eight PLSs are available in the drive.

Example

Bit Value	Behavior
Bit 0 = 0	Disables PLS 1
Bit 0 = 1	Enables PLS 1
Bit 7 = 0	Disables PLS 8
Bit 7 = 1	Enables PLS 8

Related Topics

PLS.MODE

General Information	
Туре	R/W Parameter
Description	Selects programmable limit switch mode.
Units	N/A
Range	0 to 255
Default Value	0
Data Type	Integer
See Also	PLS.EN, PLS.RESET, PLS.STATE, PLS.UNITS, PLS.P1 to PLS.P8,
	PLS.WIDTH1 to PLS.WIDTH8, PLS.T1 to PLS.T8
Start Version	M_01-02-03-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	34A3h/3	M_01-02-03-000
Modbus	620	M_01-03-00-000

Description

PLS.MODE is a bit variable which determines the mode of an individual PLS. Eight PLSs are available in the drive.

Example

Bit Value	Behavior
Bit 0 = 0	PLS 1 is monitored continuously.
	PLS 1 is monitored until it is triggered once (sin-
Bit 0 = 1	gle-shot method). The PLS observation can be re-
	armed using the PLS.RESET command.
Bit 7 = 0	PLS 8 is monitored continuously.
	PLS 8 is monitored until it is triggered once (sin-
Bit 7 = 1	gle-shot method). The PLS observation can be re-
	armed using the PLS.RESET command.

Related Topics

PLS.P1 TO PLS.P8

General Information	
Туре	R/W Parameter
Description	Sets the trigger point for programmable limit switches.
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR
Range	N/A
Default Value	0
Data Type	Float
See Also	UNIT.PROTARY
Start Version	M_01-02-03-000

Fieldbus	Index/Subir	ndex	Object Start Version
	34A0h/1	PLS.P1	
	34A0h/2	PLS.P2	
	34A0h/3	PLS.P3	
EtherCAT COE	34A0h/4	PLS.P4	M 01-02-03-000
and CANopen	34A0h/5	PLS.P5	IVI_0 1-02-03-000
	34A0h/6	PLS.P6	
	34A0h/7	PLS.P7	
	34A0h/8	PLS.P8	
	622 (64-Bit)	PLS.P1	
	626 (64-Bit)	PLS.P2	
	630 (64-Bit)	PLS.P3	
Modbus	634 (64-Bit)	PLS.P4	M 01-03-00-000
Moubus	638 (64-Bit)	PLS.P5	IVI_0 1-03-00-000
	642 (64-Bit)	PLS.P6	
	646 (64-Bit)	PLS.P7	
	650 (64-Bit)	PLS.P8	

Description

PLS.P1 to PLS.P8 define the trigger point of the PLS. For further information about how these parameters affect PLS behavior, see the PLS.UNITS parameter description.

Related Topics

PLS.RESET

General Information	
Туре	W/O Parameter
Description	Resets programmable limit switch.
Units	N/A
Range	0 to 255
Default Value	N/A
Data Type	Integer
See Also	PLS.EN, PLS.MODE, PLS.STATE, PLS.UNITS, PLS.Px (x=18), PLS.WIDTHx (x=18), PLS.Tx (x=18)
Start Version	M_01-02-03-000

Fieldbus	Index/Subindex	Object Start Version		
EtherCAT COE and CANopen	34A3h	M_01-02-03-000		
Modbus	654	M_01-03-00-000		

Description

This parameter is a bit variable and is used in order to re-arm the corresponding PLS.STATE observation for another single-shot PLS use (see also PLS.MODE).

Example

Bit Value	Behavior		
Bit 0 = 0	The PLS 1 observation (PLS.STATE bit 0)		
Dit 0 = 0	is not re-armed.		
Bit 0 = 1	The PLS 1 observation (PLS.STATE bit 0)		
Bit 0 - 1	is re-armed.		
Bit 7 = 0	The PLS 8 observation (PLS.STATE bit 7)		
Bit 7 = 0	is not re-armed.		
Bit 7 = 1	The PLS 8 observation (PLS.STATE bit 7)		
DIL 1 - 1	is re-armed.		

Related Topics

PLS.STATE

General Information	
Туре	R/O Parameter
Description	Reads the programmable limit switch state.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	Integer
See Also	PLS.EN, PLS.RESET, PLS.UNITS, PLS.MODE, PLS.P1 TO PLS.P8,
See Also	PLS.WIDTH1 TO PLS.WIDTH8, PLS.T1 TO PLS.T8
Start Version	M_01-02-03-000

Fieldbus	Index/Subindex	Object Start Version	
EtherCAT COE	34A3h/4	M_01-02-03-000	
and CANopen	34A311/4		
Modbus	656	M_01-03-00-000	

Description

This parameter is a bit variable and displays the current status of the individual programmable limit switches.

Example

Bit 0 = 0: Programmable Limit Switch 1 (PLS 1) is not active.

Bit 0 = 1: Programmable Limit Switch 1 (PLS 1) is active.

Bit 7 = 0: Programmable Limit Switch 8 (PLS 8) is not active.

Bit 7 = 1: Programmable Limit Switch 8 (PLS 8) is not active.

Related Topics

PLS.T1 TO PLS.T8

General Information	
Туре	R/W parameter
Description	Sets programmable limit switch time
Units	ms
Range	0 to 65,536 ms
Default Value	500 ms
Data Type	Integer
See Also	PLS.EN, PLS.RESET, PLS.STATE, PLS.UNITS, PLS.MODE,
00071100	PLS.WIDTH1 TO PLS.WIDTH8, PLS.P1 TO PLS.P8
Start Version	M_01-02-03-000

Fieldbus	Index/Subi	ndex	Object Start Version
	34A2h/1	PLS.T1	
	34A2h/2	PLS.T2	
	34A2h/3	PLS.T3	
EtherCAT COE	34A2h/4	PLS.T4	M 01-02-03-000
and CANopen	34A2h/5	PLS.T5	IVI_0 1-02-03-000
	34A2h/6	PLS.T6	
	34A2h/7	PLS.T7	
	34A2h/8	PLS.T8	
	658	PLS.T1	
	660	PLS.T2	
	662	PLS.T3	
Modbus	664	PLS.T4	M 01-03-00-000
WIOUDUS	666	PLS.T5	IVI_0 1-03-00-000
	668	PLS.T6	
	670	PLS.T7	
	672	PLS.T8	

Description

These parameters define the time of the PLS pulse for time-based PLS handling.

For further information about the PLS functionality, especially the meaning of the PLS.T1 to PLS.T8 parameter, refer to the PLS.UNITS parameter.

Related Topics

PLS.UNITS

General Information	
Туре	R/W parameter
Description	Sets programmable limit switch (PLS) units.
Units	N/A
Range	0 to 255
Default Value	0
Data Type	Integer
See Also	PLS.EN, PLS.RESET, PLS.STATE, PLS.MODE, PLS.P1 TO PLS.P8PLS.WIDTH1 TO PLS.WIDTH8, PLS.T1 TO PLS.T8
Start Version	M_01-02-03-000

Fieldbus	Index/Subindex	Object Start Version	
EtherCAT COE	34A4h/0	M_01-02-03-000	
and CANopen	34A411/0		
Modbus	674	M_01-03-00-000	

Description

PLS.UNITS is a bit variable which determines the behavior of the eight PLSs available in the drive. This parameter is used to select the units for the PLS pulse.

Examples

Bit Value	Behavior			
Bit 0 = 0	The PLS.STATE parameter displays an active PLS 1 when the position is within the range of PLS.P1 + PLS.WIDTH1			
Bit 0 = 0 Position-based PLS handling.	(PLS.P1 <= PL.FB <= PLS.P1+PLS.WIDTH1).			
Position-based PLS Handling.	When the parameter PLS.WIDTH1 has been set to the value of 0, this bit will be activated as soon as PLS.FB >= PL.P1.			
Bit 0 = 1 Time-based PLS handling.	After PLS.P1 is crossed, the PLS.STATE parameter displays an active PLS 1 for a PLS.T1 ms period of time.			
	The PLS.STATE parameter displays an active PLS			
Bit 7 = 0	8 when the position is within the range of PLS.P8 + PLS.WIDTH8			
Position-based PLS handling.	(PLS.P8 <= PL.FB <= PLS.P8+PLS.WIDTH8).			
r coluon bacca i 20 manamig.	When the parameter PLS.WIDTH8 has been set to the value of 0, this bit will be activated as soon as PLS.FB >= PL.P8.			
Bit 7 = 1 Time-based PLS handling.	After PLS.P8 has been crossed. the PLS.STATE parameter displays an active PLS 8 for a PLS.T8 ms period of time.			

Continuous position-based PLS handling

PLS.P1 = 720

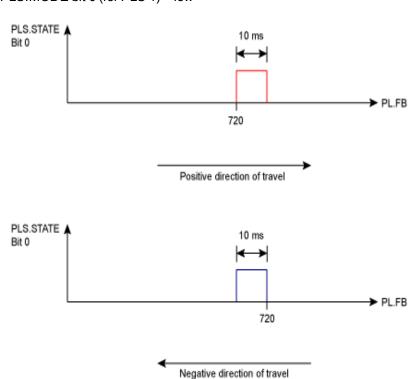
PLS.WIDTH1 = 360

PLS.UNITS bit 0 (for PLS 1) = low; PLS.T1 is not considered.

PLS.EN bit 0 (for PLS 1) = high

PLS.MODE bit 0 (for PLS 1) = low

Time-based PLS handling


PLS.P1 = 720

PLS.T1 = 10

PLS.UNITS bit 0 (for PLS 1) = low; PLS.WIDTH1 is not considered.

PLS.EN bit 0 (for PLS 1) = high

PLS.MODE bit 0 (for PLS 1) = low

Related Topics

PLS.WIDTH1 TO PLS.WIDTH8

General Information	
Туре	R/W parameter
Description	Programmable Limit Switch Width
Units	Depends on UNIT.PROTARY or UNIT.PLINEAR
Range	N/A
Default Value	0
Data Type	Float
See Also	PLS.EN, PLS.RESET, PLS.STATE, PLS.UNITS, PLS.MODE, PLS.P1 TO PLS.P8, PLS.T1 TO PLS T8
Start Version	M_01-02-03-000

Fieldbus	Index/Subindex			Object Start Version
	34A1h/1	PLS.WIDT	Ή1	
	34A1h/2	PLS.WIDT	Ή2	
	34A1h/3	PLS.WIDT	Ή3	
EtherCAT COE	34A1h/4	PLS.WIDT	Ή4	M 01-02-03-000
and CANopen	34A1h/5	PLS.WIDT	Ή5	IVI_0 1-02-03-000
	34A1h/6	PLS.WIDT	Ή6	
	34A1h/7	PLS.WIDT	Ή7	
	34A1h/8	PLS.WIDT	Ή8	
	676 (64-Bit)	PLS.WIDT	H1	
	680 (64-Bit)	PLS.WIDT	Ή2	
	684 (64-Bit)	PLS.WIDT	Н3	
Modbus	688 (64-Bit)	PLS.WIDT	Ή4	M 01-03-00-000
Wodbus	692 (64-Bit)	PLS.WIDT	Н5	IVI_U 1-U3-UU-UUU
	696 (64-Bit)	PLS.WIDT	Ή6	
	700 (64-Bit)	PLS.WIDT	Н7	
	704 (64-Bit)	PLS.WIDT	Ή8	

Description

These parameter define the width of the PLS pulse for position-based PLS handling. For further information about the PLS functionality, especially the meaning of the PLS.WIDTH1 to PLS.WIDTH8 parameter, refer to the PLS.UNITS parameter.

Related Topics

REC Parameters and Commands

REC.ACTIVE

General Information	
Туре	R/O Parameter
Description	Indicates if data recording is in progress (active).
Units	N/A
Range	0 to 1
Default Value	N/A
Data Type	Boolean
See Also	REC.DONE, REC.OFF
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	708	M_01-03-00-000

Description

REC.ACTIVE indicates whether or not data recording is in progress. Recording is in progress if the trigger was met and the recorder is recording all data.

Related Topics

REC.CH1 to REC.CH6

General Information	
Туре	R/W Parameter
Description	Sets recording channels 1 to 6.
Units	N/A
Range	N/A
	CH1 = IL.FB
	CH2 = IL.CMD
Default Value	CH3 = VL.FB
Delauit Value	CH4 = Empty
	CH5 = Empty
	CH6 = Empty
Data Type	String
See Also	REC.TRIG
Start Version	M_01-00-00-000

Description

REC.CHx specifies the recording channels.

There are 3 options to set the recording channels values:

- Set 0, CLR, or CLEAR. This setting clears the recording channel.
- Set one of the recordable commands. The list of recordable commands can be obtain by executing REC.RECPRMLIST.
- Set an internal value or variable of the drive (same as for DRV.MEMADDR input).

Related Topics

REC.DONE

General Information	
Туре	R/O Parameter
Description	Checks whether or not the recorder has finished recording.
Units	N/A
Range	0 to 1
Default Value	N/A
Data Type	Boolean
See Also	REC.ACTIVE, REC.OFF
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	710	M_01-03-00-000

Description

REC.DONE indicates that the recorder has finished recording. This value is reset to 0 when the recorder trigger is set. The drive also resets this value when the recording has finished or when REC.OFF is executed.

Related Topics

REC.GAP

General Information	
Туре	R/W Parameter
Description	Specifies the gap between consecutive samples.
Units	N/A
Range	1 to 65,535
Default Value	1
Data Type	Integer
See Also	REC.TRIG
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	712	M_01-03-00-000

Description

REC.GAP specifies the gap between consecutive samples. The recording base rate is 16 kHz, thus a gap of 1 means that a sample is recorded every $62.5 \,\mu s$.

Related Topics

REC.NUMPOINTS

General Information	
Туре	R/W Parameter
Description	Sets the number of points to record.
Units	N/A
Range	1 to 65,535
Default Value	1,000
Data Type	Integer
See Also	REC.TRIG
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	714	M_01-03-00-000

Description

REC.NUMPOINTS specifies the number of points (samples) to record.

Related Topics

REC.OFF

General Information	
Туре	R/W Parameter
Description	Turns the recorder OFF.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.ACTIVE, REC.DONE, REC.READY
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	716	M_01-03-00-000

Description

REC.OFF turns the recorder off. In order to set the recorder again, the recorder must first be armed and then a trigger set.

Related Topics

REC.RECPRMLIST

General Information	
Туре	R/O Parameter
Description	Reads the list of recordable parameters.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.CH1 to REC.CH6
Start Version	M_01-00-00-000

Description

This command returns the list of recordable parameters. You can use a recordable parameter as an input to any of the recording channels.

Note that an internal address or a registered variable can be used as input to any of the channels in addition to the list.

Related Topics

REC.RETRIEVE

General Information	
Туре	R/O Parameter
Description	Transfers all the recorded data to the communication channel.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	String
See Also	N/A
Start Version	M_01-00-00-000

Description

REC.RETRIEVE causes the drive to transfer all the recorded data to the communication channel.

Example

The following format is the retrieve reply format (for N samples, G sample gap, and M parameters, where M<=6):

```
Recording
<N>,<G>
<parameter name 1> ... <parameter name M>
Value11 ... Value1M
Value N1 ... ValueNM
```

Related Topics

REC.RETRIEVEDATA

General Information	
Туре	R/W Parameter
Description	Retrieves the recorded data without the header.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.RETRIEVE, REC.RETRIEVEHDR, REC.RETRIEVESIZE
Start Version	M_01-00-00-000

Description

REC.RETRIEVEDATA retrieves a section of recorded data according to REC.RETRIEVESIZE from the received index; if no index is received, the drive retrieves the data from next section. An index is supplied to enable multiple retrieves and to give better control on the buffer in case of overflow. If no index or a negative value is present, then the index is ignored.

WorkBench uses this parameter to retrieve the data continuously for real time recoding.

The size of the data returned by this command depends on the number set by REC.RETRIEVESIZE.

Use REC.RETRIEVE for complete recording information view.

Notes:

- If REC.RETRIEVESIZE is larger than the buffer size, then it simply returns the whole buffer (no error).
- If the index is received, the data will be continuously returned starting from the given index (default starting index is 0).
- If the index is out of the bounds of the buffer, then it will be ignored.
- If recorder is active and REC.STOPTYPE==0, then this parameter returns an error.
- If REC.STOPTYPE==1, then this parameter returns the next section of data in the buffer (even if it reached the end of the buffer, it will return to the beginning of the buffer and add the data from index 0.)
- If REC.STOPTYPE==1 and the retrieve is too slow (gets overrun by the recorder), an overflow error message is returned instead of the retrieved data.
- If REC.STOPTYPE==0 and no index is received, continuously send the sections of data until the end of the buffer is reached. Then, return to the beginning of buffer and continue.
- A new REC.TRIG command automatically sets the index to 0.

Example

The following example retrieves data from index 100 in the size of 10 (hence places 100 to 109 in the buffer)

REC.NUMPOINTS 1000
REC.RETRIVESIZE 10
REC.TRIG
REC.RETRIEVEDATA 100

Related Topics

REC.RETRIEVEFRMT

General Information	
Туре	R/W Parameter
Description	Sets the format for recorded data output.
Units	N/A
Range	0 to 1; 0 = Standard format, 1 = Internal format (high speed)
Default Value	1
Data Type	Integer
See Also	REC.RETRIEVE, REC.RETRIEVEDATA
Start Version	M_01-00-00-000

Description

Recorded data is transferred to the communication channel in one of two formats: standard or internal high speed. The standard (slower) format cannot be used for continuous recording, but is more easily read. The high speed format allows continuous data recording (needed for autotuning). WorkBench supports both formats.

Example

The following recorder data is in standard format:

```
10,1
IL.FB,VL.CMD,VL.FB
-0.086,0.000,2.661
0.000,0.000,3.605
0.029,0.000,-0.486
```

The following recorder data is in internal format:

```
10,1
IL.FB,VL.CMD,VL.FB
F3-0x56,F30x0,F30xA65
F30x0,F30x0,F30xE15
F30x1D,F30x0,F3-0x1E6
```

Related Topics

REC.RETRIEVEHDR

General Information	
Туре	R/O Parameter
Description	Retrieves the recorded header without the data.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.RETRIEVE, REC.RETRIEVEDATA
Start Version	M_01-00-00-000

Description

This command retrieves the recorded header without the data of the recording.

WorkBench uses this parameter to retrieve the header once before continuously reading the data for RT recoding. Use REC.RETRIEVE for complete recording information view.

Related Topics

REC.RETRIEVESIZE

General Information	
Туре	R/W Parameter
Description	Sets the number of samples that REC.RETRIEVEDATA returns.
Units	recorder samples
Range	0 to 65,535 recorder samples
Default Value	1,000 recorder samples
Data Type	Integer
See Also	REC.RETRIEVEDATA, REC.RETRIEVEHDR
Start Version	M_01-00-00-000

Description

This parameter sets the number of samples that REC.RETRIEVEDATA returns.

WorkBench also uses this parameter to set the number of samples returned when retrieving the data continuously for RT recoding.

Use REC.RETRIEVE for the complete recording information view.

Related Topics

REC.STOPTYPE

General Information	
Туре	R/W Parameter
Description	Sets the recorder stop type.
Units	N/A
Range	0 or 1
Default Value	0
Data Type	Integer
See Also	REC.RETRIEVEDATA, REC.RETRIEVESIZE
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	718	M_01-03-00-000

Description

This parameter sets the stop type for the recording.

0 = Recorder runs, continuously filling the recording circular buffer.

1 = Recorder fills in the buffer once.

To stop RT recording, execute REC.OFF.

Related Topics

REC.TRIG

General Information	
Туре	Command
Description	Triggers the recorder.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.RETRIEVE, REC.OFF
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	720	M_01-03-00-000

Description

REC.TRIG starts the trigger according to the trigger type defined by REC.TRIGTYPE.

REC.TRIG sets the value of REC.DONE to 0.

After calling REC.TRIG, the data that was recorded by previous recording is deleted and cannot be retrieved.

No REC parameters can be set after a call to REC.TRIG until the recorder has finished or until REC.OFF is executed.

Related Topics

REC.TRIGPARAM

General Information	
Туре	R/W Parameter
Description	Sets the parameter that triggers the recorder.
Units	N/A
Range	N/A
Default Value	IL.FB
Data Type	String
See Also	REC.TRIG
Start Version	M_01-00-00-000

Description

REC.TRIGPARAM sets the parameter on which the recorder triggers.

This parameter is only used when REC.TRIGTYPE = 2.

Input values are:

- 1. One of the set drive parameters list that can be set as a trigger. The available parameters for trigger are: PL.ERR, PL.CMD, PL.FB, VL.CMD, VL.FB, IL.CMD, and IL.FB.
- 2. Internal value or variable of the drive (same as for DRV.MEMADDR input).

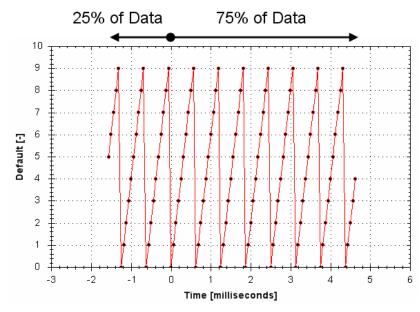
Related Topics

REC.TRIGPOS

General Information	
Туре	R/W Parameter
Description	Sets the trigger position in the recording buffer.
Units	%
Range	1 to 100%
Default Value	10%
Data Type	Integer
See Also	REC.TRIG, REC.NUMPOINTS
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	722	M_01-03-00-000

Description


REC.TRIGPOS sets the trigger position in the recording buffer. The recording buffer size is defined by REC.NU-MPOINTS. The input value is a percentage of the buffer (that is, a value of 25 means saving 25% of the buffer data before the trigger occurs and 75% after it occurs). This parameter is only used when REC.TRIGTYPE = 2 or 3.

Trigger Position

Trigger position (REC.TRIGPOS) allows you to collect data that occurs before the trigger occurs. In some instances, you may want to see the conditions prior to the trigger. Trigger position lets you control how much signal is collected before the trigger condition occurred.

Trigger position is specified in units of percent (%). If you specify a trigger position of x%, then x% of the data is before 0 ms in the data time and 100-x% (the rest of the data) is at or greater than 0 ms. In the figure below, the trigger position is set to 25% (REC.TRIGPOS 25).

In the WorkBench scope, the 0 time point is clear. When collecting the data using REC.RETRIEVE or similar commands, the time is not returned, so some caution should be used when the trigger point is important to understand.

Related Topics

REC.TRIGPRMLIST

General Information	
Туре	R/O Parameter
Description	Reads the list of possible trigger parameters.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	REC.TRIGPARAM
Start Version	M_01-00-00-000

Description

This command returns the list of trigger parameters. Each one of those parameters can serve as the trigger parameter (input to REC.TRIGPARAM).

Note that an internal address or a registered variable can be used as input to REC.TRIGPARAM in addition to the list that this parameter returns.

Related Topics

REC.TRIGSLOPE

General Information	
Туре	R/W Parameter
Description	Sets the trigger slope.
Units	0 = Negative
	1 = Positive
Range	0 to 1
Default Value	0
Data Type	Boolean
See Also	REC.TRIG, REC.NUMPOINTS
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	726	M_01-03-00-000

Description

REC.TRIGSLOPE sets the recorder trigger slope. This parameter is only used when REC.TRIGTYPE = 2 or 3.

Related Topics

REC.TRIGTYPE

General Information	
Туре	R/W Parameter
Description	Sets the trigger type.
Units	0 = immediate
	1 = command
	2 = parameter
	3 = boolean
Range	0 to 2
Default Value	0
Data Type	Integer
See Also	REC.TRIG, REC.TRIGPARAM, REC.TRIGVAL, REC.TRIGSLOPE
	REC.TRIGPOS
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	728	M_01-03-00-000

Description

REC.TRIGTYPE sets the type of trigger.

Input values are as follows:

Value	Description
0	Recording starts immediately
1	Recording starts on the next command executed through the TCP/IP. The trigger location in the buffer is set according to REC.TRIGPOS.
2	Recording starts per the values of REC.TRIGPARAM, REC.TRIGVAL, REC.TRIGSLOPE, and REC.TRIGPOS.
3	Recording starts when the value of REC.TRIGPARAM is 0 for REC.TRIG- SLOPE = 0 or 1 for REC.TRIGSLOPE = 1

Related Topics

REC.TRIGVAL

General Information	
Туре	R/W Parameter
Description	Sets the trigger value.
Units	The units of the parameter are chosen according to the unit type.
Range	0 to 2
Default Value	0
Data Type	Integer
See Also	REC.TRIG, REC.TRIGPARAM, REC.TRIGVAL, REC.TRIGSLOPE,
	REC.TRIGPOS
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	730 (64-bit)	M_01-03-00-000

Description

REC.TRIGVAL is the value that must be met by REC.TRIGPARAM for the trigger to occur. The units of this parameter are set according to the units of REC.TRIGPARAM.

Related Topics

REGEN Parameters

REGEN.POWER

General Information		
Туре	R/O parameter	
Description	Reads regen resistor's calculated power.	
Units	Watt	
Range	N/A	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3416h/0	M_01-00-00-000
Modbus	734 (64-bit)	M_01-03-00-000

Description

This parameter reads regen resistor's calculated power, which is determined as follows: $(V^2/R)^*$ DutyCycle

Related Topics

REGEN.REXT

General Information		
Туре	NV Parameter	
Description	Sets the external, user-defined regen resistor resistance.	
Units	Ω	
Range	0 to 255 Ω	
Default Value	0 Ω	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35C2h/0	M_01-00-00-000
Modbus	738	M_01-03-00-000

Description

REGEN.REXT sets the external user-defined regen resistor resistance. This variable is needed for the regen resistor temperature estimation algorithm.

Related Topics

REGEN.TEXT

General Information		
Туре	R/W Parameter	
Description	Sets the external regen resistor thermal protection time constant.	
Units	s	
Range	0.1 to 1,200 s	
Default Value	100 s	
Data Type	Float	
See Also	REGEN.WATTEXT, REGEN.REXT	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3415h/0	M_01-00-00-000
Modbus	740	M_01-03-00-000

Description

REGEN.TEXT is a thermal time constant used to protect an external regeneration (regen) resistor from overheating and failing. Its value is the time-to-fault when input power steps from 0 to 150% of REGEN.WATTEXT. The drive's regen resistor protection algorithm continuously calculates the power dissipated in the resistor and processes that power value through a single pole low pass filter to model the regen resistor's thermal inertia. When the filtered regen power on the output of the filter exceeds REGEN.WATTEXT, a fault occurs. REGEN.TEXT sets the time constant of this thermal inertia filter.

REGEN.TEXT can often be found directly on power resistor data sheets. On the data sheets, find the peak overload curve and then find the safe allowed time to be at 150% of the regen resistor's continuous power rating. Another way regen resistor peak overload capability is often specified is by giving the energy rating in joules of the resistor. If you have the energy rating E then:

REGEN.TEXT = (1.1)*((joule limit)/REGEN.WATTEXT)

Example

The external regen resistor is rated for 250 W continuous, is 33 ohm, and has a joule rating of 500 joules. To use this resistor, the drive settings become:

REGEN.TYPE = -1 (External Regen)

REGEN.REXT = 33

REGEN.WATTEXT = 250

REGEN.TEXT = (1.1)*(500 j)/(250 W) = 2.2 sec

Related Topics

REGEN.TYPE

General Information	
Туре	NV Parameter
Function	Sets the regen resistor type.
WorkBench Location (Screen/Dialog Box)	Power/Regen Resistor Type
Units	N/A
Range	–1 to 0
Default Value	0
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3412h/0	M_01-00-00-000
Modbus	742	M_01-03-00-000

Description

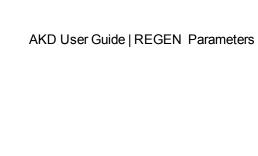
You can specify a user-defined external regen resistor, select an internal regen resistor, or choose from a list of predefined regen resistors. The values for REGEN.TYPE are shown below:

Type	Description
-1	External user-defined regen resistor
0	Internal regen resistor

If you specify a user-defined regen resistor, then you must also define this resistor's resistance (REGEN.REXT), heatup time (REGEN.REXT), and power (REGEN.WATTEXT).

Related Topics

REGEN.WATTEXT


General Information	
Туре	R/W parameter
Description	Sets the regen resistor's power fault level for an external regen resistor.
Units	W
Range	0 to 62,000 W
Default Value	1000 W
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3414h/0	M_01-00-00-000
Modbus	744	M_01-03-00-000

Description

Sets the regen resistor's power fault level for an external regen resistor (when REGEN.TYPE = -1). Above this fault level, the regen resistor's PWM wil be 0 and a fault will be issued.

Related Topics

This page intentionally left blank.

SM Parameters

SM.I1

General Information	n
Туре	R/W Parameter
Description	Sets service motion current 1; active in opmode 0 (torque) only.
Units	A
Range	-Drive peak current to +Drive peak current
Default Value	0.025 · Drive peak current
Data Type	Float
See Also	SM.ACCTYPE, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1, SM.V2, SM.VPM1, SM.VPM2
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	746	M_01-03-00-000

Description

SM.I1 defines the current that is used in service motion modes 0 and 1 (see SM.MODE).

Related Topics

SM.I2

General Information	
Туре	R/W Parameter
Description	Sets service motion current 2; active in opmode 0 (torque) only.
Units	A
Range	-Drive peak current to +Drive peak current
Default Value	0.025 · Drive peak current
Data Type	Float
See Also	SM.ACCTYPE, SM.I1, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1, SM.V2, SM.VPM1, SM.VPM2
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	748	M_01-03-00-000

Description

SM.I2 defines the current that is used in service motion mode 1 (see SM.MODE).

Related Topics

SM.MODE

General Information	
Туре	R/W Parameter
Description	Sets the service motion mode.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	Integer
See Also	SM.I1, SM.I2, SM.MOVE, SM.T1 SM.T2, SM.V1, SM.V2, DRV.ACCDRV.DEC
Start Version	M_01-01-00-000

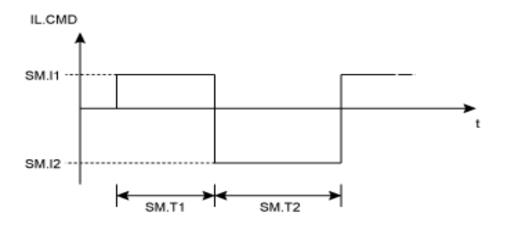
Fieldbus	Index/Subindex	Object Start Version
Modbus	750	M_01-03-00-000

Description

 $SM.MODE\ defines\ the\ mode\ of\ service\ motion\ for\ each\ loop.\ Two\ types\ of\ service\ motion\ are\ available\ :$

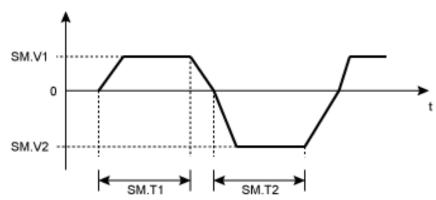
- 1. A constant motion in one direction (endless or for a certain amount of time).
- 2. An alternating motion.

The possible modes for this parameter are described in the following table:


SM.MODE	Description	Requirements
SM.MODE 0	 Constant motion in closed current loop mode of operation. DRV.OPMODE 0: The drive generates a constant current command value (SM.I1) for a certain amount of time (if SM.T1>0) or endless (if SM.T1=0). The drive will not generate any ramps in this mode of operation. DRV.OPMODE 1 or 2:	DRV.OPMODE = 0,1, or 2 DRV.CMDSOURCE = 0
	time (if SM.T1>0) or endless (if SM.T1=0).	
	DRV.STOP command.	

SM.MODE	Description	Requirements
1	 DRV.OPMODE 0: The drive generates a current command value (SM.I1) for a certain amount of time (SM.T1). Afterwards the drive generates a current command value (SM.I2) for another certain amount of time (SM.T2). This sequence is repeated as long as a DRV.STOP command occurs. The drive will not generate any ramps in this mode of operation. DRV.OPMODE 1 or 2: The drive generates a velocity command value (SM.V1) for a certain amount of time (SM.T1). Afterwards the drive generates a velocity command value (SM.V2) for another certain amount of time (SM.T2). This sequence is repeated as long as a DRV.STOP command occurs. The drive will generate an acceleration and deceleration ramps according to the DRV.ACC and DRV.DEC setting in this mode of operation. 	DRV.OPMODE = 0, 1, or 2 DRV.CMDSOURCE = 0

Ramps


The drive uses DRV.ACC and DRV.DEC for the ramps in DRV.OPMODE 1 (closed velocity) and 2 (closed position). The drive does not generate any ramps in service motion mode 0 and 1.

Service Motion for DRV.OPMODE 0 and SM.MODE 1

Service motion for DRV.OPMODE 1 or 2 and SM.MODE 1

The deceleration process from SM.V1 or SM.V2 to 0 is not included in SM.T1 and SM.T2, respectively. SM.T1 and SM.T2 start as soon as the command value has reached the velocity 0.

Related Topics

SM.MOVE

General Information	
Туре	Command
Description	Starts the service motion.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	SM.MODE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	752	M_01-03-00-000

Description

This command starts the service motion that has been selected by the SM.MODE parameter.

Related Topics

SM.T1

General Information	1
Туре	R/W Parameter
Description	Sets the service motion time 1.
Units	ms
Range	0 to 65,535 ms
Default Value	500 ms
Data Type	Integer
See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T2, SM.V1, SM.V2, SM.VPM1, SM.VPM2
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	754	M_01-03-00-000

Description

SM.T1 defines the time of the service motion that is used in all service motion modes (see SM.MODE). For an alternating service motion mode, SM.T1 may not be set to 0.

Related Topics

SM.T2

General Information	
Туре	R/W Parameter
Description	Sets the service motion time 2.
Units	ms
Range	1 to 65,535 ms
Default Value	500 ms
Data Type	Integer
See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.V1, SM.V2, SM.VPM1, SM.VPM2
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	756	M_01-03-00-000

Description

 $SM.T2\ defines\ the\ time\ of\ the\ service\ motion\ that\ is\ used\ in\ service\ motion\ modes\ 1,\ 3,\ and\ 5\ (see\ SM.MODE).$

Related Topics

SM.V1

General Information		
Туре	R/W Parameter	
Description	Sets service motion velocity 1; active in opmode 1 (velocity) and 2 (position).	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: Counts/s, mm/s, μm/s, custom units/s	
	Rotary:	
	-15,000.000 to 15,000.000 rpm	
	-250.000 to 250.000 rps	
	-90,000.000 to 90,000.000 deg/s	
	-1,250.000 to 1,250.000 custom units/s	
Range	-1,570.796 to 1,570.796 rad/s	
	Linear:	
	-1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s	
	-250.000*MOTOR.PITCH to 250.000*MOTOR.PITCH mm/s	
	-250,000.000*MOTOR.PITCH to 250,000.000*MOTOR.PITCH μm/s	
	-1,250.000 to 1,250.000 custom units/s	
	Rotary:	
	60.000 rpm	
	1.000 rps	
	359.999 deg/s	
	5.000 custom units/s	
Default Value	6.283 rad/s	
	Linear:	
	0.001 Counts/s	
	1.000*MOTOR.PITCH mm/s	
	999.998*MOTOR.PITCH µm/sec	
	5.000 custom units/s	
Data Type	Float	
See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V2	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	758	M_01-03-00-000

Description

SM.V1 defines the velocity that is used in service motion modes 0 and 1 (see SM.MODE) in the closed velocity and position mode of operation.

Related Topics

SM.V2

General Information	on a second control of the second control of	
Туре	R/W Parameter	
Description	Sets service motion velocity 2; active in opmode 1 (velocity) and 2 (position).	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, μm/s, custom units/s	
	Rotary:	
	-15,000.000 to 15,000.000 rpm	
	-250.000 to 250.000 rps	
	-90,000.000 to 90,000.000 deg/s	
	-1,250.000 to 1,250.000 custom units/s	
Range	-1,570.796 to 1,570.796 rad/s	
	Linear:	
	-1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s	
	-250.000*MOTOR.PITCH to 250.000*MOTOR.PITCH mm/s	
	-250,000.000*MOTOR.PITCH to 250,000.000*MOTOR.PITCH μm/s	
	-1,250.000 to 1,250.000 custom units/s	
	Rotary:	
	-60.000 rpm	
	-1.000 rps	
	-359.999 deg/s	
	-5.000 custom units/s	
Default Value	-6.283 rad/s	
	Linear:	
	-0.001 counts/s	
	-1.000*MOTOR.PITCH mm/s	
	-999.998*MOTOR.PITCH μm/sec	
	-5.000 custom units/s	
Data Type	Float	
See Also	SM.I1, SM.I2, SM.MODE, SM.MOVE, SM.T1, SM.T2, SM.V1	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	760	M_01-03-00-000

Description

SM.V2 defines the velocity that is used in service motion mode 1 (see SM.MODE) in the closed velocity and position mode of operation.

Related Topics

STO Parameters

STO.STATE

General Information	
Туре	R/O Parameter
Description	Returns the status of the safe torque off.
Units	N/A
Range	0 to 1
Default Value	N/A
Data Type	Integer
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	762	M_01-03-00-000

Description

STO.STATE returns the status of the safe torque off.

- 1 Safe torque on (no safe torque off fault).
- 0 Safe torque off (safe torque off fault).

Related Topics

10.7.5 Limits

10.13 Safe Torque Off (STO)

SWLS Parameters

SWLS.EN

General Information	
Туре	NV Parameter
Description	Enables and disables software travel limit switches.
Units	N/A
Range	0 to 3
Default Value	0
Data Type	U8
See Also	DRV.MOTIONSTAT
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	764	M_01-03-00-000

Description

This parameter enables the software travel limit switches. The software limit switches are only active if the axis is homed.

Example

Bit 0 = 0: Disable SWLS.LIMIT0

Bit 0 = 1: Enable SWLS.LIMIT0

Bit 1 = 0: Disable SWLS.LIMIT1

Bit 1 = 1: Enable SWLS.LIMIT1

Related Topics

10.7.5 Limits

12.1 Homing

SWLS.LIMIT0

General Information	
Туре	NV Parameter
Description	Sets the position of the software travel limit switch 0.
Units	Position units
Range	-9,007,199,254,740,992 to 9,007,199,254,740,991
Default Value	0
Data Type	S64
See Also	UNIT.PROTARY, UNIT.PLINEAR
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	Profile specific SDOs/1	M_01-00-00-000
Modbus	766 (64-bit)	M_01-03-00-000

Description

This parameter sets the compare register for the software limit switch 0. This value can be either the lower or the upper software limit switch register, depending on the configuration of the software limit switches. Whichever switch is set largest is the positive limit switch; the other switch becomes the negative limit switch. These switches can be used in addition to hardware limit switches. The software limit switches are only active if the axis is homed. For more information about homing, please refer to the HOME Parameters and DRV.M-OTIONSTAT.

Related Topics

10.7.5 Limits

12.1 Homing

SWLS.LIMIT1

General Information	
Туре	NV Parameter
Description	Sets the position of the software travel limit switch 0.
Units	Position units
Range	-9,007,199,254,740,992 to 9,007,199,254,740,991
Default Value	1,048,576.000 counts, 16-bit (firmware versions M_01-02-00-000 and above) 68,719,476,736 counts (for firmware version M_01-01-00-000)
Data Type	S64
See Also	UNIT.PROTARY, UNIT.PLINEAR
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	Profile specific SDOs/2	M_01-00-00-000
Modbus	770 (64-bit)	M_01-03-00-000

Description

This parameter sets the compare register for the software limit switch 1. This value can be either the lower or the upper software limit switch register, depending on the configuration of the software limit switches. Whichever switch is set largest is the positive limit switch; the other switch becomes the negative limit switch. These switches can be used in addition to hardware limit switches. The software limit switches are only active if the axis is homed. For more information about homing, please refer to the HOME Parameters and DRV.MOTIONSTAT.

Related Topics

10.7.5 Limits

12.1 Homing

SWLS.STATE

General Information	
Туре	R/O Parameter
Description	Reads the actual status of software limit switches.
Units	N/A
Range	0 to 3
Default Value	0
Data Type	U8
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	774	M_01-03-00-000

Description

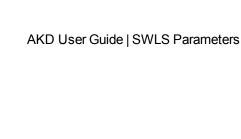
This parameter reads the status word of the software limit switches. The status word indicates the result of the compare between the software limit switch compare register and the actual position of the position loop.

Example

Bit 0 = 0: SWLS.LIMIT0 is not active.

Bit 0 = 1: SWLS.LIMIT0 is active.

Bit 1 = 0: SWLS.LIMIT1 is not active.


Bit 1 = 1: SWLS.LIMIT1 is active.

Bits 2 to 7 are currently not in use.

Related Topics

10.7.5 Limits

12.1 Homing

This page intentionally left blank.

UNIT Parameters

UNIT.ACCLINEAR

General Information	on	
Туре	NV Parameter	
Description	Sets the linear acceleration/deceleration units.	
Units	N/A	
Range	0 to 3	
Default Value	0	
Data Type	Integer	
See Also	DRV.ACC, DRV.DEC, MOTOR.TYPE	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	776	M_01-03-00-000

Description

 ${\tt UNIT.ACCLINEAR}\ sets\ the\ units\ type\ for\ the\ acceleration\ and\ deceleration\ parameters,\ when\ the\ motor\ type\ ({\tt MOTOR.TYPE})\ is\ linear.$

Type	Description
0	[custom units]/s ²
1	millimeters per second squared (mm/s ²)
2	micrometers per second squared (μm/s ²)
3	Feedback counts/s ²

Related Topics

UNIT.ACCROTARY

General Information	
Туре	NV Parameter
Description	Sets the rotary acceleration/deceleration units.
Units	rpm/s, rps/s, deg/s ² , [custom units]/s ²
Range	0 to 3 rpm/s
Default Value	0 rpm/s
Data Type	Integer
See Also	DRV.ACC, "DRV.DEC" (=> p. 369), MOTOR.TYPE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3659h/0	M_01-00-00-000
Modbus	778	M_01-03-00-000

Description

 ${\tt UNIT.ACCROTARY\ sets\ the\ acceleration/deceleration\ units\ when\ the\ motor\ type\ (MOTOR.TYPE)\ is\ rotary.}$

Type	Description
0	rpm/s
1	rps/s
2	deg/s ²
3	(custom units)/s ²

Related Topics

UNIT.LABEL

General Information	
Туре	NV Parameter
Description	Sets user-defined name for user-defined position units.
Units	N/A
Range	Maximum 16 characters, no spaces
Default Value	custom units
Data Type	String
See Also	UNIT.PLINEAR, UNIT.POUT
Start Version	M_01-00-00-000

Description

If you define a special position unit with UNIT.PLINEAR and UNIT.POUT, then you can give this unit a descriptive name. You can name the unit anything you wish, as long as the name is limited to 16 characters and includes no spaces. The label used for velocity and acceleration are in terms of this descriptive name.

This parameter is descriptive only and does not influence drive internal functions in any way.

Related Topics

UNIT.PIN

General Information		
Туре	NV Parameter	
Description	Sets gear IN for the unit conversion.	
Units	User units	
Range	0 to 4,294,967,295	
Default Value	100	
Data Type	Integer	
See Also	UNIT.POUT	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35CAh/0 Profile specific SDOs/1	M_01-00-00-000
Modbus	780	M_01-03-00-000

Description

UNIT.PIN is used in conjunction with UNIT.POUT to set application specific units. This parameter is used as follows in the drive unit conversion:

- For position, this parameter sets the units as [custom units]/rev.
- For velocity, this parameter sets the units as [custom units]/s.
- For acceleration/deceleration, this parameter sets the units as [custom units]/s².

Related Topics

UNIT.PLINEAR

General Information		
Туре	NV Parameter	
Description	Sets the linear position units.	
Units	N/A	
Range	0 to 4	
Default Value	0	
Data Type	Integer	
See Also	PL.FB, PL.CMD, MOTOR.TYPE	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	782	M_01-03-00-000

Description

UNIT.PLINEAR sets the units type for the position parameters when the motor type (MOTOR.TYPE) is linear.

Type	Description
0	32-bit counts
1	Millimeters (mm)
2	Micrometers (µm)
3	(PLINEAR/POUT) per revolution
4	16-bit counts

Related Topics

UNIT.POUT

General Information	
Туре	NV Parameter
Description	Sets gear out for the unit conversion.
Units	User units.
Range	0 to 4,294,967,295
Default Value	20
Data Type	Integer
See Also	UNIT.PLINEAR
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	35CBh/0 Profile specific SDOs/2	M_01-00-00-000
Modbus	784	M_01-03-00-000

Description

UNIT.POUT is used in conjunction with UNIT.PLINEAR to set application specific units in UNIT.POUT. This parameter is used as follows in the drive unit conversion:

- For position, this parameter sets the units as [custom units]/rev.
- For velocity, this parameter sets the units as [custom units]/s.
- For acceleration/deceleration, this parameter sets the units as [custom units]/s².

Related Topics

UNIT.PROTARY

General Informatio	n
Туре	NV Parameter
Description	Sets the position units when the motor type (MOTOR.TYPE) is rotary.
Units	counts, rad, deg, custom units, 16-bit counts
Range	0 to 4
Default Value	4 16-bit counts (for firmware versions M_01-02-00-000 and above)
	0 counts (for firmware version M_01-01-00-000)
Data Type	Integer
See Also	PL.FB, PL.CMD, MOTOR.TYPE
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3660h/0	M_01-00-00-000
Modbus	786	M_01-03-00-000

Description

UNIT.PROTARY sets the position units when the motor type (MOTOR.TYPE) is rotary.

Value	Units
0	counts
1	radians
2	degrees
3	custom units
4	16-bit counts

Related Topics

UNIT.VLINEAR

General Information		
Туре	NV Parameter	
Description	Sets the linear velocity units.	
Units	N/A	
Range	0 to 3	
Default Value	0	
Data Type	Integer	
See Also	VL.FB, VL.CMDU, VL.CMD, MOTOR.TYPE	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	788	M_01-03-00-000

Description

UNIT.VLINEAR sets the units type for the velocity parameters when the motor type (MOTOR.TYPE) is linear.

Type	Description
0	(custom units) per second
1	Micrometers per second
2	Millimeters per second
3	Counts per second

Related Topics

UNIT.VROTARY

General Information	
Туре	NV Parameter
Description	Sets the velocity units when the motor type (MOTOR.TYPE) is rotary.
Units	rpm, rps, deg/s, (custom units)/s
Range	0 to 3
Default Value	0 rpm
Data Type	Integer
See Also	VL.FB, VL.CMDU, VL.CMD, MOTOR.TYPE
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	365Fh/0	M_01-00-00-000
Modbus	790	M_01-03-00-000

Description

 ${\tt UNIT.VROTARY\ sets\ the\ velocity\ units\ when\ the\ motor\ type\ (MOTOR.TYPE)\ is\ rotary.}$

Value	Units
0	rpm
1	rps
2	deg/s
3	(custom units)/s

Related Topics

VBUS Parameters

VBUS.OVFTHRESH

General Information		
Туре	R/O Parameter	
Description	Reads the over voltage fault level.	
Units	Vdc	
Range	0 to 900 Vdc	
Default Value	N/A	
Data Type	Integer	
See Also	VBUS.UVFTHRESH	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	794	M_01-03-00-000

Description

VBUS.OVFTHRESH reads the over voltage fault level for the DC bus.

This value is read from the drive EEPROM and varies according to the drive type.

Related Topics

VBUS.OVWTHRESH

General Information		
Туре	NV Parameter	
Description	Sets voltage level for over voltage warning.	
Units	Vdc	
Range	0 to 900 Vdc	
Default Value	0 Vdc (warning disabled)	
Data Type	U16	
See Also	N/A	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	796	M_01-03-00-000

Description

If VBUS.VALUE value exceds VBUS.OVWTHRESH, then a warning is generated.

Related Topics

VBUS.RMSLIMIT

General Information		
Туре	R/O Parameter	
Description	Reads the limit for the bus capacitors load.	
Units	Vrms	
Range	N/A	
Default Value	N/A	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	798	M_01-03-00-000

Description

This parameter reads the limit of the bus capacitor load. When the bus capacitor loads exceeds this limit, the drive generates fault F503.

Excessive bus capacitor load may indicate a disconnected main supply phase.

Related Topics

VBUS.UVFTHRESH

General Information	
Туре	R/W Parameter
Description	Sets the under voltage fault level.
Units	Vdc
Range	90 to 420 Vdc
Default Value	90 Vdc
Data Type	Integer
See Also	VBUS.OVFTHRESH
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	800	M_01-03-00-000

Description

VBUS.UVFTHRESH sets the undervoltage fault level of the DC bus.

The default value is read from the EEPROM, but can by modified by the user and stored on the NV RAM. This value varies according to drive type.

Related Topics

VBUS.UVMODE

General Information		
Туре	N/V Parameter	
Description	Indicates undervoltage (UV) mode.	
Units	N/A	
Range	0 to 1	
Default Value	1	
Data Type	Boolean	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	802	M_01-03-00-000

Description

This parameter indicates undervoltage (UV) mode.

When VBUS.UVMODE - 0, an undervoltage fault is issued whenever the DC bus goes below the undervoltage threshold.

When VBUS.UVMODE = 1, an undervoltage fault is issued whenever the DC bus goes below the under voltage threshold and the controller attempts to enable the drive (software or hardware enable).

Related Topics

VBUS.UVWTHRESH

General Information	
Туре	NV Parameter
Description	Sets voltage level for undervoltage warning.
Units	Vdc
Range	0 to 900 Vdc
Default Value	10 volts above the default value of the under voltage fault threshold (VBUS.UVFTHRESH). The default value of VBUS.UVFTHRESH is hardware dependent.
Data Type	U16
See Also	VBUS.UVFTHRESH
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	804	M_01-03-00-000

Description

If VBUS.VALUE value drops below VBUS.UVWTHRESH, then a warning is generated.

Related Topics

7.2 Regeneration

VBUS.VALUE

General Information	General Information			
Туре	R/O Parameter			
Description	Reads DC bus voltage.			
Units	Vdc			
Range	0 to 900 Vdc			
Default Value	N/A			
Data Type	Float			
See Also	N/A			
Start Version	M_01-00-00-000			

Fieldbus	Index/Subindex	Object Start Version	
EtherCAT COE and CANopen	361Ah/0	M_01-00-00-000	
Modbus	806	M_01-03-00-000	

Description

VBUS.VALUE reads the DC bus voltage.

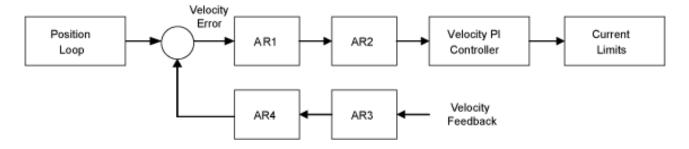
Related Topics

- 7.2 Regeneration
- 7.2 Regeneration

VL Parameters

VL.ARPF1 TO VL.ARPF4

General Information	
Туре	R/W Parameter
Description	Sets the natural frequency of the pole (denominator) of anti-resonance (AR) filters 1, 2, 3, and 4; active in opmodes 1 (velocity) and 2 (position) only.
Units	Hz
Range	5 to 5,000 Hz
Default Value	500 Hz
Data Type	Float
See Also	VL.ARPQ1 TO VL.ARPQ4, VL.ARZF1 TO VL.ARZF4, Sets the Q of the zero (numerator) of anti-resonance filter #1; active in opmodes 1 (velocity) and 2 (position) only.
Start Version	M_01-02-00-000


Fieldbus	Index/Su	bindex	Object Start Version
	3406h/1	VL.ARPF1	
EtherCAT COE	3406h/2	VL.ARPF2	
and CANopen	3406h/3	VL.ARPF3	WI_0 1-02-00-000
	3406h/4	VL.ARPF4	
	808	VL.ARPF1	
Modbus	810	VL.ARPF2	
Woubus	812	VL.ARPF3	IVI_0 1-03-00-000
	814	VL.ARPF4	

Description

VL.ARPF1 sets the natural frequency of the pole (denominator) of AR filter 1. This value is F_p in the approximate transfer function of the filter:

$$\mathsf{ARx}(\mathbf{s}) = [\mathbf{s}^2/(2\pi\mathsf{F}_Z)^2 + \mathbf{s}/(\mathsf{Q}_Z 2\pi\mathsf{F}_Z) + 1]/[\mathbf{s}^2/(2\pi\mathsf{F}_\mathsf{P})^2 + \mathbf{s}/(\mathsf{Q}_\mathsf{P} 2\pi\mathsf{F}_\mathsf{P}) + 1]$$

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

AR1, AR2, AR3, and AR4 are used in velocity and position mode, but are disabled in torque mode.

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

$$\mathbf{s} \approx (1-z^{-1})/t$$
, where $t = 62.5 \,\mu\text{s}$

The poles are prewarped to ${\rm F_p}$ and the zeros are prewarped to ${\rm F_Z}.$

Related Topics

VL.ARPQ1 TO VL.ARPQ4

General Information	
Туре	R/W Parameter
Description	Sets the Q of the pole (denominator) of anti-resonance (AR) filter 1; active in opmodes 1 (velocity) and 2 (position) only.
Units	None
Range	0.2 to 20
Default Value	0.5
Data Type	Float
See Also	VL.ARPF1 TO VL.ARPF4, VL.ARZF1 TO VL.ARZF4, VL.ARZQ1 TO VL.ARZQ4
Start Version	M_01-02-00-000

Fieldbus	Index/S	ubindex	Object Start Version
	3406h/5	VL.ARPQ1	
EtherCAT COE	3406h/6	VL.ARPQ2	M 01-02-00-000
and CANopen	3406h/7	VL.ARPQ3	IVI_0 1-02-00-000
	3406h/8	VL.ARPQ4	
	816	VL.ARPQ1	
Modbus	818	VL.ARPQ2	M 01-03-00-000
Woubus	820	VL.ARPQ3	IVI_0 1-03-00-000
	822	VL.ARPQ4	

Description

VL.ARPQ1 sets the Q (quality factor) of the pole (denominator) of AR filter 1. This value is Q_p in the approximate transfer function of the filter:

$$\mathsf{ARx}(\mathbf{s}) = [\mathbf{s}^2/(2\pi\mathsf{F}_Z)^2 + \mathbf{s}/(\mathsf{Q}_Z 2\pi\mathsf{F}_Z) + 1]/\left[\mathbf{s}^2/(2\pi\mathsf{F}_P)^2 + \mathbf{s}/(\mathsf{Q}_P 2\pi\mathsf{F}_P) + 1\right]$$

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

AR1, AR2, AR3, and AR4 are used in velocity and position mode, but are disabled in torque mode.

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

$$\mathbf{s} \approx (1-z^{-1})/t$$
, where $t = 62.5 \,\mu\text{s}$

The poles are prewarped to F_p and the zeros are prewarped to F_7 .

Related Topics

VL.ARTYPE1 TO VL.ARTYPE4

General Information	
Туре	NV Parameter
Description	Indicates the method used to calculate BiQuad coefficients; active in opmodes 1 (velocity) and 2 (position) only.
Units	N/A
Range	0
Default Value	0
Data Type	U8
See Also	N/A
Start Version	M_01-00-00-000

Fieldbus	Index/Su	ubindex	Object Start Version
EtherCAT COE and CANopen	3405h/1 3405h/2 3405h/3 3405h/4	RTYPE2 VL.A- RTYPE3	M_01-00-00-000
Modbus	824 826 828 830	VL.ARTYPE1 VL.ARTYPE2 VL.ARTYPE3 VL.ARTYPE4	IM 01-03-00-000

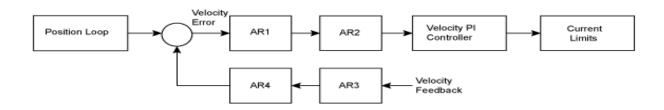
Description

These parameters indicate the method used to calculate the biquad coefficients VL.ARPFx, VL.ARPQx, VL.ARZFx, and VL.ARZQx. A value of 0 indicates that the coefficients are set directly. This parameter has no effect on the filter itself, but is only used to determine the original design parameters. Currently, only the value of 0 is supported.

Related Topics

VL.ARZF1 TO VL.ARZF4

General Information	
Туре	R/W Parameter
Description	Sets the natural frequency of the zero (numerator) of anti-resonance (AR)filter 1; active in opmodes 1 (velocity) and 2 (position) only.
Units	Hz
Range	5 to 5,000 Hz
Default Value	500 Hz
Data Type	Float
See Also	VL.ARPF1 TO VL.ARPF4,VL.ARPQ1 TO VL.ARPQ4, VL.ARZQ1 TO VL.ARZQ4
Start Version	M_01-02-00-000


Fieldbus	Index/Su	bindex	Object Start Version
	3406h/9	VL.ARZF1	
EtherCAT COE	3406h/A	VL.ARZF2	M 01-02-00-000
and CANopen	3406h/B	VL.ARZF3	IVI_0 1-02-00-000
	3406h/C	VL.ARZF4	
	832	VL.ARZF1	
Modbus	834	VL.ARZF2	INT 04 09 00 000
Woubus	836	VL.ARZF3	NI_0 1-03-00-000
	838	VL.ARZF4	

Description

VL.ARZF1 sets the natural frequency of the zero (numerator) of AR filter 1. This value is F_Z in the approximate transfer function of the filter:

$$\mathsf{ARx}(\mathbf{s}) = [\mathbf{s}^2/(2\pi\mathsf{F}_Z)^2 + \mathbf{s}/(\mathsf{Q}_Z 2\pi\mathsf{F}_Z) + 1]/[\mathbf{s}^2/(2\pi\mathsf{F}_P)^2 + \mathbf{s}/(\mathsf{Q}_P 2\pi\mathsf{F}_P) + 1]$$

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

AR1, AR2, AR3, and AR4 are used in velocity and position mode, but are disabled in torque mode.

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

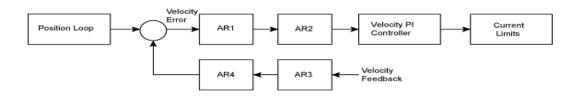
$$s \approx (1-z^{-1})/t$$
, where $t = 62.5 \,\mu s$

The poles are prewarped to $\mathbf{F}_{\mathbf{P}}$ and the zeros are prewarped to $\mathbf{F}_{\mathbf{Z}}$.

Related Topics

VL.ARZQ1 TO VL.ARZQ4

General Information	
Туре	R/W Parameter
Description	Sets the Q of the zero (numerator) of anti-resonance filter #1; active in opmodes 1 (velocity) and 2 (position) only.
Units	N/A
Range	0.1 to 5
Default Value	0.5
Data Type	Float
See Also	VL.ARPF1 TO VL.ARPF4, VL.ARPQ1 TO VL.ARPQ4, VL.ARZF1 TO VL.ARZF4
Start Version	M_01-02-00-000


Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3406h VL.ARZQ1 3406h/E VL.ARZQ2 3406h VL.ARZQ3 3406h/10 VL.ARZQ4	M_01-02-00-000
Modbus	832 VL.ARZQ1834 VL.ARZQ2836 VL.ARZQ3838 VL.ARZQ4	M_01-03-00-000

Description

VL.ARZQ1 sets the Q (quality factor) of the zero (numerator) of AR filter 1. This value is Q_Z in the approximate transfer function of the filter:

$$\mathsf{AR1}(\mathbf{s}) = [\mathbf{s}^2/(2\pi\mathsf{F}_Z)^2 + \mathbf{s}/(\mathsf{Q}_Z^2\pi\mathsf{F}_Z) + 1]/[\mathbf{s}^2/(2\pi\mathsf{F}_P)^2 + \mathbf{s}/(\mathsf{Q}_P^2\pi\mathsf{F}_P) + 1]$$

The following block diagram describes the AR filter function; note that AR1 and AR2 are in the forward path, while AR3 and AR4 are applied to feedback:

AR1, AR2, AR3 and AR4 are used in velocity and position mode, but are disabled in torque mode.

Discrete time transfer function (applies to all AR filters)

The velocity loop compensation is actually implemented as a digital discrete time system function on the DSP. The continuous time transfer function is converted to the discrete time domain by a backward Euler mapping:

$$\mathbf{s} \approx (1-z^{-1})/t$$
, where $t = 62.5 \,\mu s$.

The poles are prewarped to F_p and the zeros are prewarped to F_7 .

Related Topics

VL.BUSFF

General Information		
Туре	R/O Parameter	
Description	Displays the velocity loop feedforward value injected by the field-bus; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	0.0 to VL.LIMITP	
Default Value	0.0	
Data Type	Float	
See Also	VL.FF, VL.KBUSFF	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	60B1h/0	M 01-00-00-000
and CANopen	000 1170	W_01-00-00-000
Modbus	848	M_01-03-00-000

Description

This parameter displays the velocity loop feedforward value injected by the fieldbus.

Related Topics

VL.CMD

General Information		
Туре	R/O Parameter	
Description	Reads the actual velocity command; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.FB, VL.CMDU, VL.LIMITP, VL.LIMITN	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	606Bh/0	M_01-00-00-000
Modbus	850	M_01-03-00-000

Description

VL.CMD returns the actual velocity command as it is received in the velocity loop entry after all velocity limits (such as VL.LIMITN and VL.LIMITP). See velocity loop design diagram for more details.

Related Topics

10.4 Analog Input

11.4 Velocity Loop

11.5 Position Loop

Block Diagrams

VL.CMDU

General Information	
Туре	R/W Parameter
Description	Sets the user velocity command; active in opmodes 1 (velocity) and 2 (position) only.
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR
llmita	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s
	Linear: counts/s, mm/s, μm/s, custom units/s
	Rotary
	-15,000.000 to 15,000.000 rpm
	-250.000 to 250.000 rps
	-90000.000 to 90000.000 deg/s
	-1250.000 to 1250.000 custom units/s
Range	-1570.796 to 1570.796 rad/s
	Linear
	-1,073,741,824,000.000 to 1,073,741,824,000.000 counts/s
	-8,000.000 to 8,000.000 mm/s
	-8,000,000.000 to 8,000,000.000 μm/s
	-1,250.000 to 1,250.000 custom units/s
Default Value	0
Data Type	Float
See Also	VL.FB, VL.CMD, DRV.OPMODE, DRV.CMDSOURCE, VL.LIMITN,
	VL.LIMITP
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	Profile specific SDOs/0	M_01-00-00-000
Modbus	852	M_01-03-00-000

Description

VL.CMDU sets the user velocity command.

When DRV.OPMODE is set to 1 (velocity loop) and DRV.CMDSOURCE is set to 0 (TCP/IP channel), then setting this value when the drive is enabled will cause the drive to rotate at the required velocity.

Related Topics

VL.ERR

General Information	
Туре	R/O Parameter
Description	Sets the velocity error; active in opmodes 1 (velocity) and 2 (position) only.
	Depends on UNIT.VROTARY or UNIT.VLINEAR
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s
	Linear: counts/s, mm/s, µm/s, (custom units)/s
Range	N/A
Default Value	N/A
Data Type	Float
See Also	VL.CMD, VL.FB
Start Version	M_01-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3407h/4	M_01-00-00-000
Modbus	854	M_01-03-00-000

Description

 $VL. ERR\, sets\, the\, velocity\, error.\, It\, is\, calculated\, in\, the\, velocity\, loop\, as\, the\, difference\, between\, VL. CMD\, and\, VL. FB.\, difference\, between\, VL. CMD\, and\, VL.$

Related Topics

VL.FB

General Information		
Туре	R/O Parameter	
Description	Reads the velocity feedback; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.CMDU	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3618h/0	M 01-00-00-000
and CANopen	606Ch/0	IVI_01-00-00-000
Modbus	856	M_01-03-00-000

Description

 $VL. FB\ returns\ the\ velocity\ feedback\ as\ it\ is\ received\ in\ the\ velocity\ loop,\ after\ passing\ through\ Filter\ 3\ and\ Filter\ 4.$

Related Topics

VL.FBFILTER

General Information		
Туре	R/O Parameter	
Description	Filters VL.FB value; active in opmodes 1 (velocity) and 2 (position) only.	
Depends on UNIT.VROTARY or UNIT.VLINEAR		
Units Rotary: rpm, rps, deg/s, (custom units)/s, rad/s		
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.FB	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3407h/1	M_01-00-00-000
Modbus	858	M_01-03-00-000

Description

This parameter returns the same value as VL.FB, filtered through a 10 Hz filter.

Related Topics

VL.FBSOURCE

General Information	n	
Туре	NV Parameter	
Description	Sets feedback source for the velocity loop; active in opmodes 1 (velocity) and 2 (position) only.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Boolean	
See Also	PL.FBSOURCE	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	860	M_01-03-00-000

Description

This parameter determines the feedback source to be used by the velocity loop. A value of 0 selects the primary feedback, 1 selects the secondary feedback.

Related Topics

VL.FBUNFILTERED

General Information		
Туре	R/O Parameter	
Description	Reads the velocity feedback.	
	Depends on UNIT.VROTARY or UNIT.VLINEAR, UNIT.ACCLINEAR	
Units Rotary: rpm, rps, deg/s, (custom units)/s, rad/s		
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.FB, VL.FBFILTER	
Start Version	M_01-03-06-000	

Description

VL.FBUNFILTERED reads the raw velocity feedback before any filters affect the value of this feedback.

Related Topics

Velocity Loop

VL.FF

General Information	n	
Туре	R/O Parameter	
Description	Displays the velocity loop overall feedforward value; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.ACCROTARY or UNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	0 to VL.LIMITP	
Default Value	0	
Data Type	Float	
See Also	VL.KBUSFF, VL.KVFF, VL.ACCFFGAIN	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	862	M_01-03-00-000

Description

This parameter displays the velocity loop overall feedforward value.

Related Topics

VL.GENMODE

General Information		
Туре	NV Parameter	
Description	Selects mode of velocity generation (Observer, d/dt); active in opmodes 1 (velocity) and 2 (position) only.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	864	M_01-03-00-000

Description

This parameter is used to select the velocity generator mode.

Mode	Description	
0	d/dt mode: The derivative of the mechanical angle of the drive is fed to a first order low pass.	
1	Luenberger Observer mode	

Related Topics

VL.KBUSFF

General Information		
Туре	R/W Parameter	
Description	Sets the velocity loop acceleration feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.	
Units	NA	
Range	0.0 to 2.0	
Default Value	0.0	
Data Type	Float	
See Also	VL.BUSFF	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3416h	M_01-00-00-000
Modbus	866	M_01-03-00-000

Description

This parameter sets the gain for the acceleration feedforward (a scaled second derivative of the position command is added to the velocity command value).

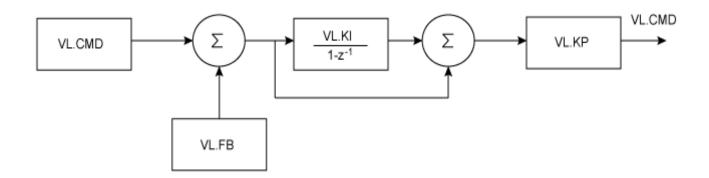
The nominal feedforward value can be multiplied by this gain value.

This will have affect only when using position mode (DRV.OPMODE = 2).

Related Topics

VL.KI

General Information	1	
Туре	NV Parameter	
Description	Sets the velocity loop integral gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.	
Units	Hz	
Range	0 to 1,000 Hz	
Default Value	160 Hz	
Data Type	Float	
See Also	VL.KP	
Start Version	M_01-00-000	


Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	354Dh/0	M 01-00-00-000
and CANopen	33401/0	IVI_0 1-00-00-000
Modbus	868	M_01-03-00-000

Description

VL.KI sets the integral gain of the velocity loop.

A factor of 2π is included in the time calculation, therefore a PI velocity loop with a constant error of 1 rps in which VL.KI is set to 160 and VL.KP is set to 1, will take $(1000/160)^*2\pi$ ms to increase the integral gain to 1. Therefore, the total gain is 2 at this time (see velocity loop structure below).

Velocity Loop Structure

Related Topics

VL.KO

General Information		
Туре	R/W Parameter	
Description	Scales the observer velocity signal; active in opmodes 1 (velocity) and 2 (position) only.	
Units	Internal	
Range	0 to 65,535	
Default Value	0	
Data Type	Float	
See Also	VL.MODEL VL.MODEL	
Start Version	M_01-00-01-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	870	M_01-03-00-000

Description

VL.KO is used to scale the observer model to match the load. When VL.KO is tuned properly, Reads the observer velocity signal; active in opmodes 1 (velocity) and 2 (position) only. will match VL.FB, except when there is an unspecified offset between the two.

Related Topics

VL.KP

General Information		
Туре	NV Parameter	
Description	Sets velocity loop proportional gain for the PI controller; active in opmodes 1 (velocity) and 2 (position) only.	
Units	A/(rad/sec)	
Range	0.001 to 2,147,483.008	
Default Value	1	
Data Type	Float	
See Also	VL.KI	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3548h/0	M 01-00-00-000
and CANopen	30401//0	IVI_0 1-00-00-000
Modbus	872	M_01-03-00-000

Description

VL.KP sets the proportional gain of the velocity loop.

The idealized velocity loop bandwidth in Hz is:

Rotary motor:

Bandwidth (Hz) = VL.KP $*K_f/(2\pi *J_m)$

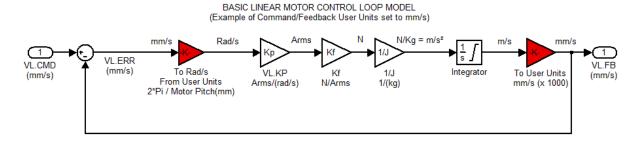
Where:

 K_t = motor torque constant, in units of Nm/Arms

 J_{m} = motor inertia, in units of kg*m²

Linear motor:

Bandwidth (Hz) = VL.KP * K_t / (Motor Pitch (mm) * J_m)


Where:

K_t= motor torque constant, in units of Nm/Arms

 J_{m} = motor inertia, in units of kg

The drive uses the same control loop for both linear and rotary motors. VL.KP units are in Arms /(rad/s). If you want to tune in units of Arms/(mm/s), then you must manually convert the units.

The diagram below shows how linear motors are implemented at the control loop level.

The red blocks are automatically handled at the drive level.

 2π radians is the linear equivalent of one full mechanical revolution of a rotary motor - and is equal to the MOTOR.PITCH of a linear motor.

Example

To convert VL.KP = 0.320 Arms/(rad/s) to Arms/(mm/s), where MOTOR.PITCH is 32 mm:

VL.KP = $0.320 \text{ Arm /rad/s} * (2\pi \text{ rad / } 32\text{mm MOTOR.PITCH})$

 $VL.KP = 0.32 * 2\pi / 32 = 0.063 Arms / (mm/s)$

Related Topics

Velocity Controller Environment Block Diagram

VL.KVFF

General Information		
Туре	R/W Parameter	
Description	Sets the velocity loop velocity feedforward gain value; active in opmodes 1 (velocity) and 2 (position) only.	
Units	NA	
Range	0.0 to 2.0	
Default Value	0.0	
Data Type	Float	
See Also	VL.FF	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE	3407h	M 01-00-00-000
and CANopen	354Bh/0	WI_U1-00-00-000
Modbus	874	M_01-03-00-000

Description

This parameter sets the gain for the velocity feedforward (a scaled derivative of the position command is added to the velocity command value). The nominal feedforward value can be multiplied by this gain value.

This parameter is only used in the position mode (DRV.OPMODE = 2).

Related Topics

VL.LIMITN

General Information	on .	
Туре	NV Parameter	
Description	Sets the velocity lower limit; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEAR	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, μm/s, custom units/s	
	Rotary:	
	-15,000.000 to 0.000 rpm	
	-250.000 to 0.000 rps	
	-90,000.000 to 0.000 deg/s	
	-1,250.000 to 0.000 custom units/s	
Range	-1570.796 to 0.000 rad/s	
	Linear:	
	-1,073,741,824,000.000 to 0.000 counts/s	
	-250.000*MOTOR.PITCH to 0.000 mm/s	
	-250,000.000*MOTOR.PITCH to 0.000 μm/sec	
	-1,250.000 to 0.000 custom units/s	
	Rotary:	
	-3,000.000 rpm	
	-50.000 rps	
	-18,000.002 deg/s	
	-250.000 (custom units)/s	
Default Value	-314.159 rad/s	
	Linear:	
	-0.050 counts/s	
	-50*MOTOR.PITCH mm/s	
	-50,000.004*MOTOR.PITCH μm/sec	
	-250.000 custom units/s	
Data Type	Float	
See Also	VL.LIMITP, VL.CMD	
Start Version	M_01-00-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3623h/0	M_01-00-00-000
Modbus	876	M_01-03-00-000

Description

VL.LIMITN sets the velocity command negative limit.

If the input to the velocity loop is lower than VL.LIMITN, then the actual velocity command VL.CMD is limited by the value of VL.LIMITN.

Related Topics

VL.LIMITP

General Information	n	
Туре	NV Parameter	
Description	Sets the velocity high limit; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEAR	
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s	
	Linear: counts/s, mm/s, µm/s, custom units/s	
	Rotary:	
	0.000 to 15,000.000 rpm	
	0.000 to 250.000 rps	
	0.000 to 90,000.000 deg/s	
	0.000 to 1,250.000 custom units/s	
Range	0.000 to 1570.796 rad/s	
	Linear:	
	0.000 to 1,073,741,824,000.000 counts/s	
	0.000 to 250.000*MOTOR.PITCH mm/sec	
	0.000 to 250,000.000*MOTOR.PITCH μm/s	
	0.000 to 1,250.000 custom units/s	
	Rotary:	
	3,000.000 rpm	
	50.000 rps	
	18,000.002 deg/s	
	250.000 (custom units)/s	
Default Value	314.159 rad/s	
	Linear:	
	0.050 counts/s	
	50.000*MOTOR.PITCH mm/sec	
	50,000.004*MOTOR.PITCH μm/sec	
	250.000 custom units/s	
Data Type	Float	
See Also	VL.LIMITN, VL.CMD	
Start Version	M_01-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3622h/0	M_01-00-00-000
Modbus	878	M_01-03-00-000

Description

VL.LIMITP sets the velocity command positive limit.

If the input to the velocity loop is higher than VL.LIMITP, then the actual velocity command VL.CMD is limited by the value of VL.LIMITP.

Related Topics

11.4 Velocity Loop

VL.LMJR

General Information	
Туре	R/W Parameter
Description	Sets the ratio of the estimated load moment of inertia relative to the motor moment of inertia; active in opmodes 1 (velocity) and 2 (position) only.
Units	NA
Range	0 to 100.0
Default Value	0
Data Type	Float
See Also	IL.KACCFF, IL.FF
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	880	M_01-03-00-000

Description

This parameter is used in the internal calculation of the current loop acceleration feed forward gain value.

Related Topics

VL.MODEL

General Information		
Туре	R/O Parameter	
Description	Reads the observer velocity signal; active in opmodes 1 (velocity) and 2 (position) only.	
	Depends on UNIT.VROTARY or UNIT.VLINEAR, UNIT.ACCLINEAR	
Units	Rotary: rpm, rps, deg/s, (custom units)/s, rad/s	
	Linear: counts/s, mm/s, µm/s, (custom units)/s	
Range	N/A	
Default Value	N/A	
Data Type	Float	
See Also	VL.FB, VL.KO	
Start Version	M_01-00-01-000	

Fieldbus	Index/Subindex	Object Start Version
Modbus	882	M_01-03-00-000

Description

VL.MODEL is the observer velocity output. When VL.KO is tuned properly, VL.MODEL will match VL.FB, except when there is an unspecified offset between the two.

Related Topics

VL.OBSBW

General Information		
Туре	NV Parameter	
Description	Sets the bandwidth of the observer in Hz.	
Units	Hz	
Range	10 to 4,000 Hz	
Default Value	30 Hz	
Data Type	Float	
See Also	N/A	
Start Version	M_01-03-00-004	

Fieldbus	Index/Subindex	Object Start Version
Modbus	884	M_01-03-00-000

Description

This parameter sets the bandwidth of the observer in Hz. The observer passes the velocity feedback through a PID control loop that behaves like a low-pass filter with a bandwidth of VL.OBSBW.

Related Topics

VL.OBSMODE

General Information		
Туре	NV Parameter	
Description	Sets the observer operating mode.	
Units	N/A	
Range	0 to 1	
Default Value	0	
Data Type	Integer	
See Also	N/A	
Start Version	M_01-03-00-004	

Fieldbus	Index/Subindex	Object Start Version
Modbus	886	M_01-03-00-000

Description

This parameter sets the observer operating mode. When VL.OBSMODE = 0, the observer is not part of the control loop; that is, VL.FB is used as the velocity feedback signal to the velocity loop. When VL.OBSMODE = 1, the observer is part of the control loop; VL.MODEL is used as the velocity feedback signal.

Related Topics

VL.THRESH

General Informatio	n
Туре	NV Parameter
Description	Sets the over speed fault value; active in opmodes 1 (velocity) and 2 (position) only.
	Depends on UNIT.VROTARY or UNIT.VLINEAR
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s
	Linear: counts/s, mm/s, µm/s, custom units/s
	Rotary:
	0.000 to 15,000.000 rpm
	0.000 to 250.000 rps
	0.000 to 90,000.000 deg/s
	0.000 to 1,250.000 custom units/s
Range	0.000 to 1,570.796 rad/s
	Linear:
	0.000 to 1,073,741,824,000.000 counts/s
	0.000 to 250.000*MOTOR.PITCH mm/s
	0.000 to 250,000.000*MOTOR.PITCHMOTOR.PITCHµm/s
	0.000 to 1,250.000 custom units/s
	Rotary:
	3,600 rpm
	60 rps
	21,600.000 deg/s
	300.000 custom units/s
Default Value	376.991 rad/s
	Linear:
	0.060 counts/s
	60.000*MOTOR.PITCH mm/s
	60,000.04*MOTOR.PITCHMOTOR.PITCHµm/s
	300.000 custom units/s
Data Type	Float
See Also	VL.CMD, VL.CMDU
Start Version	M_01-00-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3627h/0	M_01-00-00-000
Modbus	888	M_01-03-00-000

Description

VL.THRESH sets the threshold for the velocity over which an over speed fault is generated.

The value is considered as an absolute value, hence it applies for both negative and positive velocities.

Example

VL.THRESH is set to 600 rpm. A velocity (VL.FB) of 700 rpm will generate an over speed fault.

Related Topics

WS Parameters

WS.ARM

General Information		
Туре	Command	
Description	Sets wake and shake to start at the next drive enable.	
Units	N/A	
Range	N/A	
Default Value	N/A	
Data Type	N/A	
See Also	N/A	
Start Version	M_01-01-00-101, M_01-02-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3494h/6	M_01-00-00-000
Modbus	890	M_01-03-00-000

Description

This command sets wake and shake to start at the next drive enable. Feedback type is not relevant for this command. If WS.STATE is 0 and the drive is disabled, then WS.STATE will change to 1 after issuing WS.ARM. With this command, wake and shake can be repeated if desired.

Related Topics

WS.DISARM

General Information	
Туре	Command
Description	Cancels ARM requests and resets wake and shake to the IDLE state.
Units	N/A
Range	N/A
Default Value	N/A
Data Type	N/A
See Also	N/A
Start Version	M_01-04-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	N/A	
Modbus	N/A	

Description

This command disables wake and shake immediately. Feedback type is not relevant for this command. If WS.ARM has been issued, the request to execute the wake and shake algorithm at the next enable is cancelled. WS.STATE is set to IDLE.

Related Topics

WS.DISTMAX

General Information	
Туре	R/W Parameter
Description	Sets maximum movement allowed for wake and shake.
Units	deg (position units)
Range	0 to 90 deg
Default Value	15 deg
Data Type	S64
See Also	N/A
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3494h/2	M_01-00-00-000
Modbus	892 (64-bit)	M_01-03-00-000

Description

This parameter sets the maximum movement that is allowed for finding commutation. If this value is too small, FF475, "Wake and Shake. Too much movement", may occur before wake and shake is finished. The bigger this value, the more movement is allowed for wake and shake. This value is application dependent.

Related Topics

WS.DISTMIN

General Information	
Туре	R/W Parameter
Description	Sets the minimum movement required for wake and shake.
Units	Actual position units
Range	0 to 90 deg
Default Value	1 deg
Data Type	S64
See Also	N/A
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	36D1h/0	M_01-00-00-000
Modbus	896 (64-bit)	M_01-03-00-000

Description

This parameter sets the minimum movement that is required for commutation finding. If this value is too small, the the commutation finding might fail if too little current is used. The larger this value, the more movement is needed in order to avoid F473: "Wake and Shake: Too little movement".

Related Topics

WS.IMAX

General Information	
Туре	R/W Parameter
Description	Sets maximum current used for wake and shake.
Units	Arms
Range	0 to (lower value of MOTOR.IPEAK and DRV.IPEAK) Arms
Default Value	(half of maximum) Arms
Data Type	U16
See Also	MOTOR.IPEAK, DRV.IPEAK
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3494h/1	M_01-00-00-000
Modbus	900	M_01-03-00-000

Description

This parameter defines the maximum current used for wake and shake. If the selected current is too low, the minimum required movement may not occur. If the selected current is too high, the movement may be too fast (overspeed) or too large (over maximum movement).

The maximum of this parameter is the lower value of MOTOR.IPEAK and DRV.IPEAK. The default value of this parameter is the half of its maximum. This value depends on the specific application.

Related Topics

WS.MODE

General Information	
Туре	R/W Parameter
Description	Sets the method used for wake and shake.
Units	N/A
Range	0 to 1
Default Value	0
Data Type	U8
See Also	N/A
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
Modbus	902	M_01-03-00-000

Description

This parameter sets the method used for finding commutation.

0 = Standard wake and shake

Two iterations are used to find the correct angle in this mode. Coarse (current mode) and fine (velocity mode) iterations are done in a loop (WS.NUMLOOPS times). The average angle of all loops is calculated and used.

1 = Commutation alignment by fixed commutation vector (Zero Method)

The motor poles are set to 0, current mode is activated, and WS.IMAX is applied. The angle in which the motor settles is used for commutation. Other settings are restored (such as motor poles and operation mode).

Related Topics

WS.NUMLOOPS

General Information	
Туре	R/W Parameter
Description	Sets the number of repetitions for wake and shake.
Units	counts
Range	0 to 20 counts
Default Value	5 counts
Data Type	U8
See Also	N/A
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	36E2h/0	M_01-00-00-000
Modbus	904	M_01-03-00-000

Description

This parameter sets the maximum number of wake and shake repetitions. MOTOR.PHASE is calculated as mean value of all wake and shake repetitions.

Related Topics

WS.STATE

General Informatio	on a second control of the second control of
Туре	R/O Parameter
Description	Reads wake and shake status
Units	N/A
Range	N/A
Only valid before the first enable occurs.	
Default Value 11 - for feedback types that do not require wake and shake	
	1 - for feedback types that require wake and shake
Data Type	U8
See Also	N/A
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3494h/5	M_01-00-00-000
Modbus	906	M_01-03-00-000

Description

WS switches different current vectors and records position feedback in order to establish commutation alignment.

WS.STATE 0 = wake and shake successful (DONE).

WS.STATE 1 = wake and shake configured and will be done at next enable (ARMED).

WS.STATE 2 = wake and shake running. (ACTIVE)

WS.STATE 10 = error occurred during wake and shake (ERROR).

WS.STATE 11 = wake and shake not required (IDLE).

Related Topics

WS.T

General Information	
Туре	R/W Parameter
Description	Sets wake and shake current-vector appliance time
Units	ms
Range	1 to 200 ms
Default Value	2 ms
Data Type	U8
See Also	WS.IMAX, WS.DISTMAX
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	36D0h/0	M_01-00-00-000
Modbus	908	M_01-03-00-000

Description

This parameter defines the duration for each different current-vector while the coarse angle calculation. The move distance is proportional to the WS.T and WS.IMAX value.

Related Topics

WS.TDELAY1

General Information	
Туре	NV Parameter
Description	Delay for wake and shake timing
Units	ms
Range	0 to 200 ms
Default Value	5 ms
Data Type	U8
See Also	N/A
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3683h/0	M_01-00-00-000
Modbus	910	M_01-03-00-000

Description

WS.TDELAY1 defines the delay time of the wake and shake function. This time is a delay time between the switching of different current vectors during the wake and shake procedure. This time should be increased in the case of movement interferences between single current vectors.

Related Topics

WS.TDELAY2

General Information		
Туре	NV Parameter	
Description	Sets the delay for wake and shake timing.	
Units	ms	
Range	0 to 200 ms	
Default Value	50 ms	
Data Type	U8	
See Also	N/A	
Start Version	M_01-01-00-101, M_01-02-00-000	

Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3685h/0	M_01-00-00-000
Modbus	912	M_01-03-00-000

Description

WS.TDELAY2 defines the delay between switching from coarse angle calculation to fine angle calculation during the wake and shake procedure. This time should be increased in the case of interferences between the coarse calculation done in current mode and the fine calculation done in velocity mode. Choosing too large a value increases the wake and shake duration.

Related Topics

WS.TDELAY3

General Information	
Туре	NV Parameter
Description	Sets the delay for wake and shake between loops in mode 0.
Units	ms
Range	0 to 2,000 ms
Default Value	100 ms
Data Type	U16
See Also	N/A
Start Version	M_01-01-00-102, M_01-02-00-000

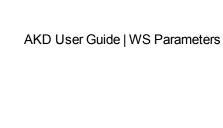
Fieldbus	Index/Subindex	Object Start Version
EtherCAT COE and CANopen	3494h/3	M_01-00-00-000
Modbus	914	M_01-03-00-000

Description

WS.TDELAY3 defines the delay between complete loops in mode 0 only. Decreasing this value makes the wake and shake procedure faster, but may lead to problems if the motor moves too long. Increasing this value will make wake and shake significantly longer.

Related Topics

WS.VTHRESH


General Information	
Туре	NV Parameter
Description	Defines the maximum allowed velocity for Wake & Shake
	Depends on UNIT.VROTARY or UNIT.VLINEARUNIT.ACCLINEAR
Units	Rotary: rpm, rps, deg/s, custom units/s, rad/s
	Linear: counts/s, mm/s, µm/s, custom units/s
	Rotary:
	0.000 to 15,000.000 rpm
	0.000 to 250.000 rps
	0.000 to 90,000.000 degree/s
	0.000 to 1,250.000 custom units/s
Range	0.000 to 1,570.796 rad/s
	Linear:
	0.000 to 1,073,741,824,000.000 counts/s
	0.000 to 8,000.000 mm/s
	0.000 to 8,000,000.000 µm/s
	0.000 to 1,250.000 custom units/s
Default Value	100 rpm
Data Type	U16
See Also	N/A
Start Version	M_01-01-00-101, M_01-02-00-000

Fieldbus	Index/Subindex	Object Start Version	
EtherCAT COE	3494h/4	M 01-00-00-000	
and CANopen	343411/4	101_01-00-000	
Modbus	916	M_01-03-00-000	

Description

This parameter defines the maximum allowed velocity that occurs while commutation finding is active. This supervision runs in real time, but only while wake and shake is active (WS.STATE 2 or greater, for Mode 0). If at any time while wake and shake is running a velocity higher than this value is detected, fault F478 is generated. Setting WS.VTHRESH to zero disables this feature. For Mode 1, WS.VTHRESH is only used after the initial phase-finding.

Related Topics

This page intentionally left blank.

Sales and Service

We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance.

If you are unaware of your local sales representative, please contact us.

Europe

Kollmorgen Customer Support Europe

 Internet
 www.kollmorgen.com

 E-Mail
 technik@kollmorgen.com

 Tel.:
 +49(0)2102 - 9394 - 0

 Fax:
 +49(0)2102 - 9394 - 3155

North America

Kollmorgen Customer Support North America

 Internet
 www.kollmorgen.com

 E-Mail
 support@kollmorgen.com

 Tel.:
 +1 - 540 - 633 - 3545

 Fax:
 +1 - 540 - 639 - 4162

KOLLMORGEN

25 Index	607Ch 214 607Dh 219
25 IIIUEX	6081h 220
1	6084h 220
•	608Fh 221
1000h 1	63 6092h 202
	64 6098h 214
1002h 1	65 6099h 216
1003h 1	66 609Ah 216
1005h 1	67 60C0h 209
1006h 1	67 60C1h 210
1008h 1	68 60C2h 211
1009h 1	68 60C4h 212
100Ah 1	68 60F4h 208
100Ch 1	69 60FDh 182
100Dh 1	69 60FEh 182
1010h 1	70 60FFh 204
1014h 1	71 6502h 183
1016h 1	71
1017h 1	72 A
1018h 1	72
1026h 1	74 Abbreviations 60, 137
1400-1403h 1	85 Acceleration ramp 359
1600-1603h 1	86 AL Event . 80
	88 Analog inputs 275
1A00-1A03h 1	90 Analog output 103
	Analog setpoints 275
2	Anti-resonance filter 662
	Aux. supply 24V, interface 267
2014-2017h 1	75
2018h 1	76 B
2026h 1	77
204Ch 2	00 Basic data types 147
20A0h 1	78 Basic drive setup 34
20A1h 1	78 Basic testing 236
20A2h 1	78 Blink 362
20A3h 1	79 Block diagrams
20A4h 1	79 current loop 282
20A5h 1	position and velocity loops 282
20A6h 1	80 Brake view 80
20B8h 1	81
	C
6	
	CANopen over EtherCAT 84
	95 Capture 81
	96 Check communications 40, 43
	98 Command buffer 96
	99 Command source 366
	07 Communication Objects 149
	08 Connect to another drive 40
	08 Connected and disconnected states 38
	03 Connection diagram
	05 AKD-x00306 to x00606 264
	05 AKD-x01206 265
	06 AKD-x01206 & AKD-xzzz07 266
607Ah 2	19 Connection Diagrams 263

Control word	195	Fieldbus Parameters	96
Control Word Commands	85	Foldback	77
Controlled Stop	115		
current loop	121	G	
Current loop gain scheduling	122	General definitions	163
Cycle Time	00	General objects	163
Adjust	89	General objects	103
Max.Values	89	Н	
Cyclical Values	88		
D		Heartbeat	158
		Homing	134
Data types	147	Homing Mode	214
DC bus link, interface	270	1	
deceleration	369	I	
Device control	192	I/O-Connection	104, 273
Device Not Shown	38, 46	Inputs	104, 273
Dig. Encoder emulation, interface	277	•	275
Digital inputs	99	Analog Digital	275 99
Digital Inputs and Outputs	88	Digital	
Direct DC mains	56	Enable	102
Disable	373	Programmable	102
Disconnected state	38	Interpolated position mode	209
Display Codes	34	Interrupt Event	80
Downloading Firmware	259	Invalid Firmware	259
Drive Motion Status	153		
Dynamic Braking	117	J	
E		Jog Move	153
		K	
Electronic gearing	106	••	
Emergency Messages	253, 160	KAS IDE	77
Emergency Object	151		
emergency timeout	375	L	
Emulated Encoder Output	277		
ENABLE	102	Latch Words	91
Enable/Disable	111		
encoder emulation	74	M	
Error Messages			
parameter and command	250	Macros	219
EtherCAT onboard	65	Mailbox	92
EtherCAT Proflie	78	Mains supply, interface	271
Examples	236	Manufacturer specific objects	175
Examples, setup	236	master/slave	74
Examples, special applications	249	Mixed data types	148
Extended data types	149	Modbus	6
		Modbus Dynamic Mapping	9
F		Modulo position	127
		Motion Tasks	144
Factor Groups	199	Motor	64
Fault messages	240	Motor interface	268
Faults	364	motor interido	200
clearing	249	N	
Feedback 1	66	••	
Feedback 2	73	Network Management Object	150
Feedback Connection	279	Nodeguard	157
Fieldbus	96	Non-Plug and Play Feedback Devices	

0		Settings	52
		Setup	66
Object Dictionary	223	Signed Integer	148 79
Operating mode	198	Slave Register	160
parameters and commands active in	225,	Slider Tuning Status machine	192
	265	Status Machine	84
Operation Modes	88	Status wachine Status word	196
Outputs		Status Word Status Word	86
Analog	274		90
Overview	50	Synchronization Synchronization Object	150
P		Т	
Parameter Comparer	221	•	
Parameter Load/Save	221	Target group	59, 136
PDO configuration	184	TCP/IP	48
PDO Mapping	87	Terminal	218
Performance Servo Tuner	160	Time Stamp Object	150
advanced	164	Transmission modes	156
	82	Transmit PDOs	188
Phase run-up Position Control Function	207	Trigger modes	156
		Trouble Shooting	257
Position Loop	126	Tuning	189
Power Pote Object	56 455	TwinCAT	66
Process Data Object	155	TWINGAT	00
Profile Position Mode	218	U	
Profile specific objects	182	•	
Profile torque mode	205	Units	84
Profile Velocity Mode	203	Unsigned Integer	147
Programmable Limit Switch	109	Up/Down Input	278
Prohibited Use	62, 139	Use as directed	62, 139
Pulse Direction, interface	278		02, 100
R		V	
Bassina BBOs	405	Velocity Loop	124
Receive PDOs	185	•	
Regen resistor, interface	269	W	
Regeneration	58		
Registration moves	149	Wake and shake (WS)	68
Response monitoring	169	Warnings	240
		Watch	52
S		Wizard	35
Safa Tarqua Off (STO)	118	Workbench over TwinCAT	71
Safe Torque Off (STO)	110		
Safety Instructions	64 141		
Electrical Installation	64, 141		
General	62, 139		
Save On Disconnect	157		
Save On Exit	156		
Save On Firmware Download	158		
Save Options	156		
scope	205		
channels	205		
settings and presets	212		
time-base	205		
SDO abort codes	154		
Service Data Object	152		
Service Motion	152		

This page intentionally left blank.

Sales and Service

We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance.

If you are unaware of your local sales representative, please contact us.

Europe

Kollmorgen Customer Support Europe

 Internet
 www.kollmorgen.com

 E-Mail
 technik@kollmorgen.com

 Tel.:
 +49(0)2102 - 9394 - 0

 Fax:
 +49(0)2102 - 9394 - 3155

North America

Kollmorgen Customer Support North America

 Internet
 www.kollmorgen.com

 E-Mail
 support@kollmorgen.com

 Tel.:
 +1 - 540 - 633 - 3545

 Fax:
 +1 - 540 - 639 - 4162

KOLLMORGEN